THE NUMBER THEORETIC FUNCTIONS

Shôichi Takahashi

(Received November 20, 1972; Revised January 6, 1973)
k, A finite algebraic number field.
A_{k}, The set of all integral ideals of k.
o_{k}, The unit ideal of A_{k}.
R_{k}, The set of all complex-valued functions on A_{k}.
We shall define a summation and a product in R_{k} as the following. For any pair $f, g \in R_{k}$ and $\mathfrak{a} \in A_{k}$ we set

$$
\begin{aligned}
(f+g)(\mathfrak{a}) & =f(\mathfrak{a})+g(\mathfrak{a}) \\
(f \circ q)(\mathfrak{a}) & =\sum_{\mathfrak{b} \mid \mathfrak{a}} f(\mathfrak{b}) g(\mathfrak{a} / \mathfrak{b}) \\
& =\sum_{\mathfrak{a}_{1} \mathfrak{a}_{2}=\mathfrak{a}} f\left(\mathfrak{a}_{1}\right) g\left(\mathfrak{a}_{2}\right) .
\end{aligned}
$$

Theorem 1. R_{k} is a commutative ring with respect to the summation and product mentioned above.

Proof. This is well known for the case of rational ground field. And for the case of k, the same method holds.

Now, we set the function $e_{k} \in R_{k}$ as the following.

$$
e_{k}(\mathfrak{a})=\left\{\begin{array}{l}
1, \mathfrak{a}=\mathfrak{o}_{k} \\
0, \mathfrak{a} \neq \mathfrak{v}_{k}
\end{array}\right.
$$

Then, for $f \in R_{k}, \mathfrak{a} \in A_{k}$, we get

$$
\begin{aligned}
\left(e_{k} \circ f\right)(\mathfrak{a}) & =\sum_{\mathfrak{a}_{1} \mathfrak{a}_{2}=\mathfrak{a}} e_{k}\left(\mathfrak{a}_{1}\right) f\left(\mathfrak{a}_{2}\right) \\
& =e_{k}\left(\mathfrak{o}_{k}\right) f(\mathfrak{a}) \\
& =f(\mathfrak{a}) .
\end{aligned}
$$

Therefore, the function e_{k} is the unit element in R_{k}. Now, the prime ideals of A_{k} are countable. Therefore we can take some numbering.

$$
\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{n}, \cdots
$$

We take the dictionary order in A_{k} as the following. For

$$
\mathfrak{a}=\prod_{i=1}^{n} \mathfrak{p}_{i}^{e(a, i)}, \quad \mathfrak{b}=\prod_{i=1}^{n} \mathfrak{p}_{i}^{e(b, i)}
$$

we set $\mathfrak{a}<\mathfrak{b}$ when the following holds.

$$
\begin{aligned}
e(\mathfrak{a}, n) & =e(\mathfrak{b}, n) \\
e(\mathfrak{a}, n-1) & =e(\mathfrak{b}, n-1) \\
& \cdots \\
e(\mathfrak{a}, k+1) & =e(\mathfrak{b}, k+1) \\
e(\mathfrak{a}, k) & <e(\mathfrak{b}, k) .
\end{aligned}
$$

The order in A_{k} is totally order. When

$$
\begin{gathered}
\mathfrak{a}=\mathfrak{p}_{1}^{a_{1} \mathfrak{p}_{2}^{a_{2}} \cdots \mathfrak{p}_{n}^{a_{n}} \cdots} \\
a_{n} \neq 0, a_{n+1}=a_{n+2}=\cdots=0,
\end{gathered}
$$

we call n the length of \mathfrak{a} and write $l(\mathfrak{a})$.
Lemma 1. Any sub-set S of A_{k} has the minimum element in the sense of the above dictionary order.

