THE GROWTH OF THE RESOLVENT AND HYPERINVARIANT SUBSPACES

Dedicated to Professor Masanori Fukamiya on his 60th birthday

Koh-ichi Kitano

(Received November 6, 1972)

1. Introduction. Let \mathfrak{X} (respectively, \mathfrak{F}) be a separable, infinite dimensional complex Banach (respectively, Hilbert) space. We denote by $\mathfrak{B}(\mathfrak{X})$ the algebra of all bounded linear operators acting in \mathfrak{X}. Let T be a bounded linear operator on \mathfrak{X}. We call the bi-commutant of T the set of operators commuting with all operators which commute with T. A closed subspace \mathfrak{Y} of \mathfrak{X} is said to be hyperinvariant for T if $S \mathfrak{Y} \subset \mathfrak{Y}$ for any operator S that commutes with T.

The purpose of the present note is to show the existence of hyperinvariant subspaces for an operator T with a spectrum condition and with a growth condition on the resolvent of T. The result will be considered as a generalization of those results on invariant subspaces in [2], [5]. In the case of a Hilbert space, such an operator, $T=A+B$, where A is a normal operator with some spectrum condition and B is a compact operator with some condition, has been studied in [2], [5].

Throughout this note, we denote by $\sigma(T), \sigma_{p}(T), \sigma_{c}(T), \sigma_{r}(T)$ and $\rho(T)$ the spectrum, the point spectrum, the continuous spectrum, the residual spectrum and the resolvent set of T, respectively (see Chap. VII of Part I of [3]). For any complex number λ and a subset E of the complex plane, we put $d(\lambda, E)=\inf _{z \in E}|\lambda-z|$. We understand a smooth arc to be such a one that has a continuous second derivative when parametrized with respect to arc length. We assume a Jordan curve J is positively oriented and for a fixed λ_{0} on J, where J has a parametrization $\lambda=g(s)$ $(0 \leqq s \leqq l(J))$, in terms of arc length s from $\lambda_{0}, g(0)=\lambda_{0}, g(s)=g(s+l(J))$, and $g(s)$ is continuous on J and $g^{\prime}(s), g^{\prime \prime}(s)$ are continuous except points $\lambda_{k}=g\left(s_{k}\right), s_{k}<s_{k+1}, k=1,2, \cdots, n$ on J, where $l(J)$ denotes the whole length of J.
2. The existence of hyperinvariant subspaces for some operators. We denote by J, a Jordan curve, which consists of a finite number of rectifiable smooth arcs in the complex plane. The set of all operators $T \in \mathfrak{B}(\mathfrak{X})$ such that $\sigma(T) \subset J$ will be denoted by $\mathfrak{B}(\mathfrak{X} ; J$), (it may well be the case
that the spectrum separates the complex plane).
Let $T \in \mathfrak{B}(\mathfrak{X} ; J)$.
Definition 2.1. We say that the resolvent of T has the growth condition (C) near J if

$$
\int_{0}^{e} \log \log M(\delta) d \delta<\infty
$$

for some sufficiently small $\varepsilon>0$, where $M(\delta)=\sup _{d(\lambda, J) \geq \delta}\left\|(\lambda I-T)^{-1}\right\|$.
In [2], the resolvent is said to have polar growth of order n (respectively, exponential growth of order p) near J if $d(\lambda, J)^{n}\left\|(\lambda I-T)^{-1}\right\|$ (respectively, $\left.d(\lambda, J)^{p} \log \left\|(\lambda I-T)^{-1}\right\|\right), \lambda \notin J$ is bounded near J. If the resolvent has exponential growth of order p (for any $p>0$) near J, then it has the growth condition (C) near J. (Obviously, the resolvent has polar growth of order n near J, then it has exponential growth of order p for any $p>0$). This growth condition in Definition 2.1 plays an important role in the future. In this section we have the following result.

Theorem 2.2. Let $T \in \mathfrak{B}(\mathfrak{X} ; J)$ such that the resolvent of T has the growth condition (C) near J. If $\sigma(T)$ is not reduced to a single point, then T has a proper closed hyperinvariant subspace.

