
Tόhoku Math. Journ.
25(1973), 347-353.

RELATIVE CLASS NUMBERS OF NORMAL CM-FIELΌS
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An algebraic number field K of finite degree is called a CM-field [3],
if it is totally imaginary and it contains a totally real subfield KQ such
that [K: Ko] = 2. If we put L^s) = ζκ(s)/ζKo(s), it is known that we have
the formula

(1) Li(l)

where N is the degree of K over the rationals, hγ is the relative class
number, q = 1 or 2, w is the number of the roots of unity in K, and D
and DQ are absolute values of discriminants of K and Ko respectively.
For normal Cikf-fields, we have proved in [4] that hγ goes to infinity when
Nβog D goes to 0. In this paper we will obtain effectiveness in this
theorem, i.e.,

THEOREM. Let ε be any positive number and let H be any positive
integer. Then there exists an effectively determined positive number D(H, ε)
such that D < D(H, ε) for any non-abelian normal CM-field which satisfies
ht < H and

N
log D V 72c6 ' 4c.

In the above inequality, c3 and c6 are absolute constants which can be
effectively determined.

The existence of a suitable subfield of Ko enables us to obtain a lower
estimate of L^l), and techniques of the estimate are due to Landau [2].
We note that effectiveness theorem for abelian case has been given in [5]
except two cases.

1. Lemmas. Let F be an algebraic number field of degree n. Let
d be the absolute value of its discriminant. Let χ be a character of an
ideal class group of F. Let f = f(χ) denote the conductor of χ. We
put k = k(χ) = d NF^ where NF means the absolute norm. Let L(s, χ)
be the L-function with character χ. We put
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(2) Φ(s,χ) = φ(s,χ)L(s,χ)

2rΉh δ
w s(s — 1)

as usual, where

and δ = 1 for χ = χ0 = principal character and δ = 0 otherwise (See [1]
and [2]). In the following we consider s as a real variable. We put
φo(s, X) =. <P(8, χ)ζF(s) If 8 ̂  81 and if st > 1, it is seen as in [2] that

( 3 ) \¥i(s9χ)\^Φo(s,,χ).

In the following lemmas, constants cuc2, mean absolute constants
which can be effectively determined.

LEMMA 1. Let K he the residue of ζF(s) at s = 1. Then it holds

PROOF. In the formula (2) for χ = χ0, Ψi(s, χQ) take positive real
values. Hence

OΌ Δ 1JXrί ^

7 w

Therefore

wV d ι

LEMMA 2. If 1 < s < 7/6,

s —

PROOF. Above remark (3) shows

and

as in the proof of Lemma 1. Then
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\L(s,χ)\ = \Φ(s,χ)\/\<P(s,χ)\

^ ^ + 2 7nk7ll2)/cl VT
w s(s — 1) //

δ

s- 1

LEMMA 3. Let 1 < s < 7/6. 2%ew iί

where p runs over the zeros of L(s, χ) sucfc that 0 <ίϋp < 1.

PROOF. AS Φ(S, χ) ^ 0 for any s in this interval, it is seen from the
equality (2) that

φf ( - L' ( ) - 1

< ncsl .

We have the assertion by taking real part and substituting Landau's
equation [2, (7)]

Φ X ' /W/ 8 - 1 8 " 8 - p

2. In this section we will prove our theorem.

LEMMA 4. Let K be a non-abelian normal CM-field, and let Ko be
its maximal real subfield. Then there exists a subfield F of Ko satisfying
one of the following conditions:

( i ) K/F is a cyclic extension of degree 4.
(ii) K/F is a cyclic extension of degree 2p for some odd prime

number p.
(iii) K/F is an abelian extension of degree 8.

PROOF. Let G be the Galois group of K over the rationale. Let Go

be the subgroup corresponding to Ko. Then Go is a central subgroup of
order 2. If the order of G is not a power of 2, there exists a subgroup
H of order p. Then the subfield corresponding to G0H satisfies (ii). If
the order of G is a power of 2, there exists an element x of order 4
because G is not abelian. Let H be a subgroup generated by x. If H
includes Go, the corresponding subfield satisfies (i). If it is not the case,
GQH is an abelian subgroup of order 8. Then the corresponding subfield
satisfies (iii).
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Let F be a subfield satisfying one of conditions in Lemma 4. As K
is an abelian extension of F, ζκ(s) is a product of L-f unctions over F, i.e ,

ζκ(s) = L^sK^s)

In the above, Πi a n ( i Π2 mean products over χ corresponding to hx and
L2, respectively. Let m = [K: F], i.e., N = mn. Hasse's conductor-
discriminant formula shows

D = NF(ΐl Kx))dm = Π k(χ) .

