ON THE UNIQUENESS OF SOLUTIONS IN THE HULL

TOSHIKI NAITO

(Received December 5, 1972)

We shall consider an almost periodic system, or more generally, a system with the compact hull, and assume that in either case the system has a bounded solution. The purpose of this note is to prove a uniqueness theorem for every solution in the hull of the bounded solution. Kato and Yoshizawa have assumed in [1] the condition

(c) solutions of every system in the hull are unique for initial conditions

in order to prove that a bounded solution of a system with the compact hull is totally stable if it is uniformly asymptotically stable. Kato has weakened the condition (c) in [2]. Moreover, he has constructed a system with a uniformly asymptotically stable but not totally stable solution, which lacks the uniqueness property of a solution of a system in the hull.

Concerning the uniqueness of a given solution, Okamura has given a necessary and sufficient condition in [3]. His condition is to require the existence of a kind of Liapunov function. Yoshizawa has improved the method to construct the Liapunov function (see p. 5-8 in [5]). Using his method, we shall show a necessary and sufficient condition for the uniqueness of every solution in the hull.

We shall use the following notations throughout this note. We set $I = [0, \infty), R = (-\infty, +\infty), R^n =$ a real Euclidean *n*-space, $S_{B^*} = \{x \in R^n; |x| < B^*\}$, where $|\cdot|$ is a norm, and $C(I \times S_{B^*}, R^n) =$ the family of R^n -valued continuous functions defined on $I \times S_{B^*}$. For any $f \in C(I \times S_{B^*}, R^n)$ and $\tau \in I$, we set $f_{\tau}(t, x) = f(t + \tau, x)$ for $(t, x) \in I \times S_{B^*}$. The hull of f, denoted by H(f), is the closure of the set $\{f_{\tau}; \tau \in I\}$ in the sense of the uniform convergence on any compact subset of $I \times S_{B^*}$.

1. We shall consider a system of differential equations

$$\frac{dx}{dt} = f(t, x) ,$$

and assume that $f \in C(I \times S_{B^*}, R^*)$ and H(f) is compact. Let u(t) be a solution of the system (1) such that for a constant B, $0 < B < B^*$,

T. NAITO

$$|u(t)| \leq B$$
 for all $t \in I$.

Then, u_r is obviously a bounded solution remaining in $\overline{S_B}$ on I of the system

(1,
$$\tau$$
) $\frac{dx}{dt} = f_{\tau}(t, x)$

for any $\tau \in I$. Since $|f_{\tau}(t, x)| \leq L$ for some L = L(B) and all $(t, x) \in I \times \overline{S_B}$, u_{τ} satisfies the Lipschitz condition

$$|u_{\tau}(t) - u_{\tau}(s)| \leq L|t-s|$$
 for all $t, s \in I$.

Therefore, H(u) and H(u, f) are compact. Here, for $(v, g) \in H(u, f)$ there exists a sequence $\{\tau_k\}, \tau_k \in I$, such that

$$\begin{array}{ll} (*) & u_{\tau_k} \to v \text{ and } f_{\tau_k} \to g \text{ as } k \to \infty \text{ uniformly on any compact} \\ & \text{subset of } I \times S_{B^*}. \end{array}$$

v is a bounded solution remaining in $\overline{S_B}$ on I of the system

$$\frac{dx}{dt} = g(t, x) \ .$$

We shall denote the tubular neighborhoods of u(t), $\tau \leq t \leq \tau + T$, and $u_{\tau}(t)$, $0 \leq t \leq T$, by the following;

$$N(au, \ T, \ arepsilon) = \{(t, \ x); \ au \leq t \leq au + T ext{ and } |x - u(t)| < arepsilon\}, \ M(au, \ T, \ arepsilon) = \{(t, \ x); \ 0 \leq t \leq T ext{ and } |x - u_{ au}(t)| < arepsilon\}.$$

Clearly, $(t, x) \in N(\tau, T, \varepsilon)$ if and only if $(t - \tau, x) \in M(\tau, T, \varepsilon)$.

We have obtained the following theorem concerning the uniqueness of the solution v of the system (2).

THEOREM. Let T and ε be given, where 0 < T and $0 < \varepsilon < B^* - B$. Then, for any $(v, g) \in H(u, f)$ v is a unique solution to the right of the system (2) if and only if there exist continuous functions $V(t, x, \tau)$ defined on $N(\tau, T, \varepsilon)$ for all $\tau \in I$, which satisfy the following conditions:

(i) $V(t, u(t), \tau) \equiv 0$ for all $t \in [\tau, \tau + T]$.

(ii) $a(|x - u(t)|) \leq V(t, x, \tau) \leq |x - u(t)|$ for all $(t, x) \in N(\tau, T, \varepsilon)$, where a(r) is a positive definite continuous function of $r \in [0, \varepsilon)$, which may depend on T and ε but not on τ .