We shall divide the proof into portions. The assertion follows immediately in the case that $\sigma(T)$ is disconnected. In fact, if $\sigma(T)$ is disconnected, let σ_{0} be a proper open and closed subset of its spectrum $\sigma(T)$ and let Γ_{0} be a contour enclosing σ_{0} but no other point of $\sigma(T)-\sigma_{0}$ and lying in $\rho(T)$, then the spectral projection $E\left(\sigma_{0}\right)$ corresponding to σ_{0},

$$
E\left(\sigma_{0}\right)=\frac{1}{2 \pi i} \int_{\Gamma_{0}}(\lambda I-T)^{-1} d \lambda
$$

is an idempotent distinct from 0 and I which commutes with every operator commuting with T and $E\left(\sigma_{0}\right)$ would define a proper closed hyperinvariant subspace $E\left(\sigma_{0}\right) \mathfrak{X}$ of \mathfrak{X} with respect to T (see Chap. XI of [11]). Therefore we have only to show that there can exist no operator $T \in$ $\mathfrak{B}(\mathfrak{X} ; J)$ such that the resolvent of T has the growth condition (C) near J and $\sigma(T)$ is connected subarc of J and \mathfrak{X} admits no proper closed hyperinvariant subspace under T.

Now we need the following generalization of Levinson's theorem [7, Lemma 27.1, p. 135].

Lemma 2.3. (Ljubič and Macaev [8]). Suppose that $M(\delta)$ is nonincreasing function ($\delta>0$) satisfying the following conditions, $M(\delta) \rightarrow \infty$ as $\delta \rightarrow 0$ and

$$
\int_{0}^{\varepsilon} \log \log M(\delta) d \delta<\infty
$$

for some sufficiently small $\varepsilon>0$, and suppose that J_{0} is a smooth arc in the complex plane, beginning at some point z_{0}. Then there exists a function analytic except for $z=z_{0}$ satisfying the following conditions:
(i) $|f(z)| \leqq 1 / M(\delta)$ along some beak Γ (Fig. 1) formed by two smooth

Fig. 1
arcs tangent to J_{0} on opposite sides at the point z_{0}, where $\delta=d\left(z, J_{0}\right)$;
(ii) $f(z)$ is continuous on the inside and on the beak Γ;
(iii) $f(z) \neq 0($ for $z \neq \infty), f(\infty)=0$.

Using Lemma 2.3 we have the followings. For any point $\mu \in J$, which is not a singular point of J, we denote $f_{\mu}^{+}(\lambda)$ and $f_{\mu}^{-}(\lambda)$ analytic functions whose existence is assured by Lemma 2.3, constructed with respect to the majorant $M(\delta)$ and curves J_{μ}^{+}and J_{μ}^{-}respectively (J_{μ}^{+}and $J_{\overline{-}}$ are the Jordan curve J issuing from the point $\mu \in J$ respectively in positive and negative directions). We denote corresponding beaks by Γ_{μ}^{+} and Γ_{μ}^{-}respectively. Let $\Delta=[\alpha, \beta]$ be any segment of the curve J, where α, β are not singular points of J (α precedes β in a positive direction along J). Put

$$
F_{\Delta}(\lambda)=f_{\alpha}^{+}(\lambda) f_{\beta}^{-}(\lambda)
$$

and denote by Γ_{Δ} the contour obtained by joining Γ_{α}^{+}and Γ_{β}^{-}by means of any two simple curves, which consists of a finite number of rectifiable smooth arcs (Fig. 2). The function $F_{\Delta}(\lambda)$ is evidently analytic on the

Fig. 2
inside of Γ_{Δ}, continuous on the inside and on Γ_{Δ} and does not vanish on the inside of Γ_{Δ}. From the construction following estimates hold

$$
\begin{array}{ll}
F_{\Delta}(\lambda)=O(1 / M(d(\lambda, J))) & \text { for } \quad \lambda \longrightarrow \alpha, \lambda \in \Gamma_{\Delta}, \\
F_{\Delta}(\lambda)=O(1 / M(d(\lambda, J))) & \text { for } \quad \lambda \longrightarrow \beta, \lambda \in \Gamma_{\Delta},
\end{array}
$$

