ON THE CATEGORY OF THE DOUBLE MAPPING CYLINDER

K. A. Hardie

(Received September 8, 1972)

Abstract

If $a: X \rightarrow A$ is a cofibration and if R is the adjunction space obtained by attaching A to B by means of $b: X \rightarrow B$ then cat $R \leqslant \min (1+\operatorname{cat} A+\operatorname{cat} B$, cat $X+\max (\operatorname{cat} A$, cat $B))$, where cat Y denotes the Lusternik-Schnirelmann category of Y as redefined by G. W. Whitehead, renormalised to take the value 0 on contractible spaces.

Let $a: X \rightarrow A, b: X \rightarrow B$ be maps in the category of pointed connected CW-complexes and let Z be the associated (reduced) double mapping cylinder. If cat Y denotes the Lusternik-Schnirelmann category of Y as redefined by G. W. Whitehead [10], renormalised to take the value 0 on contractible spaces, then Tsuchida [9; 3.4] has proved that

$$
\begin{equation*}
\operatorname{cat} Z \leqslant \operatorname{cat} A+\operatorname{cat} B+1 \tag{1}
\end{equation*}
$$

The chief purpose of this paper is to show that the results of [6] combined with a simple-minded homotopy argument yield:

$$
\begin{equation*}
\operatorname{cat} Z \leqslant \operatorname{cat} X+\max (\operatorname{cat} A, \operatorname{cat} B) . \tag{2}
\end{equation*}
$$

If a is a cofibration then it is well-known [3; p. 247] that Z has the same homotopy type as the adjunction space R obtained by attaching A to B by means of b. Thus (1) and (2) together imply

$$
\begin{equation*}
\operatorname{cat} R \leqslant \min (1+\operatorname{cat} A+\operatorname{cat} B, \text { cat } X+\max (\operatorname{cat} A, \text { cat } B)) \tag{3}
\end{equation*}
$$

In the sequel we shall consider briefly what may be said in the presence of a "primitivity" condition [2; p. 441], [9; 3.7]. We recall that Z is the space obtained from the (pointed) sum $A+(X \times I)+B$ by factoring out by the relations

$$
(x, 0) \sim a(x),(x, 1) \sim b(x),(*, t) \sim\left(*, t^{\prime}\right) \quad\left(x \in X ; t, t^{\prime} \in I\right)
$$

Let $f: A \rightarrow W, g: B \rightarrow W$ and let $H: f \circ a \simeq g \circ b: X \rightarrow W$. (Homotopies

[^0]are of course required to respect base-points.) Then we say that the square

commutes via the homotopyI H. We remark that the square

commutes via F, where $F(x, t)=\{(x, t)\}(x \in X, t \in I)$ and a^{\prime} and b^{\prime} are the obvious maps. If (4) commutes via H it is easy to see that there exists a unique map $\theta=\theta(f, H, g): Z \rightarrow W$ such that $\theta \circ b^{\prime}=f, \theta \circ a^{\prime}=g$ and $\theta \circ F=H$. Let $K: f \circ a \simeq g \circ b$ be another homotopy. Then the reverse homotopy $r K: g \circ b \simeq f \circ a$ and the conjunction $H \oplus r K: f \circ a \simeq f \circ a$ are defined. (For details see [5; p. 338].) The homotopy class $\{H \oplus r K\}$ is an element of the $(f \circ a)$-based track group $\pi_{1}^{X}(W ; f \circ a)$. (See [8], [1].) We omit the proof of the following.

Lemma 1. $\theta(f, H, g) \simeq \theta(f, K, g)$ if and only if

$$
\{H \oplus r K\}=0 \in \pi_{1}^{X}(W ; f \circ a)
$$

Finally, given maps $\alpha: A \rightarrow V, \beta: B \rightarrow V, \gamma: W \rightarrow V$ and homotopies $G: \alpha \simeq \gamma \circ f, G^{\prime}: \gamma \circ g \simeq \beta$, it is clear (omitting unnecessary brackets) that

$$
H^{\prime}=G \circ\left(a \times i d_{I}\right) \oplus \gamma \circ H \oplus G^{\prime} \circ\left(b \times i d_{I}\right): \alpha \circ a \simeq \beta \circ b
$$

The routine proof of the following lemma is also omitted.
Lemma 2. $\theta\left(\alpha, H^{\prime}, \beta\right) \simeq \gamma \circ \theta(f, H, g): Z \rightarrow V$.
Proof of (2). Let $p=1+\operatorname{cat} X$. We may assume that $n=p+\max$ (cat A, cat B) is finite. Let $T Y$ denote the product of n copies of Y and let $T^{r} Y=\left\{\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in T Y \mid\right.$ at least r coordinates are at $\left.*\right\}$.

