ON THE UNIQUENESS OF SOLUTIONS IN THE HULL

Toshiki Naito

(Received December 5, 1972)

We shall consider an almost periodic system, or more generally, a system with the compact hull, and assume that in either case the system has a bounded solution. The purpose of this note is to prove a uniqueness theorem for every solution in the hull of the bounded solution. Kato and Yoshizawa have assumed in [1] the condition
(c) solutions of every system in the hull are unique for initial conditions
in order to prove that a bounded solution of a system with the compact hull is totally stable if it is uniformly asymptotically stable. Kato has weakened the condition (c) in [2]. Moreover, he has constructed a system with a uniformly asymptotically stable but not totally stable solution, which lacks the uniqueness property of a solution of a system in the hull.

Concerning the uniqueness of a given solution, Okamura has given a necessary and sufficient condition in [3]. His condition is to require the existence of a kind of Liapunov function. Yoshizawa has improved the method to construct the Liapunov function (see p. 5-8 in [5]). Using his method, we shall show a necessary and sufficient condition for the uniqueness of every solution in the hull.

We shall use the following notations throughout this note. We set $I=[0, \infty), R=(-\infty,+\infty), R^{n}=$ a real Euclidean n-space, $S_{B^{*}}=\left\{x \in R^{n}\right.$; $\left.|x|<B^{*}\right\}$, where $|\cdot|$ is a norm, and $C\left(I \times S_{B^{*}}, R^{n}\right)=$ the family of $R^{n_{-}}$ valued continuous functions defined on $I \times S_{B^{*}}$. For any $f \in C\left(I \times S_{B^{*}}, R^{n}\right)$ and $\tau \in I$, we set $f_{\tau}(t, x)=f(t+\tau, x)$ for $(t, x) \in I \times S_{B^{*}}$. The hull of f, denoted by $H(f)$, is the closure of the set $\left\{f_{\tau} ; \tau \in I\right\}$ in the sense of the uniform convergence on any compact subset of $I \times S_{B^{*}}$.

1. We shall consider a system of differential equations

$$
\begin{equation*}
\frac{d x}{d t}=f(t, x) \tag{1}
\end{equation*}
$$

and assume that $f \in C\left(I \times S_{B^{*}}, R^{n}\right)$ and $H(f)$ is compact. Let $u(t)$ be a solution of the system (1) such that for a constant $B, 0<B<B^{*}$,

$$
|u(t)| \leqq B \quad \text { for all } \quad t \in I
$$

Then, u_{τ} is obviously a bounded solution remaining in $\overline{S_{B}}$ on I of the system

$$
\frac{d x}{d t}=f_{\tau}(t, x)
$$

for any $\tau \in I$. Since $\left|f_{\tau}(t, x)\right| \leqq L$ for some $L=L(B)$ and all $(t, x) \in I \times \overline{S_{B}}$, u_{τ} satisfies the Lipschitz condition

$$
\left|u_{\tau}(t)-u_{\tau}(s)\right| \leqq L|t-s| \quad \text { for all } t, s \in I
$$

Therefore, $H(u)$ and $H(u, f)$ are compact. Here, for $(v, g) \in H(u, f)$ there exists a sequence $\left\{\tau_{k}\right\}, \tau_{k} \in I$, such that
(*) $\quad u_{\tau_{k}} \rightarrow v$ and $f_{\tau_{k}} \rightarrow g$ as $k \rightarrow \infty$ uniformly on any compact subset of $I \times S_{B^{*}}$
v is a bounded solution remaining in $\overline{S_{B}}$ on I of the system

$$
\begin{equation*}
\frac{d x}{d t}=g(t, x) \tag{2}
\end{equation*}
$$

We shall denote the tubular neighborhoods of $u(t), \tau \leqq t \leqq \tau+T$, and $u_{\tau}(t), 0 \leqq t \leqq T$, by the following;

$$
\begin{aligned}
& N(\tau, T, \varepsilon)=\{(t, x) ; \tau \leqq t \leqq \tau+T \text { and }|x-u(t)|<\varepsilon\}, \\
& M(\tau, T, \varepsilon)=\left\{(t, x) ; 0 \leqq t \leqq T \text { and }\left|x-u_{\tau}(t)\right|<\varepsilon\right\} .
\end{aligned}
$$

Clearly, $(t, x) \in N(\tau, T, \varepsilon)$ if and only if $(t-\tau, x) \in M(\tau, T, \varepsilon)$.
We have obtained the following theorem concerning the uniqueness of the solution v of the system (2).