Proof. We set

$$
\begin{aligned}
n & =\operatorname{Min}\{l(\mathfrak{b}) \mid \mathfrak{b} \in S\} \\
b_{n}^{0} & =\operatorname{Min}\left\{b_{n} \mid \mathfrak{b} \in S, l(\mathfrak{b})=n, \mathfrak{b}=\mathfrak{p}_{1}^{\left.b_{1} b_{2}^{b_{2}} \cdots \mathfrak{p}_{n}^{b_{n}}\right\}}\right. \\
b_{n-1}^{0} & =\operatorname{Min}\left\{b_{n-1} \mid \mathfrak{b} \in S, l(\mathfrak{b})=n, \mathfrak{b}=\mathfrak{p}_{1}^{b_{1}} \mathfrak{p}_{2}^{b_{2}} \cdots \mathfrak{p}_{n-1}^{\left.b_{n-1}^{n} \mathfrak{p}_{n}^{b_{n}^{0}}\right\}}\right. \\
& \cdots \\
b_{1}^{0} & =\operatorname{Min}\left\{b_{1} \mid \mathfrak{b} \in S, l(\mathfrak{b})=n, \mathfrak{b}=\mathfrak{p}_{1}^{b_{1}^{1} \mathfrak{p}_{2}^{b_{2}^{0}}} \cdots \mathfrak{p}_{n-1}^{b_{n-1}^{0}} \mathfrak{p}_{n}^{b_{n}^{0}}\right\}
\end{aligned}
$$

then the element

$$
\mathfrak{b}_{0}=\mathfrak{p}_{1}^{b_{1}^{0} \mathfrak{p}_{2}^{b_{2}^{0}}} \cdots \mathfrak{p}_{n}^{b_{n}^{0}}
$$

is the minimum element of S.
Lemma 2. $\mathfrak{a}_{0}<\mathfrak{a}, \mathfrak{b}_{0} \leqq \mathfrak{b} \Rightarrow \mathfrak{a}_{0} \mathfrak{b}_{0}<\mathfrak{a b}$.
Theorem 2. The ring R_{k} is an integral domain.
Proof. We take $f, g \in R_{k}, f \neq O_{k}, g \neq O_{k}$. Then, let \mathfrak{a}_{0} be the minimum element of \mathfrak{a} such that $f(\mathfrak{a}) \neq 0$ holds. And let \mathfrak{b}_{0} be the minimum element of \mathfrak{b} such that $f(\mathfrak{b}) \neq 0$ holds. Then

$$
\begin{aligned}
(f \circ g)\left(\mathfrak{a}_{0} \mathfrak{b}_{0}\right) & =\sum_{a \mathfrak{b}=a_{0} \mathfrak{b}_{0}} f(\mathfrak{a}) g(\mathfrak{b}) \\
& =\sum_{\substack{a_{0} \leq \leq_{a} \\
\mathfrak{a} b=\leq_{0} \mathfrak{b}_{0}}} f(\mathfrak{a}) g(\mathfrak{b}) \\
& =f\left(\mathfrak{a}_{0}\right) g\left(\mathfrak{b}_{0}\right) \\
& \neq 0
\end{aligned}
$$

holds. Therefore

$$
f \circ g \neq O_{k}
$$

We call $f \in R_{k}$ "multiplicative" when the following equality holds. For $\mathfrak{a}, \mathfrak{b} \in A_{k},(\mathfrak{a}, \mathfrak{b})=\mathfrak{o}_{k}$

$$
f(\mathfrak{a b})=f(\mathfrak{a}) f(\mathfrak{b}) .
$$

Moreover, when

$$
f(\mathfrak{a b})=f(\mathfrak{a}) f(\mathfrak{b}), \quad \text { for any } \mathfrak{a}, \mathfrak{b} \in A_{k}
$$

we call f "completely multiplicative". Next, when the both $f, g \in R_{k}$ are multiplicative, for $\mathfrak{a}, \mathfrak{b} \in A_{k},(\mathfrak{a}, \mathfrak{b})=\mathfrak{o}_{k}$