Then, by [5; Theorem], there exist maps $\phi_{A}: A \rightarrow T^{p} A, \phi_{B}: B \rightarrow T^{p} B$ and homotopies $G_{A}: \Delta \simeq j \circ \phi_{A}, G_{B}: j \circ \phi_{B} \simeq \Delta$, where $\Delta: Y \rightarrow T Y$ is the diagonal transformation and $j: T^{p} Y \rightarrow T Y$ the injection. Let k denote the injection $T^{p} Y \rightarrow T^{1} Y$. We postpone the proof of the following lemma which refers to the diagram

Lemma 3. The top-left square commutes via a homotopy H.
Thus $\theta=\theta\left(k \circ T^{p} b^{\prime} \circ \phi_{A}, H, k \circ T^{p} a^{\prime} \circ \phi_{B}\right): Z \rightarrow T^{1} Z$ is well-defined and we must prove that $j \circ \theta \simeq \Delta: Z \rightarrow T Z$.

Let $H^{\prime}=T b^{\prime} \circ G_{A} \circ\left(a \times i d_{I}\right) \oplus j \circ H \oplus T a^{\prime} \circ G_{B} \circ\left(b \times i d_{I}\right)$. Then Lemma 2 yields $\theta\left(T b^{\prime} \circ \Delta, H^{\prime}, T a^{\prime} \circ \Delta\right) \simeq j \circ \theta$. Hence it will suffice to prove, for each $s=1,2, \cdots, n$, that $\pi \circ \theta\left(T b^{\prime} \circ \Delta, H^{\prime}, T a^{\prime} \circ \Delta\right) \simeq i d_{z}$, where $\pi=\pi_{s}$ is the projection given by $\pi_{s}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{s}$. But $\pi \circ \theta\left(T b^{\prime} \circ \Delta, H^{\prime}, T a^{\prime} \circ \Delta\right)=\theta\left(b^{\prime}, \pi \circ H^{\prime}, a^{\prime}\right)$ and, since $i d_{z}=\theta\left(b^{\prime}, F, a^{\prime}\right)$, it will be enough in view of Lemma 1 to prove that

$$
\begin{equation*}
\left\{\pi \circ H^{\prime} \oplus r F\right\}=0 \in \pi_{1}^{X}\left(Z ; b^{\prime} \circ a\right) \tag{5}
\end{equation*}
$$

This is certainly the case if X is contractible, for then the group is trivial [8; p. 338]. If X is not contractible then $p>1$. We shall show that we may change H so that (5) is satisfied. Let $M: b^{\prime} \circ a \simeq b^{\prime} \circ a$ be such that $\{M\}+$ $\left\{\pi \circ H^{\prime} \oplus r F\right\}=0 \in \pi_{1}^{X}\left(Z ; b^{\prime} \circ a\right)$, and let $N: k \circ T^{p} b^{\prime} \circ \phi_{A} \simeq k \circ T^{p} b^{\prime} \circ \phi_{A}: X \rightarrow T^{1} Z$ be such that

$$
\left\{\begin{array}{l}
\pi \circ j \circ N=r\left(b^{\circ} \circ \pi \circ G_{A} \circ\left(a \times i d_{I}\right)\right) \oplus M \oplus b^{\prime} \circ \pi \circ G_{A} \circ\left(a \times i d_{I}\right) \\
\pi_{i} \circ j \circ N=\text { constant homotopy at } b^{\prime} \circ \pi_{i} \circ \phi_{A}(i \neq s)
\end{array}\right.
$$

Then, since $p>1, N$ is indeed a homotopy $X \rightarrow T^{1} Z$. If we replace H by $N \oplus H$ an easy computation now shows that (5) is satisfied. We may thus add a correcting homotopy to H for each $s=1,2, \cdots, n$.