Theorem. Let T and ε be given, where $0<T$ and $0<\varepsilon<B^{*}-B$. Then, for any $(v, g) \in H(u, f) v$ is a unique solution to the right of the system (2) if and only if there exist continuous functions $V(t, x, \tau)$ defined on $N(\tau, T, \varepsilon)$ for all $\tau \in I$, which satisfy the following conditions:
(i) $V(t, u(t), \tau) \equiv 0$ for all $t \in[\tau, \tau+T]$.
(ii) $\quad a(|x-u(t)|) \leqq V(t, x, \tau) \leqq|x-u(t)|$ for all $(t, x) \in N(\tau, T, \varepsilon)$, where $a(r)$ is a positive definite continuous function of $r \in[0, \varepsilon)$, which may depend on T and ε but not on τ.
(iii) $|V(t, x, \tau)-V(t, y, \tau)| \leqq|x-y|$ for all $(t, x),(t, y) \in N(\tau, T, \varepsilon)$.
(iv) $V_{(1)}^{\prime}(t, x, \tau) \leqq 0$ for all $(t, x) \in N(\tau, T, \varepsilon)$.

Proof. Sufficiency. If $(v, g) \in H(u, f)$, there exists a sequence $\left\{\tau_{k}\right\}$, $\tau_{k} \in I$, such that the condition (*) holds. Let $y(t)$ be a solution of (2) defined on $\left[t_{0}, t_{1}\right)$, for some t_{0} and $t_{1} \in I, t_{0}<t_{1}$, such that $y\left(t_{0}\right)=v\left(t_{0}\right)$.

We shall show that $y(t)=v(t)$ for all $t \in\left[t_{0}, t_{1}\right)$ sufficiently close to t_{0}. Considering $\left\{\tau_{k}+t_{0}\right\}$ instead of $\left\{\tau_{k}\right\}$, we can assume that $t_{0}=0$. Since $\left\{u_{\tau_{k}}\right\}$ converges v uniformly on [$0, T$], there exists a small $t_{2}>0$ such that $(t, v(t))$ and $(t, y(t)) \in M\left(\tau_{k}, T, \varepsilon\right)$ for all $t \in\left[0, t_{2}\right]$ and sufficiently large k. Set

$$
\begin{equation*}
W\left(t, x, \tau_{k}\right)=V\left(t+\tau_{k}, x, \tau_{k}\right) \tag{3}
\end{equation*}
$$

which is defined on $M\left(\tau_{k}, T, \varepsilon\right)$. Since $W\left(t, x, \tau_{k}\right)$ satisfies the Lipschitz condition with respect to x, we obtain

$$
\begin{aligned}
W_{(2)}^{\prime}\left(t, x, \tau_{k}\right) & \leqq W_{\left(1, \tau_{k}\right)}^{\prime}\left(t, x, \tau_{k}\right)+\left|g(t, x)-f_{\tau_{k}}(t, x)\right| \\
& \leqq V_{(1)}^{\prime}\left(t+\tau_{k}, x, \tau_{k}\right)+\left|g(t, x)-f_{\tau_{k}}(t, x)\right|
\end{aligned}
$$

From this and the condition (iv), it follows that

$$
W_{(2)}^{\prime}\left(t, x, \tau_{k}\right) \leqq \delta_{k}
$$

where

$$
\delta_{k}=\sup \left\{\left|f_{\tau_{k}}(t, x)-g(t, x)\right| ;(t, x) \in M\left(\tau_{k}, T, \varepsilon\right)\right\}
$$

and hence

$$
W\left(t, y(t), \tau_{k}\right)-W\left(0, y(0), \tau_{k}\right) \leqq \delta_{k} t \quad \text { for } \quad t \in\left[0, t_{2}\right]
$$

The condition (ii) implies that

$$
a\left(\left|x-u_{\tau_{k}}(t)\right|\right) \leqq W\left(t, x, \tau_{k}\right) \leqq\left|x-u_{\tau_{k}}(t)\right| \quad \text { for } \quad(t, x) \in M\left(\tau_{k}, T, \varepsilon\right)
$$