$$
\begin{aligned}
(f \circ g)(\mathfrak{a b}) & =\sum_{\substack{c \mid a b}} f(\mathfrak{c}) / g(\mathfrak{a b} / \mathfrak{c}) \\
& =\sum_{\substack{\mathfrak{a}^{\prime}, \mathfrak{a} \\
\mathfrak{b}^{\prime} \mid \mathfrak{b}}} f\left(\mathfrak{a}^{\prime} \mathfrak{b}^{\prime}\right) g\left(\mathfrak{a b} / \mathfrak{a}^{\prime} \mathfrak{b}^{\prime}\right) \\
& =\sum_{\substack{\mathfrak{a}^{\prime}, \mid \mathfrak{b}}} f\left(\mathfrak{a}^{\prime}\right) f\left(\mathfrak{b}^{\prime}\right) g\left(\mathfrak{a} / \mathfrak{a}^{\prime}\right) g\left(\mathfrak{b} / \mathfrak{b}^{\prime}\right) \\
& =\left(\sum_{\substack{\prime\\
}} f\left(\mathfrak{a}^{\prime}\right) g\left(\mathfrak{a} / \mathfrak{a}^{\prime}\right)\right)\left(\sum_{\mathfrak{b}^{\prime} \mid \mathfrak{b}} f\left(\mathfrak{b}^{\prime}\right) g\left(\mathfrak{b} / \mathfrak{b}^{\prime}\right)\right) \\
& =(f \circ g)(\mathfrak{a}) \cdot(f \circ g)(\mathfrak{b})
\end{aligned}
$$

holds. Therefore, the function $f \circ g$ is also multiplicative.
Now, we set the function $l_{k} \in R_{k}$ as the following

$$
l_{k}(\mathfrak{a})=1, \quad \forall a \in A_{k}
$$

Obviously the function l_{k} is completely mutiplicative. For a non-negative rational integer e, let ${ }_{x} H_{e}$ be a polynomial of one variable x with e-degree as the following

$$
{ }_{x} H_{e}=\left\{\begin{array}{l}
1, e=0 \\
\frac{1}{e!}(x+e-1)(x+e-2) \cdots(x+1) x, e \geqq 1
\end{array}\right.
$$

Then, for any complex number α we define the multiplicative function $l_{k}^{(\alpha)}$ as the following:

$$
l_{k}^{(\alpha)}\left(\mathfrak{p}^{e}\right)={ }_{\alpha} H_{e} .
$$

Theorem 3. (i) If we restrict α to the rational integer, $l_{k}^{(\alpha)}$ has the same mean as the grouptheoretical power in R_{k}.
(ii) For any complex number α, β

$$
l_{k}^{(\alpha)} \circ l_{k}^{(\beta)}=l_{k}^{(\alpha+\beta)}
$$

holds.
Proof. (i) Let f be a rational integer,
(a) $f=0$

$$
\begin{aligned}
l_{k}^{0}\left(\mathfrak{p}^{e}\right) & = \begin{cases}1, & e=0 \\
0, & e \geqq 1\end{cases} \\
& ={ }_{0} H_{e} \\
& =l_{k}^{(0)}\left(\mathfrak{p}^{e}\right)
\end{aligned}
$$

(b) $f>0$

$$
\begin{aligned}
l_{k}^{f}\left(\mathfrak{p}^{e}\right) & =\left\{\begin{array}{l}
1, e=0 \\
\sum_{a_{1}+a_{2}+\cdots+a_{f}=e} l_{k}\left(\mathfrak{p}^{a_{1}}\right) l_{k}\left(\mathfrak{p}^{a_{2}}\right) \cdots l_{k}\left(\mathfrak{p}^{a_{f}}\right)
\end{array}\right. \\
& =\sum_{a_{1}+a_{2}+\cdots+a_{f}=e} 1 \\
& ={ }_{f} H_{e} \\
& =l_{k}^{(f)}\left(\mathfrak{p}^{e}\right) .
\end{aligned}
$$

(c) $f<0$

We take the function $\mu_{k} \in R_{k}$ as the following

$$
\mu_{k}(\mathfrak{a})=\left\{\begin{array}{l}
0, \mathfrak{p}^{2} \mid \mathfrak{a} \\
(-1)^{k}, \mathfrak{a}=\mathfrak{p}_{i_{1}} \mathfrak{p}_{i_{2}} \cdots \mathfrak{p}_{i_{k}} .
\end{array}\right.
$$