Proof of lemma 3. The assertion clearly holds if X is contractible. If not then, since cat $X=p-1$ is finite, it follows [4] that X is dominated by a space of the form $\sum \Omega X \cup C(\Omega X * \Omega X) \cdots \cup C$ (join of $p-1$ copies of ΩX). Hence we can assume without loss of generality that $X=X_{p-1}$, where X_{0} is the base-point and X_{r} is obtained by attaching a reduced cone $C \sum Y_{r}$ by means of a map $\sum Y_{r} \rightarrow X_{r-1}(1 \leqslant r \leqslant p-1)$. Let $h: T^{p} Z \rightarrow T^{p-r+1} Z$ be the inclusion and suppose (inductively) that a homotopy

$$
H_{r-1}: h \circ T^{p} a^{\prime} \circ \phi_{B} \circ b\left|X_{r-1} \simeq h \circ T^{p} b^{\prime} \circ \phi_{A} \circ a\right| X_{r-1}: X_{r-1} \times I \rightarrow T^{p-r+1} Z
$$

exists. The obstruction to extending H_{r-1} over X_{r} is a class $\sigma \in\left[\sum Y_{r}\right.$,
$\left.T^{p-r+1} Z\right]$ and, since the outside of the diagram and the remaining rectangles are homotopy commutative, H_{r-1} can be corrected so that σ vanishes after injection into [$\sum Y_{r}, T Z$]. But if F_{q} is the fibre of $j: T^{q} Z \rightarrow T Z$ then Porter [7] has shown that F_{q} is contractible in F_{q-1}. It follows that σ vanishes after injection into [$\sum Y_{r}, T^{p-r} Z$] and thus $H_{r}: X_{r} \times I \rightarrow T^{p-r} Z$ may be defined $(1 \leqslant r \leqslant p-1)$. This completes the proof of Lemma 3 and of (2). It is clear that the homotopy commutativity of the square referred to in Lemma 3 is a kind of primitivity condition. We offer the following tentative formulation. Suppose that cat $Y<n-1$. A map $\phi: Y \rightarrow T^{r} Y$ is a structure map if $r>0$ and $j \circ \phi \simeq \Delta$. Let $\phi_{A}: A \rightarrow T^{r} A, \phi_{B}: B \rightarrow T^{s} B$ be structure maps. The cotriad (a, b) is primitive if $k \circ T^{r} b^{\prime} \circ \phi_{A} \circ a \simeq k^{\prime} \circ T^{s} a^{\prime} \circ \phi_{B} \circ b: X \rightarrow T^{1} Z$, where $k: T^{r} Z \rightarrow T^{1} Z, k^{\prime}: T^{s} Z \rightarrow T^{1} Z$ denote inclusions (cf. [9; 3.7].) A proof analysis yields without difficulty the following corollary.

Corollary. If (a, b) is primitive (relative to $\left.\phi_{A}, \phi_{B}\right)$ and if $\max (r, s)>1$ then cat $Z<n-1$.

References

[1] M. G. Barratt, Track Groups I, Proc. London Math. Soc. (3) 5 (1955), 71-106.
[2] I. Berstein and P. J. Hilton, Category and generalized Hopf invariants, Illinois J. Math. 4 (1960), 437-541.
[3] R. Brown, Elements of Homotopy Theory, McGraw-Hill, 1968.
[4] T. GANEA, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417-427.
[5] K. A. Hardie, Homotopy of natural transformations, Canadian J. of Math. 22 (1970), 332-341.
[6] K. A. Hardie, On cat ${ }^{i} X$, J. London Math. Soc. (2) 3 (1971), 91-92.
[7] G. J. Porter, The homotopy groups of wedges of suspensions, Amer. J. Math. 88 (1966), 655-663.
[8] J. W. Rutter, Secondary operations and the square construction, Quart. J. Math. Oxford (2) 19 (1968), 337-350.
[9] K. Tsuchida, Cotriad and triad, Tôhoku Math. J., 1 (1966), 1-12.
[10] G. W. Whitehead, The homology suspension, Colloque de Topologie Algébrique Louvain, 1956, 89-95.

The Topology Research Group, University of Cape Town
South Africa

[^0]: Grants for research from the University of Cape Town and the South African Council for Scientific and Industrial Research are acknowledged.