where $O(\cdot)$ is Landau's symbol.
Lemma 2.4. Let $T \in \mathfrak{B}(\mathfrak{X} ; J)$ such that $\sigma(T)$ is a connected set (not a single point) and the resolvent of T has the growth condition (C) near J. For each pair of points α, β where α precedes β in a positive direction along J and they are not singular points of J, we put
$\mathfrak{S}(\alpha, \beta)=\left\{x ; x \in \mathfrak{X},(\lambda I-T)^{-1} x\right.$ is continuable to a function which is analytic on $\rho(T) \cup\{$ the arc $(\alpha, \beta)\}\}$,
$\tilde{\mathfrak{S}}(\alpha, \beta)=\left\{x ; x \in \mathfrak{X},(\lambda I-T)^{-1} x\right.$ is continuable to a function which is analytic on $\rho(T) \cup\{$ the $\operatorname{arc}(\beta, \alpha)\}\}$.
Then both $\subseteq(\alpha, \beta)$ and $\widetilde{\Im}(\alpha, \beta)$ are closed subspaces of \mathfrak{X}, invariant under T.
Proof. Because both of the invariance and the linearity of $\mathbb{S}(\alpha, \beta)$ are plain, we have only to prove that $\mathfrak{S}(\alpha, \beta)$ is closed. Let $x_{n} \in \mathbb{S}(\alpha, \beta)$, $(n=1,2,3, \cdots)$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Let $R\left(\lambda, T: x_{n}\right)$ denote the analytic continuation of $(\lambda I-T)^{-1} x_{n}$, then for every positive number ε, let $\Delta=$ $[\alpha+\varepsilon, \beta-\varepsilon]$ in above argument. Then $R\left(\lambda, T: x_{n}\right)$ are analytic on the inside of Γ_{4}. Here we define the function such that

$$
g_{n}(\lambda)=\left\{\begin{array}{l}
F_{\Delta}(\lambda)(\lambda-\alpha-\varepsilon)(\lambda-\beta+\varepsilon) R\left(\lambda, T: x_{n}\right) \\
\quad \text { if } \lambda \neq \alpha+\varepsilon \text { and } \lambda \neq \beta-\varepsilon, \\
0 \quad \text { if } \lambda=\alpha+\varepsilon \text { or } \lambda=\beta-\varepsilon,
\end{array}\right.
$$

then $g_{n}(\lambda)$ are analytic on the inside of Γ_{Δ} and strongly continuous on Γ_{Δ}, which follows from estimates of $F_{\Delta}(\lambda)$. By the maximum modulus principle, $\left\{g_{n}(\lambda)\right\}$ is a uniform Cauchy sequence with respect to λ, hence the limit function $g_{0}(\lambda)$ is analytic on the inside of Γ_{Δ} and so

$$
x_{\infty}(\lambda)=g_{0}(\lambda)\left\{F_{\Delta}(\lambda)(\lambda-\alpha-\varepsilon)(\lambda-\beta+\varepsilon)\right\}^{-1}
$$

is also analytic on the inside of Γ_{Δ}. It follows that $(\lambda I-T)^{-1} x$ has an analytic continuation to a neighbourhood of the arc $(\alpha+\varepsilon, \beta-\varepsilon)$ for any sufficiently small $\varepsilon>0$, and hence to a neighbourhood of the arc (α, β). Thus $x \in \mathfrak{S}(\alpha, \beta)$. The assertion for $\tilde{\subseteq}(\alpha, \beta)$ will be proved in just the same way. The proof of Lemma 2.4 is now completed.

Lemma 2.5. Let $T, \mathfrak{S}(\alpha, \beta)$ and $\tilde{\mathscr{S}}(\alpha, \beta)$ be the same as in Lemma
2.4 and $\tilde{\Delta}=[\beta, \alpha]$. For any vector $x \in \mathfrak{X}$, the function $g(\lambda)$ is defined such that

$$
g(\lambda)= \begin{cases}F_{\widetilde{\Delta}}(\lambda)(\lambda-\alpha)(\lambda-\beta)(\lambda I-T)^{-1} x & \text { if } \lambda \in \Gamma_{4}-\{\alpha, \beta\} \\ 0 & \text { if } \lambda=\alpha \text { or } \lambda=\beta\end{cases}
$$