(iii) $|V(t, x, \tau) - V(t, y, \tau)| \leq |x - y|$ for all (t, x), $(t, y) \in N(\tau, T, \varepsilon)$. (iv) $V'_{(1)}(t, x, \tau) \leq 0$ for all $(t, x) \in N(\tau, T, \varepsilon)$.

PROOF. Sufficiency. If $(v, g) \in H(u, f)$, there exists a sequence $\{\tau_k\}$, $\tau_k \in I$, such that the condition (*) holds. Let y(t) be a solution of (2) defined on $[t_0, t_1)$, for some t_0 and $t_1 \in I$, $t_0 < t_1$, such that $y(t_0) = v(t_0)$.

 $\mathbf{384}$

We shall show that y(t) = v(t) for all $t \in [t_0, t_1)$ sufficiently close to t_0 . Considering $\{\tau_k + t_0\}$ instead of $\{\tau_k\}$, we can assume that $t_0 = 0$. Since $\{u_{\tau_k}\}$ converges v uniformly on [0, T], there exists a small $t_2 > 0$ such that (t, v(t)) and $(t, y(t)) \in M(\tau_k, T, \varepsilon)$ for all $t \in [0, t_2]$ and sufficiently large k. Set

(3)
$$W(t, x, \tau_k) = V(t + \tau_k, x, \tau_k)$$
,

which is defined on $M(\tau_k, T, \varepsilon)$. Since $W(t, x, \tau_k)$ satisfies the Lipschitz condition with respect to x, we obtain

$$egin{aligned} W'_{(2)}(t,\,x,\, au_k) &\leq W'_{(1, au_k)}(t,\,x,\, au_k) + |g(t,\,x) - f_{ au_k}(t,\,x)| \ &\leq V'_{(1)}(t+ au_k,\,x,\, au_k) + |g(t,\,x) - f_{ au_k}(t,\,x)| \ . \end{aligned}$$

From this and the condition (iv), it follows that

$$W'_{\scriptscriptstyle (2)}(t, x, \tau_k) \leq \delta_k$$

where

$$\delta_k = \sup \{ |f_{\tau_k}(t, x) - g(t, x)|; (t, x) \in M(\tau_k, T, \varepsilon) \}$$
,

and hence

$$W(t, y(t), \tau_k) - W(0, y(0), \tau_k) \leq \delta_k t \text{ for } t \in [0, t_2].$$

The condition (ii) implies that

 $a(|x-u_{\tau_k}(t)|) \leq W(t, x, \tau_k) \leq |x-u_{\tau_k}(t)| \quad ext{for} \quad (t, x) \in M(\tau_k, T, \varepsilon) \;.$

Therefore, it holds that

$$a(|y(t) - u_{\tau_k}(t)|) \leq |y(0) - u_{\tau_k}(0)| + \delta_k t \quad ext{for} \quad t \in [0, t_2] \;.$$

Since $y(0) = v(0) = \lim_{k \to \infty} u_{\tau_k}(0)$ and $\lim_{k \to \infty} \delta_k = 0$, we have

 $a(|y(t) - v(t)|) \leq 0 \text{ for } t \in [0, t_2]$,

and hence

$$y(t) = v(t)$$
 for $t \in [0, t_2]$.

Necessity. We remark that $|x| < B^*$ if $|x - u(t)| \leq \varepsilon$. For $(t, x) \in N(\tau, T, \varepsilon)$ and $t > \tau$, denote by $Z(t, x, \tau)$ the family of all functions z(s), which are continuous on $[\tau, t]$, with the properties that their derivatives are continuous except for finite number of values of s and that $z(\tau) = u(\tau)$, z(t) = x and $|z(s) - u(s)| \leq \varepsilon$ for $s \in [\tau, t]$. For any $\tau \in I$ and any $(t, x) \in N(\tau, T, \varepsilon)$, set

(4)
$$V(t, x, \tau) = \begin{cases} \inf_{z \in Z(t, x, \tau)} \int_{\tau}^{t} \left| \frac{dz}{ds}(s) - f(s, z(s)) \right| ds, & \text{if } t > \tau, \\ |x - u(\tau)|, & \text{if } t = \tau. \end{cases}$$

V is continuous on $N(\tau, T, \varepsilon)$ and satisfies the conditions (i), (iii) and (iv). Moreover, it holds that

(ii)' $V(t, x, \tau) \leq |x - u(t)|$ for all $(t, x) \in N(\tau, T, \varepsilon)$ and $V(t, x, \tau) > 0$ if |x - u(t)| > 0.

See p. 5-8 in [5] for the proof of these. Therefore, it remains only to prove the first inequality in (ii).