Therefore, it holds that

$$
a\left(\left|y(t)-u_{\tau_{k}}(t)\right|\right) \leqq\left|y(0)-u_{\tau_{k}}(0)\right|+\delta_{k} t \quad \text { for } \quad t \in\left[0, t_{2}\right] .
$$

Since $y(0)=v(0)=\lim _{k \rightarrow \infty} u_{\tau_{k}}(0)$ and $\lim _{k \rightarrow \infty} \delta_{k}=0$, we have

$$
a(|y(t)-v(t)|) \leqq 0 \quad \text { for } \quad t \in\left[0, t_{2}\right]
$$

and hence

$$
y(t)=v(t) \quad \text { for } \quad t \in\left[0, t_{2}\right]
$$

Necessity. We remark that $|x|<B^{*}$ if $|x-u(t)| \leqq \varepsilon$. For $(t, x) \in$ $N(\tau, T, \varepsilon)$ and $t>\tau$, denote by $Z(t, x, \tau)$ the family of all functions $z(s)$, which are continuous on $[\tau, t]$, with the properties that their derivatives are continuous except for finite number of values of s and that $z(\tau)=u(\tau)$, $z(t)=x$ and $|z(s)-u(s)| \leqq \varepsilon$ for $s \in[\tau, t]$. For any $\tau \in I$ and any $(t, x) \in$ $N(\tau, T, \varepsilon)$, set

$$
V(t, x, \tau)=\left\{\begin{array}{l}
\inf _{z \in Z(t, x, \tau)} \int_{\tau}^{t}\left|\frac{d z}{d s}(s)-f(s, z(s))\right| d s, \quad \text { if } \quad t>\tau \tag{4}\\
|x-u(\tau)|, \quad \text { if } \quad t=\tau
\end{array}\right.
$$

V is continuous on $N(\tau, T, \varepsilon)$ and satisfies the conditions (i), (iii) and (iv). Moreover, it holds that
(ii)' $V(t, x, \tau) \leqq|x-u(t)|$ for all $(t, x) \in N(\tau, T, \varepsilon)$ and $V(t, x, \tau)>0$ if $|x-u(t)|>0$.
See p. 5-8 in [5] for the proof of these. Therefore, it remains only to prove the first inequality in (ii).

Set

$$
a(\tau, r)=\inf \{V(t, x, \tau) ;(t, x) \in Q(\tau, r)\}
$$

where $0<r<\varepsilon, \tau \in I$ and

$$
Q(\tau, r)=\{(t, x) ; t \in[\tau, \tau+T],|x-u(t)|=r\}
$$

Since $Q(\tau, r)$ is a compact set, there exists a $\left(t_{0}, x_{0}\right) \in Q(\tau, r)$ where V attains $a(\tau, r)$, so that $a(\tau, r)>0$. We shall prove

$$
\inf _{\tau \in I} a(\tau, r) \equiv a(r)>0 \quad \text { for } \quad 0<r<\varepsilon
$$

To prove this, suppose that there exists an $r_{0}, 0<r_{0}<\varepsilon$, such that $a\left(r_{0}\right)=0$. By the definition, it holds that

$$
\lim _{k \rightarrow \infty} V\left(t_{k}, x_{k}, \tau_{k}\right)=0
$$

for some sequence $\left\{\tau_{k}\right\}, \tau_{k} \in I$, and some $\left(t_{k}, x_{k}\right) \in Q\left(\tau_{k}, r_{0}\right)$. If we set $s_{k}=t_{k}-\tau_{k}$, we have $s_{k} \in[0, T]$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} W\left(s_{k}, x_{k}, \tau_{k}\right)=0, \tag{5}
\end{equation*}
$$

where $W\left(t, x, \tau_{k}\right)$ is defined by (3). For $(t, x) \in M(\tau, T, \varepsilon)$ and $t>0$, set

$$
Y(t, x, \tau)=\left\{z_{\tau} ; z \in Z(\tau+t, x, \tau)\right\}
$$

From (4) and the definition of W, we have

$$
W(t, x, \tau)= \begin{cases}\inf _{y \in Y(t, x, \tau)} \int_{0}^{t}\left|\frac{d y}{d s}(s)-f_{\tau}(s, y(s))\right| d s, & \text { if } t>0, \tag{6}\\ \left|x-u_{\tau}(0)\right|, & \text { if } t=0 .\end{cases}
$$

