THE PRODUCT OF OPERATORS WITH CLOSED RANGE

Richard Bouldin

(Received September 1, 1972)

Abstract

By definition the cosine of the angle between the two subspaces M and N is $\sup \{|\langle f, g\rangle|: f \in M, g \in N,\|f\|=1=\|g\|\}$. Assuming that A and B are both Hilbert space operators with closed range, $A B$ has closed range if and only if the angle between $B H$ and $\operatorname{ker} A \cap[\operatorname{ker} A \cap B H]^{\perp}$ is positive.

In this paper we consider the problem of when the product of two operators with closed range has closed range. Although some sufficient conditions have been determined, without necessary conditions it is impossible to evaluate the strength of the known sufficient conditions. In this paper we find a simple geometric condition which is both necessary and sufficient. Our proof is more geometric than the rather algebraic abstract arguments of index theory that have been used to obtain previous sufficient conditions. We offer some applications of our result.

By "operator" we mean a bounded linear transformation of the complex Hilbert space H into itself. We shall denote the kernel or nullspace of an operator T by ker T and the orthogonal complement of a subspace M is denoted M^{\perp}. We shall use the elementary fact that a linear transformation T has closed range if and only if there is a positive δ such that $\|T f\| \geqq \delta\|f\|$ whenever $f \in(\operatorname{ker} T)^{\perp}$. Essential to our work is the notion of angle between two subspaces, which seems to originate in [3]. The angle between M and N ranges from 0 to $\pi / 2$ and its cosine is $\sup \{|\langle f, g\rangle|: f \in M, g \in N,\|f\|=1=\|g\|\}$. If either M or N is trivial then the angle is $\pi / 2$.

Lemma. Let $H_{0}=\operatorname{ker} A \cap B H$ and let $H_{1}=\operatorname{ker} A \cap\left(H_{0}\right)^{\perp}$. If $H_{2}=$ $(\operatorname{ker} A)^{\perp}$ then $H=H_{0} \oplus H_{1} \oplus H_{2}$. If P and Q are the orthogonal projections onto H_{2} and $\left(H_{1}\right)^{\perp}$, respectively, then $Q B H=H_{0} \oplus P B H$. Here each direct sum is an orthogonal direct sum.

Proof. Let $H_{3}=B H \cap\left(H_{0}\right)^{\perp}$ and note that H_{3} is contained in $H_{1} \oplus H_{2}$. In order to show that $Q H_{3}$ is contained in $H_{1} \oplus H_{2}$ we take $f \in H_{3}, g \in H_{0}$ and we note that

[^0]$$
\langle g, Q f\rangle=\langle Q g, f\rangle=\langle g, f\rangle=0
$$

We also note that $Q H_{3} \subset Q B H$. Since $H_{0} \subset B H$ and $H_{0} \subset Q H$, we have that $H_{0} \subset Q B H$. Thus $Q B H \supset H_{0} \oplus Q H_{3}$. Since Q is the identity on $Q H$ and $H_{0} \subset Q H$, it follows that $Q H_{0}=H_{0}$. Note that

$$
H_{0} \oplus Q H_{3}=Q H_{0} \oplus Q H_{3} \supset Q\left(H_{0} \oplus H_{3}\right)=Q B H
$$

and consequently $Q B H=H_{0} \oplus Q H_{3}$.
It is easy to see that $P B H=P\left[H_{0} \oplus H_{3}\right]=P H_{3}$ and it only remains to show that $Q H_{3}=P H_{3}$. This follows form the facts that H_{1} is contained in both $\operatorname{ker} P$ and $\operatorname{ker} Q$, that H_{2} is contained in both $P H$ and $Q H$, and that H_{3} is contained in $H_{1} \oplus H_{2}$.

Theorem. Let A and B be operators with closed range and let $H_{1}=\operatorname{ker} A \cap(\operatorname{ker} A \cap B H)^{\perp}$. The angle between H_{1} and $B H$ is positive if and only if $A B H$ is closed.