 \mathbf{Set}

$$a(\tau, r) = \inf \{ V(t, x, \tau); (t, x) \in Q(\tau, r) \},\$$

where $0 < r < \varepsilon$, $\tau \in I$ and

$$Q(\tau, r) = \{(t, x); t \in [\tau, \tau + T], |x - u(t)| = r\}.$$

Since $Q(\tau, r)$ is a compact set, there exists a $(t_0, x_0) \in Q(\tau, r)$ where V attains $a(\tau, r)$, so that $a(\tau, r) > 0$. We shall prove

$$\inf_{\tau \in I} a(\tau, r) \equiv a(r) > 0 \quad \text{for} \quad 0 < r < \varepsilon.$$

To prove this, suppose that there exists an r_0 , $0 < r_0 < \varepsilon$, such that $a(r_0) = 0$. By the definition, it holds that

$$\lim_{k\to\infty} V(t_k, x_k, \tau_k) = 0$$

for some sequence $\{\tau_k\}$, $\tau_k \in I$, and some $(t_k, x_k) \in Q(\tau_k, r_0)$. If we set $s_k = t_k - \tau_k$, we have $s_k \in [0, T]$ and

$$(5) \qquad \qquad \lim_{k\to\infty} W(s_k, x_k, \tau_k) = 0,$$

where $W(t, x, \tau_k)$ is defined by (3). For $(t, x) \in M(\tau, T, \varepsilon)$ and t > 0, set

$$Y(t, x, \tau) = \{z_{\tau}; z \in Z(\tau + t, x, \tau)\}$$
.

From (4) and the definition of W, we have

(6)
$$W(t, x, \tau) = \begin{cases} \inf_{y \in Y(t, x, \tau)} \int_{0}^{t} \left| \frac{dy}{ds}(s) - f_{\tau}(s, y(s)) \right| ds, & \text{if } t > 0, \\ |x - u_{\tau}(0)|, & \text{if } t = 0. \end{cases}$$

We shall show that $\liminf_{k\to\infty} s_k \equiv \sigma > 0$. Since $|f_{\tau_k}(t, x)| \leq L$ for some $L = L(B + \varepsilon)$, all $(t, x) \in \overline{M(\tau_k, T, \varepsilon)}$ and all $k = 1, 2, \dots$, it follows from (6) that

$$W(s_k, x_k, \tau_k) \geq |x_k - u_{\tau_k}(0)| - Ls_k$$

(see p. 6 Lemma 1. 2 in [5]). With the aid of inequalities

$$egin{aligned} |x_k - u_{ au_k}(0)| &\geq |x_k - u_{ au_k}(s_k)| - |u_{ au_k}(s_k) - u_{ au_k}(0)| \ &\geq r_{\scriptscriptstyle 0} - Ls_k \;, \end{aligned}$$

386

we have

 $W(s_k, x_k, \tau_k) \geq r_0 - 2Ls_k$.

In view of (5), we have $\sigma > 0$.

Therefore, from (5) and (6), there exist $y_k \in Y(s_k, x_k, \tau_k)$ such that

(7)
$$\lim_{k\to\infty}\int_0^{s_k}\left|\frac{dy_k}{ds}(s)-f_{\tau_k}(s,\,y_k(s))\right|ds=0.$$

Hence, there exists a subsequence of $\{y_k\}$ converging uniformly on any compact subset of $[0, \sigma)$. In the following, by renumbering, we shall denote subsequences and their original sequences by the same notations. Since H(f) is compact, $\{f_{\tau_k}\}$ has a subsequence converging uniformly on any compact subset of $I \times S_{B^*}$. Let y(t) and g(t, x) be limit functions of $\{y_k(t)\}$ and $\{f_{\tau_k}(t, x)\}$ respectively. By standard arguments, we have

$$y(t) - y(0) - \int_0^t g(s, y(s)) ds = 0 \text{ for } t \in [0, \sigma) ,$$

so that y(t) is a solution of (2).

On the other hand, choosing a subsequence, we can assume that $\{u_{\tau_k}\}$ converges to some $v \in H(u)$ uniformly on any compact interval of *I*. v is clearly a solution of (2).

We shall examine the relation of the solutions y and v of the system (2). Choosing a subsequence of $\{s_k\}$, if necessary, we can assume that $\lim_{k\to\infty} s_k = \sigma$. Then, if $s_0 \in [0, \sigma)$ is sufficiently close to σ , we have for k sufficiently large

$$|y_k(s_k) - y_k(s_0)| < rac{r_0}{4} \quad ext{and} \quad |u_{ au_k}(s_k) - u_{ au_k}(s_0)| < rac{r_0}{4} \; .$$

Obviously it holds that

$$egin{aligned} |y(s_0)-v(s_0)| &\geq |x_k-u_{ au_k}(s_k)| - \{|y(s_0)-y_k(s_0)|\ &+ |y_k(s_0)-y_k(s_k)| + |u_{ au_k}(s_k)-u_{ au_k}(s_0)|\ &+ |u_{ au_k}(s_0)-v(s_0)|\} \,. \end{aligned}$$

From these inequalities, we have

$$|\,y(s_{\scriptscriptstyle 0})\,-\,v(s_{\scriptscriptstyle 0})\,| \geqq rac{r_{\scriptscriptstyle 0}}{2}$$
 .