We shall show that $\lim \inf _{k \rightarrow \infty} s_{k} \equiv \sigma>0$. Since $\left|f_{\tau_{k}}(t, x)\right| \leqq L$ for some $L=L(B+\varepsilon)$, all $(t, x) \in \overline{M\left(\tau_{k}, T, \varepsilon\right)}$ and all $k=1,2, \cdots$, it follows from (6) that

$$
W\left(s_{k}, x_{k}, \tau_{k}\right) \geqq\left|x_{k}-u_{\tau_{k}}(0)\right|-L s_{k}
$$

(see p. 6 Lemma 1. 2 in [5]). With the aid of inequalities

$$
\begin{aligned}
\left|x_{k}-u_{\tau_{k}}(0)\right| & \geqq\left|x_{k}-u_{\tau_{k}}\left(s_{k}\right)\right|-\left|u_{\tau_{k}}\left(s_{k}\right)-u_{\tau_{k}}(0)\right| \\
& \geqq r_{0}-L s_{k},
\end{aligned}
$$

we have

$$
W\left(s_{k}, x_{k}, \tau_{k}\right) \geqq r_{0}-2 L s_{k}
$$

In view of (5), we have $\sigma>0$.
Therefore, from (5) and (6), there exist $y_{k} \in Y\left(s_{k}, x_{k}, \tau_{k}\right)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{s_{k}}\left|\frac{d y_{k}}{d s}(s)-f_{\tau_{k}}\left(s, y_{k}(s)\right)\right| d s=0 \tag{7}
\end{equation*}
$$

Hence, there exists a subsequence of $\left\{y_{k}\right\}$ converging uniformly on any compact subset of $[0, \sigma)$. In the following, by renumbering, we shall denote subsequences and their original sequences by the same notations. Since $H(f)$ is compact, $\left\{f_{\tau_{k}}\right\}$ has a subsequence converging uniformly on any compact subset of $I \times S_{B^{*}}$ Let $y(t)$ and $g(t, x)$ be limit functions of $\left\{y_{k}(t)\right\}$ and $\left\{f_{\tau_{k}}(t, x)\right\}$ respectively. By standard arguments, we have

$$
y(t)-y(0)-\int_{0}^{t} g(s, y(s)) d s=0 \quad \text { for } \quad t \in[0, \sigma)
$$

so that $y(t)$ is a solution of (2).
On the other hand, choosing a subsequence, we can assume that $\left\{u_{\tau_{k}}\right\}$ converges to some $v \in H(u)$ uniformly on any compact interval of I. v is clearly a solution of (2).

We shall examine the relation of the solutions y and v of the system (2). Choosing a subsequence of $\left\{s_{k}\right\}$, if necessary, we can assume that $\lim _{k \rightarrow \infty} s_{k}=\sigma$. Then, if $s_{0} \in[0, \sigma)$ is sufficiently close to σ, we have for k sufficiently large

$$
\left|y_{k}\left(s_{k}\right)-y_{k}\left(s_{0}\right)\right|<\frac{r_{0}}{4} \quad \text { and } \quad\left|u_{\tau_{k}}\left(s_{k}\right)-u_{\tau_{k}}\left(s_{0}\right)\right|<\frac{r_{0}}{4}
$$

Obviously it holds that

$$
\begin{aligned}
& \left|y\left(s_{0}\right)-v\left(s_{0}\right)\right| \geqq \mid \\
& \quad x_{k}-u_{\tau_{k}}\left(s_{k}\right) \mid-\left\{\left|y\left(s_{0}\right)-y_{k}\left(s_{0}\right)\right|\right. \\
& \quad+\left|y_{k}\left(s_{0}\right)-y_{k}\left(s_{k}\right)\right|+\left|u_{\tau_{k}}\left(s_{k}\right)-u_{\tau_{k}}\left(s_{0}\right)\right| \\
& \left.+\left|u_{\tau_{k}}\left(s_{0}\right)-v\left(s_{0}\right)\right|\right\}
\end{aligned}
$$