Taking logarithm,

LEMMA 5. Let Σi and Σ2 denote sums over χ corresponding to Lλ

and L2 respectively. Then

log D = Σi log k(χ) + Σ2 log k(χ) + log d

and

log A = Σ2 log k(χ) + log d

hold.

Let s0 = 1 + (log D)~ι. We may assume s0 < 7/6. We will find an
upper estimate of Σ 9l(l/(so — ί°))> where the sum is taken over all zeros
of Li(s) such that 0 < dip < 1. As ζ*(s) is decreasing for s > 1,

Then Lemmas 3 and 5 show the following inequalities:

— — < -y^fo) + 4-Σilogfc(χ) + ̂ - c 3

So p 1J1 Δ Δ

< - -yί-ίβ.) - | ^ (So) + -5- Σi logΛGO +
1 ^ ^

= — log D + Nc3 .
Δ

Now we assume that 4Nc3 < log D. Then it holds Σ (̂1/(̂ 0 - P)) < (7/4) log D
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We will write L^s) as a product of L3(s) and L4(s). Let L3(s) = L^s)
and L4(s) = 1, if St(l/(β0 - P)) ^ (7/8) log D for every p. If there exists a
<o not satisfying this inequality, we take L4(s) to be the corresponding
L-function L(s, χ4) and L3(s) the product of other L-functions. If L(p, χ) — 0,
it holds L(p, χ) = 0. If χ ^ χ, it follows |0 and p are zeros of L^s) (a
multiple zero if p is real). As Sft(l/(so - p)) = SR(1/(8O - )̂)> it holds
9l(l/(so - P)) ̂  (7/8) log i) for such p. Hence it should be χl = χ0, and L4(s)
is an L-function corresponding to an imaginary quadratic extension Ft of
F. As K = ifo^i, ί7! is totally imaginary, i.e., i^ is a CM-field. We note
that Lt(s) = 1 if F satisfies condition (i) of Lemma 4. Hence [K: F^] ;> 3
and fc(χ4) ^ D1/3 hold. When ^ runs over the zeros of L3(s) such that
0 < 3K/0 < 1,

and

hold. Hence it holds

Σ gt 1 < 14Iog£>
8-/0 8 + 7(s - s0) log D

for every s such that 1 ^ s ^ s0 [5, p. 342]. If we put

logD

Lemma 3 shows

s - p 2

14 log Z)

7a; + 1

and

Therefore

- logL,(l) - - logL3(s0) + ( ' ° 4 ^ ( 8 ) ώ

Ji Lz

< log ζF(s0) + log L2(s0) + log L4(s0) + log c4
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and

A(l)"1 < φogD + l)c

<c»D5l72logD

hold. As Fx is a CM-field, (1) shows

Hence

Therefore the formula (1) shows

(2π)NI2 * e c ^log j

This proves the theorem.

COROLLARY. Let K be a non-abelian CM-field of degree 4. Let H
be any positive integer, and let hγ be the relative class number of K. If
lfix < H, the discriminant of K is smaller than some effectively determined
value D(H).

PROOF. K is contained in the normal CM-field E of degree 8. Let
Ko and Eo be maximal real subfields of K and E, respectively. Let K'
be the conjugate of K. As E/Ko is abelian, it holds

LUE(s) = Luκ{s)Luκ,(s) = LlfK(s)2 .

Then the formula (1) gives

Ί , K Ί

where dκ, dE, are absolute values of discriminants of K, E, . Hasse's
conductor-discriminant formula gives

dE = NKod
2

K{KoNKQdEolKQd4

KQ

= NKod
2

KlKod
2

KodEo

= d2

KdEJd2

Ko .

Hence it holds

QE

Therefore our theorem shows the assertion.



RELATIVE CLASS NUMBERS OF NORMAL CM-FIELDS 353

REMARK. The case (i) of Lemma 4 occurs for E, and the correspond-
ing subfield is a quadratic field. This facts enable us to obtain much
better estimate than the general case.
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