Then

$$
\mu_{k} \circ l_{k}=e_{k}
$$

holds. For $\mu_{k} \circ l_{k}\left(\mathfrak{o}_{k}\right)=\mu_{k}\left(\mathfrak{o}_{k}\right) l_{k}\left(\mathfrak{o}_{k}\right)=1=e_{k}\left(\mathfrak{o}_{k}\right)$. When $\mathfrak{a}>\mathfrak{o}_{k}, \mathfrak{a}=\mathfrak{p}_{i_{1}}^{a_{1}} \mathfrak{p}_{i_{2}}^{a_{2}} \cdots \mathfrak{p}_{i_{k}}^{a_{k}}$, and $a_{i}>0(i=1,2, \cdots, k)$,

$$
\begin{aligned}
\mu_{k} \circ l_{k}(\mathfrak{a}) & =\sum_{\mathfrak{b} \mid \alpha} \mu_{k}(\mathfrak{b}) \\
& =1+\sum_{j} \mu_{k}\left(\mathfrak{p}_{i_{j}}\right)+\sum_{j, j^{\prime}} \mu\left(\mathfrak{p}_{i_{j}} \mathfrak{p}_{i^{\prime}}\right)+\cdots \\
& =1-k+\binom{k}{2}-\cdots \\
& =(1-1)^{k} \\
& =0 \\
& =e_{k}(\mathfrak{a})
\end{aligned}
$$

holds. On the other hand,

$$
\mu_{k}^{-f}\left(\mathfrak{p}^{e}\right)=\left\{\begin{array}{l}
0, e>-f \\
(-1)_{-f}^{e} C_{e}, e \leqq-f .
\end{array}\right.
$$

Therefore we get

$$
l_{k}^{(f)}\left(\mathfrak{p}^{e}\right)=\mu_{k}^{-f}\left(\mathfrak{p}^{e}\right)={ }_{f} H_{e} .
$$

(ii) We get

$$
\begin{aligned}
\left(l_{k}^{(\alpha)} \circ l_{k}^{(\beta)}\right)\left(\mathfrak{p}^{e}\right) & =l_{k}^{(\alpha)}\left(\mathfrak{o}_{k}\right) l_{k}^{(\beta)}\left(\mathfrak{p}^{e}\right)+l_{k}^{(\alpha)}(\mathfrak{p}) l_{k}^{(\beta)}\left(\mathfrak{p}^{e-1}\right)+\cdots+l_{k}^{(\alpha)}\left(\mathfrak{p}^{e}\right) l_{k}^{(\beta)}\left(\mathfrak{o}_{k}\right) \\
& ={ }_{\alpha} H_{0} \cdot{ }_{\beta} H_{e}+{ }_{\alpha} H_{1} \cdot{ }_{\beta} H_{e-1}+\cdots+{ }_{\alpha} H_{e} \cdot{ }_{\beta} H_{0} .
\end{aligned}
$$

On the other hand,

$$
l_{k}^{(\alpha+\beta)}\left(\mathfrak{p}^{e}\right)={ }_{\alpha+\beta} H_{e} .
$$

Now, it is sufficient that the following polynomial identity of two variables x, y

$$
{ }_{x+y} H_{e}={ }_{x} H_{0} \cdot{ }_{y} H_{e}+{ }_{x} H_{1} \cdot{ }_{y} H_{e-1}+\cdots+{ }_{x} H_{e} \cdot{ }_{y} H_{0}
$$

holds. Also it is sufficient that for the special values

$$
(x, y)=(p, q), \quad(p, q=0,1,2, \cdots, e)
$$

holds. This is trivial. For $f \in R_{k}$, we consider the following function of variable s

$$
\zeta_{k}(s, f)=\sum_{\mathfrak{a} \in A_{k}} \frac{f(\mathfrak{a})}{N(\mathfrak{a})^{\mathfrak{s}}}
$$

