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Abstract. If a: X^> A is a cofibration and if R is the adjunction
space obtained by attaching A to B by means of b:X->B then
cat R < min (1 -f cat A + cat B, cat X + max (cat A, cat B))f where cat Y
denotes the Lusternik-Schnirelmann category of Y as redefined by G. W.
Whitehead, renormalised to take the value 0 on contractible spaces.

Let a: X—> A, b: X-^B be maps in the category of pointed connected
CW-complexes and let Z be the associated (reduced) double mapping
cylinder. If cat Y denotes the Lusternik-Schnirelmann category of Y as
redefined by G. W. Whitehead [10], renormalised to take the value 0 on
contractible spaces, then Tsuchida [9; 3.4] has proved that

(1) cat Z < cat A + cat B + 1 .

The chief purpose of this paper is to show that the results of [6] combined
with a simple-minded homotopy argument yield:

(2) cat Z < cat X + max (cat A, cat B) .

If a is a cofibration then it is well-known [3; p. 247] that Z has the same
homotopy type as the adjunction space R obtained by attaching A to B
by means of 6. Thus (1) and (2) together imply

(3 ) cat R < min (1 + cat A + cat B, cat X + max (cat A, cat B)) .

In the sequel we shall consider briefly what may be said in the presence
of a "primitivity" condition [2; p. 441], [9; 3.7]. We recall that Z is the
space obtained from the (pointed) sum A + (X x I) + B by factoring out
by the relations

(x, 0) - a(x), (x, 1) ~ b(x), (*, t) ~ (*, V) (x e X; t, t ' e l ) .

Let f:A->W, g:B-+W and let H: foa ^ gob: X-» W. (Homotopies
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are of course required to respect base-points.) Then we say that the
square

( 4 ) δ| I.
φ φ,V

commutes via the homotopyJH. We remark that the~square

X-^A

commutes via i*7, where F(x, t) — {(x, t)} (x e X, t e I) and a! and b' are the
obvious maps. If (4) commutes via H it is easy to see that there exists
a unique map θ = θ(f, H, g): Z-*W such that θob' = /, ^oα' = flf and
θoF = H. Let K: foa ~ gob be another homotopy. Then the reverse
homotopy rK: gob— foa and the conjunction Hζ&rK: foa ~ foa are defined.
(For details see [5; p. 338].) The homotopy class {H®rK} is an element
of the (foa)-based track group πf(W foa). (See [8], [1].) We omit the
proof of the following.

LEMMA 1. θ(f, H, g) cz θ(f, K, g) if and only if

Finally, given maps a:A-+V, β:B-+V, 7: W—> V and homotopies
G: a ~ 70/, G': jog — β9 it is clear (omitting unnecessary brackets) that

H' = Go(a x idi)®yoH® GΌ(6 x idx): aoa ~ βob .

The routine proof of the following lemma is also omitted.

LEMMA 2. θ(a, H', β) ~ yoθ(f, H, g): Z-+ V.

PROOF OF (2). Let p = 1 + cat X. We may assume that n = p + max
(cat A, catB) is finite. Let TY denote the product of n copies of Y and
let TrY= {(yl9 y2, •••, yn) e TY\ at least r coordinates are at *}#

Then, by [5; Theorem], there exist maps φΛ:A-+TpAf φB:B-*TpB
and homotopies GA: Δ ~ joφA, GB:joφB~J, where Δ\ Y-+TY is the di-
agonal transformation and j : TpY—> TY the injection. Let k denote the
injection TPY-+ TιY. We postpone the proof of the following lemma
which refers to the diagram
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X ^ > A Λ

b \ koTPbΌφA Tb'\
k°T'°' ^ίMf

Ί
TB

2V

LEMMA 3. The top-left square commutes via a homotopy H.

Thus θ = θ(koTpbΌφA9 H, koTpaΌφB): Z-+ TιZ is well-defined and we must
prove that i°0 cz A: Z-+ TZ.

Let Hf = TbΌGAo(a x idz) 0 i ° i ϊ 0 TaΌGB°{b x idz). Then Lemma 2
yields Θ{TbΌAyH', TaΌA) ~ joβ. Hence it will suffice to prove, for each
8=1,2, , n, that πoθ(TbΌA, H', TaΌΔ)~idz, where π=π8 is the projection
given by π.(xlf x2, , xn) = x8. But πoθ(TbΌA, H', TaΌA) = θψ9 π<>H', a')
and, since idz = θ(b', F, α'), it will be enough in view of Lemma 1 to prove
that

(5) {πoHf © TF) - 0 G πf(Z; bΌa) .

This is certainly the case if X is contractible, for then the group is trivial
[8; p. 338]. If X is not contractible then p > 1 . We shall show that we may
change H so that (5) is satisfied. Let M: b'°a ^ δΌα be such that {M} +
{πoH' 0 TF} = 0 e πf (Z; δΌα), and let JSΓ: A o T*bΌφA ~ ko TpbΌφA: X-+ TιZ
be such that

N = r(b'oπoGΛo(a x id7)) 0 M φ δΌπoG^o(α x id7)

N = constant homotopy at 6Ό^4o^(ί ^ s) .

Then, since p > 1, JV is indeed a homotopy X—» T1^. If we replace H
by N@H an easy computation now shows that (5) is satisfied. We may
thus add a correcting homotopy to H for each s = 1, 2, , n.

PROOF OF LEMMA 3. The assertion clearly holds if X is contractible.
If not then, since cat X = p — 1 is finite, it follows [4] that X is dominated
by a space of the form Σ OX U C(ΩX*ΩX) U C (join of p - 1 copies
of ΩX). Hence we can assume without loss of generality that X = Xp-19

where Xo is the base-point and Xr is obtained by attaching a reduced cone
C Σ Yr by means of a mapΣ Fr—-2Γr-i (1 < r < p - 1 ) . Let A: T ^ - * Γp- r+1Z
be the inclusion and suppose (inductively) that a homotopy

Hr^ι hoTpaΌφBob I Xr__, ~ hoTpbΌφAoa \ Xrmml: Xr_λ x /-> τp~r+1Z

exists. The obstruction to extending Hr_x over Xr is a class σ e [Σ Yr>
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Tp~r+ίZ] and, since the outside of the diagram and the remaining rectan-
gles are homotopy commutative, Hr_γ can be corrected so that σ vanishes
after injection into [Σ Yr, TZ]. But if Fq is the fibre of j : TqZ~* TZ
then Porter [7] has shown that Fq is contractible in Fq^. It follows that
σ vanishes after injection into [Σ Yr, Tp~rZ] and thus Hr: Xr x I-> Tp~rZ
may be defined (1 < r < p — 1). This completes the proof of Lemma 3 and of
(2). It is clear that the homotopy commutativity of the square referred to in
Lemma 3 is a kind of primitivity condition. We offer the following tentative
formulation. Suppose that cat Y< n — 1. A map φ: Y-» TrY is a struc-
ture map if r > 0 and joφ ~ A. Let φΛ: A —• TrA, φB: B-+ T8B be structure
maps. The cotriad (α, b) is primitive if k<> Trb'oφAoa~kΌ T8aΌφBob: X—*TιZ,
where k: TrZ-» TιZ, k'\ T8Z-» TZ denote inclusions (cf. [9; 3.7].) A proof
analysis yields without difficulty the following corollary.

COROLLARY. If (α, 6) is primitive (relative to φA, φB) and if max (r,s) > 1
then cat Z < n — 1.
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