Proof. First we show that the angle between H_{1} and $B H$ is positive if and only if $Q B H$ is closed. Regarding Q as a linear transformation of $B H$ into H, we note that $\operatorname{ker} Q=H_{1} \cap B H$ and $Q B H$ is closed if and only if Q is bounded away from zero on the unit shell of $B H \cap\left(H_{1} \cap B H\right)^{\perp}$. If $Q B H$ is not closed then there is a sequence of unit vectors $\left\{f_{n}\right\}$ contained in $B H \cap\left(H_{1} \cap B H\right)^{\perp}$ such that $\left\{\left\|Q f_{n}\right\|\right\}$ converges to zero, or $\left\{\left\|(I-Q) f_{n}\right\|\right\}$ converges to one. Let g_{n} be $(I-Q) f_{n}$ divided by its norm and note that $g_{n} \in H_{1}, f_{n} \in B H$. Since

$$
\begin{aligned}
\left\langle g_{n}, f_{n}\right\rangle & =\left\langle(I-Q) f_{n} /\left\|(I-Q) f_{n}\right\|, f_{n}\right\rangle \\
& =\left\langle(I-Q)^{2} f_{n}, f_{n}\right\rangle /\left\|(I-Q) f_{n}\right\|=\left\langle(I-Q) f_{n},(I-Q) f_{n}\right\rangle /\left\|(I-Q) f_{n}\right\| \\
& =\left\|(I-Q) f_{n}\right\|
\end{aligned}
$$

we see that $\left\{\left|\left\langle g_{n}, f_{n}\right\rangle\right|\right\}$ converges to one and consequently the angle between H_{1} and $B H$ is zero.

On the other hand assume there are two sequences of unit vectors $\left\{g_{n}\right\} \subset H_{1}$ and $\left\{B f_{n}\right\}$, with $\left\{f_{n}\right\} \subset(\operatorname{ker} B)^{\perp}$, such that $\left\{\left|\left\langle g_{n}, B f_{n}\right\rangle\right|\right\}$ converges to one. Since

$$
\begin{aligned}
\left|\left\langle g_{n}, B f_{n}\right\rangle\right| & =\left|\left\langle(I-Q) g_{n}, B f_{n}\right\rangle\right|=\left|\left\langle g_{n},(I-Q) B f_{n}\right\rangle\right| \\
& \leqq\left\|(I-Q) B f_{n}\right\| \leqq 1,
\end{aligned}
$$

we see that $\left.\{\| I-Q) B f_{n} \|\right\}$ converges to one and so $\left\{\left\|Q B f_{n}\right\|\right\}$ converges to zero. Since each $B f_{n}$ is a unit vector the sequence $\left\{\left\|f_{n}\right\|\right\}$ must be bounded away from zero, and thus we may assume that $\left\{f_{n}\right\}$ is a sequence of unit vectors and $\left\{Q B f_{n}\right\}$ converges to zero. If we show that ker $B=$ $\operatorname{ker} Q B$ then $\left\{f_{n}\right\} \subset(\operatorname{ker} Q B)^{\perp}$ and it follows that $Q B H$ is not closed.

Clearly ker $B \subset \operatorname{ker} Q B$; if $Q B f=0$ while $B f \neq 0$ then it would follow that $\operatorname{ker} Q \cap B H \neq\{0\}$. However, $\operatorname{ker} Q \cap B H=H_{1} \cap B H=\{0\}$ and thus $\operatorname{ker} B=\operatorname{ker} Q B$.

The preceding lemma makes it clear that $Q B H$ is closed if and only if $P B H$ is closed. Thus it suffices to prove that $P B H$ is closed if and only if $A B H$ is closed. Since A is bounded away from zero on the unit shell of $P H$, if $P B H$ is closed then $A(P B H)=A B H$ is closed. To prove the converse we note that the preceding lemma implies that $(P H)^{\perp}=\operatorname{ker} A$ and this implies $\operatorname{ker} P B=\operatorname{ker} A B$. If $P B H$ is not closed then there is a sequence of unit vectors $\left\{f_{n}\right\} \subset(\operatorname{ker} P B)^{\perp}$ such that $\left\{P B f_{n}\right\}$ converges to zero. By continuity $\left\{A P B f_{n}\right\}$ converges to zero, and since $A P B=A B$, this proves that $A B$ is not bounded away from zero on the unit shell of $(\operatorname{ker} A B)^{\perp}$. Hence $A B H$ is not closed.

An immediate corollary of the above theorem is the following.
Corollary. Let A and B be operators with closed range such that $\operatorname{ker} A \cap B H=\{0\}$. The operator $A B$ has closed range if and only if the angle between $\operatorname{ker} A$ and $B H$ is positive.

The following useful corollary has been proved by Goldberg in [6] using the index theory developed in [5].