We take $f, g \in R_{k}$. Then for values of s such that $\zeta_{k}(s, f), \zeta_{k}(s, g)$ together absolutely converge

$$
\zeta_{k}(s, f) \zeta_{k}(s, g)=\zeta_{k}(s, f \circ g)
$$

holds. Especially, the function

$$
\zeta_{k}(s)=\zeta_{k}\left(s, l_{k}\right)=\sum_{\mathfrak{a} \in A_{k}} \frac{1}{N(\mathfrak{a})^{s}}
$$

absolutely converges for the values $\operatorname{Re} s>1$. Next, for a complex value α, we define

$$
\left(\left(\zeta_{k}\right)(s)\right)^{(\alpha)}=\sum_{\mathfrak{a} \in A_{k}} \frac{l_{k}^{(\alpha)}(\mathfrak{a})}{N(\mathfrak{a})^{s}}
$$

for the complex values s such that the right-hand side absolutely converges.
Theorem 4. (i) If we restrict α to the rational integers, $\left(\zeta_{k}(s)\right)^{(\alpha)} h a s$ the same mean as natural power $\left(\zeta_{k}(s)\right)^{\alpha}$.
(ii) For complex number α, β

$$
\left(\zeta_{k}(s)\right)^{(\alpha)}\left(\zeta_{k}(s)\right)^{(\beta)}=\left(\zeta_{k}(s)\right)^{(\alpha+\beta)}
$$

holds.
Proof. See the theorem 3.
Let $k \subset K$ be a finite algebraic extention. Then, we shall define a map

$$
\bar{N}_{K \mid k}: R_{K} \rightarrow R_{k}
$$

as the following. For $F \in R_{K}, \mathfrak{a} \in A_{k}$, we set

$$
\bar{N}_{K / k} F(\mathfrak{a})=\sum_{\substack{N_{K} / k \in=a \\ \mathfrak{K} \in A_{k}}} F(\mathfrak{Z})
$$

provided that the right-hand side represents 0 when there is no \mathfrak{U} such that

$$
\mathfrak{A} \in A_{k}, \quad N_{K / k} \mathfrak{U}=\mathfrak{a} .
$$

Now, for $F, G \in R_{k}$ and $\mathfrak{a} \in A_{k}$

$$
\begin{aligned}
& \bar{N}_{K / k}(F+G)(\mathfrak{a})=\sum_{\substack{\mathfrak{a} \in A_{k} \in \\
N_{K / k}=\mathfrak{a}}}(F+G)(\mathfrak{Y})
\end{aligned}
$$

$$
\begin{aligned}
& =\bar{N}_{K / k} F(\mathfrak{a})+\bar{N}_{K / k} G(\mathfrak{a})
\end{aligned}
$$

holds. Therefore we get

$$
\bar{N}_{K / k}(F+G)=\bar{N}_{K / k} F+\bar{N}_{K / k} G
$$

Next,

$$
\begin{aligned}
& \bar{N}_{K / k}(F \circ G)(\mathfrak{a})=\sum_{\substack{\mathfrak{y} \in A_{k}, N_{K / k}=\mathfrak{a}}}(F \circ G)(\mathfrak{Z}) \\
& =\sum_{\substack{\mathfrak{Q} \in A_{k} \\
N_{K / k}=a}} \sum_{\mathfrak{X}_{1} \mathbb{X}_{2}=\boldsymbol{q}} F\left(\mathfrak{H}_{1}\right) G\left(\mathfrak{N}_{2}\right)
\end{aligned}
$$

holds. On the other hand,

$$
\begin{aligned}
& \left(\left(\bar{N}_{K / k} F\right) \circ\left(\bar{N}_{K / k} G\right)\right)(\mathfrak{a})=\sum_{\mathfrak{a}=a_{1} a_{2}}\left(\bar{N}_{K / k} F\left(\mathfrak{a}_{1}\right)\right)\left(\bar{N}_{K / k} G\left(\mathfrak{a}_{2}\right)\right)
\end{aligned}
$$

holds. Therefore we get

$$
\bar{N}_{K / k}(F \circ G)=\left(\bar{N}_{K / k} F\right) \circ\left(\bar{N}_{K / k} G\right)
$$

From the above the map

$$
\bar{N}_{K / k}: R_{K} \rightarrow R_{k}
$$

is a into ring homomorphism. Still more, if $F \in R_{k}$ is multiplicative, $\bar{N}_{K / k} F \in R_{k}$ is also multiplicative.