If $b(z)$ is any numerical-valued function analytic in and continuous on $|\boldsymbol{z}| \leqq 1$ and if τ is the conformal mapping from the inside of $\Gamma_{\widetilde{a}}$ to the unit disc, then the contour integral

$$
\begin{equation*}
y=\int_{c_{0}} b(z) g\left(\tau^{-1}(z)\right) d z \tag{*}
\end{equation*}
$$

belongs to the space $\mathfrak{S}(\alpha, \beta)$, where C_{0} denotes the boundary of the unit disc (suppose that C_{0} is positively oriented). Moreover, unless x belongs to the space $\tilde{\subseteq}(\alpha, \beta)$ there exists a function $b(z)$ analytic in and continuous on $|z| \leqq 1$ such that the vector y defined by $\left({ }^{*}\right)$ is non-zero.

Proof. Clearly, the function $g\left(\tau^{-1}(z)\right)$ is continuous on C_{0}. Using the resolvent equation, we have

$$
(\mu I-T)^{-1} g(\lambda)=(\mu-\lambda)^{-1} g(\lambda)-(\mu-\lambda)^{-1} F_{\widetilde{\lambda}}(\lambda)(\lambda-\alpha)(\lambda-\beta)(\mu I-T)^{-1} x
$$

for $\mu \in \rho(T) \cap \operatorname{Ext} \Gamma_{\tilde{A}}$, where $\operatorname{Ext} \Gamma_{\tilde{\perp}}$ denotes the outside of $\Gamma_{\tilde{A}}$, thus

$$
\begin{aligned}
(\mu I-T)^{-1} y= & \int_{C_{0}} \frac{b(z) g\left(\tau^{-1}(z)\right)}{\mu-\tau^{-1}(z)} d z \\
& -\int_{C_{0}} \frac{b(z) F_{\widetilde{\Delta}}\left(\tau^{-1}(z)\right)\left(\tau^{-1}(z)-\alpha\right)\left(\tau^{-1}(z)-\beta\right)(\mu I-T)^{-1} x}{\mu-\tau^{-1}(z)} d z
\end{aligned}
$$

for the vector y of $\left({ }^{*}\right)$. By Cauchy's theorem, the second term is zero. Therefore we have

$$
\begin{equation*}
(\mu I-T)^{-1} y=\int_{c_{0}} \frac{b(z) g\left(\tau^{-1}(z)\right)}{\mu-\tau^{-1}(z)} d z \tag{**}
\end{equation*}
$$

for the vector y of $\left(^{*}\right)$. Since the final expression of (**) is plainly analytic on the outside of $\Gamma_{\tilde{A}}$, it follows that $y \in \mathfrak{S}(\alpha, \beta)$. Next, we suppose that the vector y defined by $\left(^{*}\right)$ is zero for each $b(z)$ which is analytic in and continuous on $|z| \leqq 1$, i.e., for all such $b(z)$

$$
\int_{C_{0}} b(z) g\left(\tau^{-1}(z)\right) d z=0
$$

Therefore the vector-valued function $g\left(\tau^{-1}(z)\right)$ defined on C_{0} must be the boundary value of a vector-valued function analytic in and continuous on $|z| \leqq 1$. Therefore $g(\lambda)$ must be analytically continuable to the inside of $\Gamma_{\tilde{\Delta}}$. Thus $(\lambda I-T)^{-1} x$ must be continuable across the arc (β, α), i.e.,
$x \in \widetilde{\cong}(\alpha, \beta)$. The proof of Lemma 2.4 is now completed.
Let $T, \mathbb{S}(\alpha, \beta), \widetilde{\Im}(\alpha, \beta), \Delta, \widetilde{\Lambda}$ and C_{0} be the same as above. Let τ (respectively, ν) be a conformal mapping from the inside of $\Gamma_{\tilde{\Omega}}$ (respectively, Γ_{Δ}) to the unit disc. Now we define the function $g_{\tilde{A}}(\lambda)$ such that

$$
g_{\tilde{A}}(\lambda)= \begin{cases}F_{\tilde{\alpha}}(\lambda)(\lambda-\alpha)(\lambda-\beta)(\lambda I-T)^{-1} & \text { if } \lambda \in \Gamma_{\tilde{A}}-\{\alpha, \beta\} \\ 0 & \text { if } \lambda=\alpha \text { or } \lambda=\beta .\end{cases}
$$

Let $b_{\tilde{A}}(z)$ be a function analytic in and continuous on $|z| \leqq 1$ such that the contour integral

$$
\int_{C_{0}} b_{\widetilde{\sim}}(z) g_{\tilde{\Lambda}}\left(\tau^{-1}(z)\right) x d z
$$

is non-zero for some vector $x \notin \tilde{\subseteq}(\alpha, \beta)$. In just the same way we can define $g_{\Delta}(\lambda)$ and $b_{\Delta}(z)$ with respect to Δ instead of $\tilde{\Delta}$.