Corollary. Let A and B be operators with closed range. If $\operatorname{ker} A$ is finite dimensional then $A B$ has closed range.

Proof. Since H_{1} is finite dimesional, its unit shell is compact and it follows easily that the angle between H_{1} and $B H$ can be zero only if they intersect. By the construction of H_{1} they do not intersect.

The theorem allows us to give a quick proof of Banach's closed range theorem in the Hilbert space case.

Corollary. The range of T is closed if and only if the range of T^{*} is closed.

Proof. If $U R$ is the polar factorization of T then ker $U=(R H)^{\perp}$ and thus if $T H$ is not closed it must be that $R H$ is not closed. Since $R=\left(T^{*} T\right)^{1 / 2}$ it follows that

$$
T^{*} H=T^{*}(T H)=R(R H)
$$

is not closed. Similarly if $T^{*} H$ is not closed then $\left(T^{*}\right)^{*} H=T H$ is not closed.

If T is any operator on H then it induces a one-to-one linear transformation from (ker $T)^{\perp}$ onto $T H$. Define T^{+}to be that inverse on $T H$ and to be zero on $(T H)^{\perp} . T^{+}$is called the pseudo-inverse of T and it is
a consequence of the closed graph theorem that T^{+}is bounded if and only if $T H$ is closed. See [1] and [2] for relevant discussions. An open problem has been to determine necessary and sufficient conditions for $(A B)^{+}=B^{+} A^{+}$to hold. The following corollary is relevant to that problem.

Corollary. If A^{+}and B^{+}are bounded then $(A B)^{+}$is bounded if and only if the angle between $\operatorname{ker} A \cap(\operatorname{ker} A \cap B H)^{\perp}$ and $B H$ is positive.

Proof. This is immediate from the theorem.
Although it seems unreasonable that the product of two operators with closed range would necessarily have closed range, it seems much more likely that the square of an operator with closed range should have closed range. The following corollary terminates such optimism.

Corollary. There exists an operator T with closed range such that T^{2} does not have closed range.

Proof. We shall construct T to be a partial isometry; thus it is apparent that the range of T is closed. We shall construct the initial space M and the final space N such that M^{\perp} has trivial intersection with N and the angle between M^{\perp} and N is zero. Let $\left\{e_{j}, f_{j}, h_{j}: j=1,2, \cdots\right\}$ be an orthonormal basis for H. Let $\left\{a_{n}\right\}$ be a sequence of nonnegative numbers converging to zero such that $a_{n} \leqq 1$ for each n. For each n let $b_{n}=\left(1-a_{n}^{2}\right)^{1 / 2}$ and set $u_{n}=a_{n} e_{n}+b_{n} h_{n}, v_{n}=a_{n} f_{n}+b_{n} h_{n}$. Define M^{\perp} to the closed span of $\left\{u_{j}\right\}$ and define N to be the closed span of $\left\{v_{j}\right\}$. It is straightforward to see that $M^{\perp} \cap N$ cannot contain a nonzero vector. The angle between M^{\perp} and N is clearly zero since $\left\langle u_{j}, v_{j}\right\rangle=b_{n}^{2}=1-a_{n}^{2}$. The theorem now implies that the range of T^{2} is not closed.

References

[1] F. J. Beutler, The operator theory of the pseudo-inverse, I, J. Math. Anal. Appl., 10 (1965), 451-470.
[2] F. J. Beutler, The operator theory of the pseudo-inverse, II, J. Math. Anal. Appl. 10 (1965), 471-493.
[3] M. J. Dixmier, Etude sur les varietes et les operaterus de Julia, avec quelques applications, Bull. Soc. Math. France 77 (1949), 11-101.
[4] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. A.M.S. 17 (1966), 413-415.
[5] I. C. Gohberg and M. G. Krein, The basic propositions on defect numbers, root numbers, and indices of linear operators, A.M.S. Translations 13 (1960), 185-264.
[6] S. Goldberg, Unbounded Operators, Theory and Applications, McGraw-Hill Book Co., New York, 1966.
[7] T. N. E. Greville, The pseudo-inverse of a rectangular or singular matrix and its application to the solution of systems of linear equations, Soc. Ind. Appl. Math., 1, (1959)

38-43.

[8) T. N. E. Greville, Some applications of the pseudo-inverse of a matrix, Soc. Ind. Appl. Math., 2 (1960), 15-22.

University of Georgia

[^0]: A.M.S. Classification Numbers: primary, 4710; secondary, 4730.