Let be $\mathfrak{a}_{1}, \mathfrak{a}_{2} \in A_{k},\left(\mathfrak{a}_{1}, \mathfrak{a}_{2}\right)=\mathfrak{o}_{k}$, then

$$
\begin{aligned}
& \bar{N}_{K / k} F\left(\mathfrak{a}_{1} a_{2}\right)=\sum_{\substack{\mathfrak{a} \in A_{k} \\
N_{K / k}=a_{1} a_{2}}} F(\mathfrak{X})
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{\substack{\mathfrak{q}_{1} \in A_{k} \in k_{k} \\
N_{K / k}=k_{1}=a_{1}}} F\left(\mathfrak{N}_{1}\right)\right)\left(\sum_{\substack{\mathfrak{Q}_{2} \in A_{k} \\
N_{K / k}, k_{2}=a_{2}}} F\left(\mathfrak{U}_{2}\right)\right) \\
& =\left(\bar{N}_{K / k} F\left(\mathfrak{a}_{1}\right)\right)\left(\bar{N}_{K / k} F\left(a_{2}\right)\right)
\end{aligned}
$$

holds. Now, let K / k be a non-ramified abelian extention of degree n. We take a prime ideal \mathfrak{p} in A_{k}, then

$$
\begin{gathered}
\mathfrak{p}=\mathfrak{P}_{1} \mathfrak{B}_{2} \cdots \mathfrak{P}_{q}, \quad \mathfrak{P}_{i}: \quad \text { a prime ideal in } A_{k} \\
N_{K / k} \mathfrak{F}_{i}=\mathfrak{p}^{f}, f g=n
\end{gathered}
$$

holds. Next, we set the completely multiplicative functions in R_{k} $\chi_{0}, \chi_{1}, \cdots, \chi_{n-1}$ as the following:

$$
\chi_{i}(\mathfrak{p})=\zeta_{f}^{i}, \zeta_{f}=e^{2 \pi i / f}, \quad i=0,1, \cdots, n-1
$$

ThEOREM 5. $\quad \bar{N}_{K / k}\left(l_{K}\right)=\chi_{0} \circ \chi_{1} \circ \cdots \circ \chi_{n-1}$ 。
Proof. The both-sides are multiplicative in R_{k}. Therefore it is sufficient that we show that for any prime ideal $\mathfrak{p} \in A_{k}$ the both-sides are equal for \mathfrak{p}^{a}. Now,

$$
\bar{N}_{K / k} l_{K}\left(\mathfrak{p}^{a}\right)=\left\{\begin{array}{l}
0, f \nmid a \\
{ }_{g} H_{a / f}, f \mid a
\end{array}\right.
$$

holds. Therefore $\bar{N}_{K / k} l_{K}\left(\mathfrak{p}^{a}\right)$ is equal to the coefficient of x^{a} in the following formal power series

$$
\left(1+x^{f}+x^{2 f}+\cdots\right)^{g}=\frac{1}{\left(1-x^{f}\right)^{g}}
$$

On the other hand, $\chi_{0} \circ \chi_{1} \circ \ldots \circ \chi_{n-1}\left(\mathfrak{p}^{a}\right)$ is equal to the coefficient of x^{a} in the following formal power series.

$$
\begin{aligned}
& \left(1+\chi_{0}(\mathfrak{p}) x+\chi_{0}(\mathfrak{p})^{2} x^{2}+\cdots\right) \\
& \quad \cdot\left(1+\chi_{1}(\mathfrak{p}) x+\chi_{1}(\mathfrak{p})^{2} x^{2}+\cdots\right) \\
& \quad \cdot\left(1+\chi_{n-1}(\mathfrak{p}) x+x_{n-1}(\mathfrak{p})^{2} x^{2}+\cdots\right)
\end{aligned}
$$

382

$$
\begin{aligned}
& =\frac{1}{1-\chi_{0}(\mathfrak{p}) x} \cdot \frac{1}{1-\chi_{1}(\mathfrak{p}) x} \cdot \cdots \cdot \frac{1}{1-\chi_{n-1}(\mathfrak{p}) x} \\
& =\frac{1}{\prod_{i=0}^{n-1}\left(1-\zeta_{f}^{i} x\right)}
\end{aligned}
$$

Now, the equality

$$
\left(1-x^{f}\right)^{g}=\prod_{i=0}^{n-1}\left(1-\zeta_{i}^{f} x\right)
$$

is trivial.
Department of Mathematics
Yamagata university
Yamagata, Japan