From these inequalities, we have

$$
\left|y\left(s_{0}\right)-v\left(s_{0}\right)\right| \geqq \frac{r_{0}}{2}
$$

On the other hand, $y(0)=v(0)$ because $y_{k}(0)=u_{\tau_{k}}(0)$.
Therefore, v is not a unique solution to the right of the system (2). This is a contradiction. Hence it is proved that

$$
a(r)>0 \quad \text { for } \quad 0<r<\varepsilon
$$

2. We shall show some examples of the functions V and an application of the theorem.

When f satisfies the Lipschitz condition such that

$$
|f(t, x)-f(t, y)| \leqq K|x-y|
$$

for some $K>0$ and all $(t, x),(t, y) \in I \times S_{B^{*}}$, we set

$$
V(t, x, \tau)=e^{-K(t-\tau)}|x-u(t)| \quad \text { for } \quad(t, x) \in N(\tau, T, \varepsilon) .
$$

More generally, let f be inner product in the sense of Strauss and Yorke in [4], that is to say, f satisfies the condition

$$
\langle x-y, f(t, x)-f(t, y)\rangle \leqq K|x-y|^{2}
$$

for some $K>0$ and all $(t, x),(t, y) \in I \times S_{B^{*}}$, where $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$ and $|x|=\langle x, x\rangle^{1 / 2}$ for $x, y \in R^{n}$. We set in this case

$$
V(t, x, \tau)=(2 \varepsilon)^{-1} e^{-2 K(t-\tau)}|x-u(t)|^{2} \quad \text { for } \quad(t, x) \in N(\tau, T, \varepsilon) .
$$

It is easy to check that these V fulfill the conditions (i), \cdots, (iv) in Theorem.

Applying Theorem, we can present a short proof of the following proposition, which corresponds to Lemma 6 in [6], though Yoshizawa has proved the lemma for functional differential systems.

Proposition. Let $T>0$ be given. Then, for any $(v, g) \in H(u, f) v$ is a unique solution to the right of (2) if and only if for any small $\varepsilon>0$ there exists $a \delta(\varepsilon)>0$ such that if $\tau \in I,|x-u(\tau)|<\delta(\varepsilon)$ and $|h(t)|<\delta(\varepsilon)$, we have

$$
|x(t)-u(t)|<\varepsilon \quad \text { on } \quad \tau \leqq t \leqq \tau+T,
$$

where $x(t)$ is a solution through (τ, x) of the system

$$
\begin{equation*}
\frac{d x}{d t}=f(t, x)+h(t) \tag{8}
\end{equation*}
$$

and $h(t)$ is continuous on I.
Proof. Sufficiency can be proved by standard arguments. We shall only show the proof of necessity. According to Theorem, there exist continuous functions V satisfying the conditions (i), $\cdot \cdot$, (iv). We remark that $a(r)$ in (ii) can be replaced by an increasing positive definite continuous function. Define $\delta(\varepsilon)$ by the relation

$$
\begin{equation*}
a^{-1}(\delta(\varepsilon)(1+T))<\varepsilon \tag{9}
\end{equation*}
$$

Obviously it holds that

$$
V_{(8)}^{\prime}(t, x(t), \tau) \leqq V_{(1)}^{\prime}(t, x(t), \tau)+|h(t)| \leqq \delta(\varepsilon) .
$$

Therefore, we have

$$
a(|x(t)-u(t)|) \leqq|x(\tau)-u(\tau)|+\delta(\varepsilon)(t-\tau)
$$

From this and (9), it holds that

$$
|x(t)-u(t)| \leqq \varepsilon \quad \text { for } \quad t \in[\tau, \tau+T]
$$

References

[1] J. Kato and T. Yoshizawa, a relationship between uniformly asymptotic stability and total stability, Funkcialaj Ekvacioj, 12 (1969), 233-238.
[2] J. Kato, Uniformly asymptotic stability and total stability, Tôhoku Math. J., 22 (1970), 254-269.
[3] H. Okamura, Condition nécessaire et suffisante remplie par les équations différentielles ordinaires sans points de Peano, Mem. Coll. Sci., Kyoto Imperial Univ., Series A, 24 (1942), 21-28.
[4] A. Strauss and J. A. Yorke, Perturbing uniform asymptotically stable nonlinear systems, J. Differential Fquations, 6 (1969), 452-483.
[5] T. Yoshizawa, Stability Theory by Liapunov's Second Method, Tokyo, Math. Soc. Japan, 1966.
[6] T. Yoshizawa, Asymptotically almost periodic solutions of an almost periodic system, Funkcialaj Ekvacioj, 12 (1969), 23-40.

```
Mathematical Institute
Tôhoku University
Sendai, Japan
```