On the other hand, y(0) = v(0) because $y_k(0) = u_{r_k}(0)$.

Therefore, v is not a unique solution to the right of the system (2). This is a contradiction. Hence it is proved that

$$a(r) > 0$$
 for $0 < r < \varepsilon$. q.e.d.

2. We shall show some examples of the functions V and an application of the theorem.

When f satisfies the Lipschitz condition such that

$$|f(t, x) - f(t, y)| \leq K |x - y|$$

for some K > 0 and all (t, x), $(t, y) \in I \times S_{B^*}$, we set

$$V(t, x, \tau) = e^{-\kappa(t-\tau)} |x - u(t)|$$
 for $(t, x) \in N(\tau, T, \varepsilon)$.

More generally, let f be inner product in the sense of Strauss and Yorke in [4], that is to say, f satisfies the condition

$$\langle x-y, f(t, x) - f(t, y) \rangle \leq K |x-y|^2$$

for some K > 0 and all (t, x), $(t, y) \in I \times S_{B^*}$, where $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$ and $|x| = \langle x, x \rangle^{1/2}$ for $x, y \in R^n$. We set in this case

$$V(t, x, \tau) = (2\varepsilon)^{-1} e^{-2K(t-\tau)} |x - u(t)|^2$$
 for $(t, x) \in N(\tau, T, \varepsilon)$.

It is easy to check that these V fulfill the conditions (i), \cdots , (iv) in Theorem.

Applying Theorem, we can present a short proof of the following proposition, which corresponds to Lemma 6 in [6], though Yoshizawa has proved the lemma for functional differential systems.

PROPOSITION. Let T > 0 be given. Then, for any $(v, g) \in H(u, f)$ v is a unique solution to the right of (2) if and only if for any small $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that if $\tau \in I$, $|x - u(\tau)| < \delta(\varepsilon)$ and $|h(t)| < \delta(\varepsilon)$, we have

$$|x(t) - u(t)| < \varepsilon$$
 on $\tau \leq t \leq \tau + T$,

where x(t) is a solution through (τ, x) of the system

(8)
$$\frac{dx}{dt} = f(t, x) + h(t)$$

and h(t) is continuous on I.

PROOF. Sufficiency can be proved by standard arguments. We shall only show the proof of necessity. According to Theorem, there exist continuous functions V satisfying the conditions (i), \cdots , (iv). We remark that a(r) in (ii) can be replaced by an increasing positive definite continuous function. Define $\delta(\varepsilon)$ by the relation

(9)
$$a^{-1}(\delta(\varepsilon)(1+T)) < \varepsilon$$
.

Obviously it holds that

$$V_{\scriptscriptstyle (8)}'(t, x(t), \tau) \leq V_{\scriptscriptstyle (1)}'(t, x(t), \tau) + |h(t)| \leq \delta(\varepsilon)$$
.

388

Therefore, we have

$$a(|x(t) - u(t)|) \leq |x(\tau) - u(\tau)| + \delta(\varepsilon)(t - \tau) .$$

From this and (9), it holds that

$$|x(t) - u(t)| \leq \varepsilon$$
 for $t \in [\tau, \tau + T]$. q.e.d.

References

- J. KATO AND T. YOSHIZAWA, A relationship between uniformly asymptotic stability and total stability, Funkcialaj Ekvacioj, 12 (1969), 233-238.
- [2] J. KATO, Uniformly asymptotic stability and total stability, Tôhoku Math. J., 22 (1970), 254-269.
- [3] H. OKAMURA, Condition nécessaire et suffisante remplie par les équations différentielles ordinaires sans points de Peano, Mem. Coll. Sci., Kyoto Imperial Univ., Series A, 24 (1942), 21-28.
- [4] A. STRAUSS AND J. A. YORKE, Perturbing uniform asymptotically stable nonlinear systems, J. Differential Fquations, 6 (1969), 452-483.
- [5] T. YOSHIZAWA, Stability Theory by Liapunov's Second Method, Tokyo, Math. Soc. Japan, 1966.
- [6] T. YOSHIZAWA, Asymptotically almost periodic solutions of an almost periodic system, Funkcialaj Ekvacioj, 12 (1969), 23-40.

Mathematical Institute Tôhoku University Sendai, Japan