Lemma 2.6. If we put

$$
S=\int_{c_{0}} b_{\tilde{J}}(z) g_{\tilde{A}}\left(\tau^{-1}(z)\right) d z \quad \text { and } \quad W=\int_{c_{0}} b_{A}(z) g_{A}\left(\nu^{-1}(z)\right) d z
$$

then $\overline{S X}, \overline{W X}$, where bar denotes the closure, are hyperinvariant subspaces under T and

$$
\{0\} \subset \overline{S X} \subset \subseteq(\alpha, \beta), \quad\{0\} \subset \overline{W X} \subset \widetilde{\Im}(\alpha, \beta)
$$

Proof. From the proof of preceding Lemmas, the last assertions follows. Let A be any operator in $\mathfrak{B}(\mathfrak{X})$ such that $A T=T A$. Since both operators S, W are elements of the bi-commutant of T, it follows

$$
\begin{aligned}
A(\overline{S X}) \subset \overline{A S X} & =\overline{S A X} \subset \overline{S X} \\
A(\overline{W X}) \subset \overline{A W X} & =\overline{W A X} \subset \overline{W X}
\end{aligned}
$$

The proof of Lemma 2.6 is now completed.
Proof of Theorem. Suppose that T is an operator satisfying the hypotheses of Lemma 2.4. By Lemma 2.4 and Lemma 2.6, we have only to show that $\subseteq(\alpha, \beta)$ and $\tilde{S}(\alpha, \beta)$ are non-trivial. We may assume $\sigma(T)$ lies on both $\operatorname{arcs}(\alpha, \beta)$ and (β, α), because we can choose the pair of points α, β arbitrary on J. This implies $\mathfrak{S}(\alpha, \beta) \neq \mathfrak{X}$ and $\widetilde{\subseteq}(\alpha, \beta) \neq \mathfrak{X}$. Thus we have only to show that $\subseteq(\alpha, \beta) \neq\{0\}$ and $\widetilde{\Im}(\alpha, \beta) \neq\{0\}$. By Lemma 2.5, $\mathfrak{S}(\alpha, \beta) \neq \mathfrak{X}, \tilde{\mathfrak{S}}(\alpha, \beta) \neq \mathfrak{X}$ imply $\tilde{\mathfrak{S}}(\alpha, \beta) \neq\{0\}, \mathfrak{S}(\alpha, \beta) \neq\{0\}$ respectively. Since both $\mathfrak{S}(\alpha, \beta), \widetilde{\subseteq}(\alpha, \beta)$ are non-trivial and by definitions in Lemma 2.6 $S \neq 0, W \neq 0$. Thus from Lemma 2.6 the assertion follows.
3. Perturbation and hyperinvariant subspaces. In the sequel J will stand a finite union of simple rectifiable smooth arcs in the complex plane
(not separating the complex plane). Instead of \mathfrak{X} we consider a Hilbert space \mathfrak{S}. Let C_{∞} be the set of all compact operators acting in \mathfrak{S}. Let $T \in C_{\infty}$. We denote by C_{ω} the class of compact operators for which

$$
\|T\|_{\omega}=\sum_{n=1}^{\infty} \mu_{n}(T) / n<\infty
$$

where $\mu_{1}(T), \mu_{2}(T), \cdots, \mu_{n}(T), \cdots$ are the eigenvalues of $\left(T^{*} T\right)^{1 / 2}$ arranged in decreasing order and repeated according to multiplicity (see [4, § 15 of Chap. III]) and the class C_{p} is the set of all compact operators such that $\|T\|_{p}=\left\{\sum_{n=1}^{\infty} \mu_{n}(T)^{p}\right\}^{1 / p},(1 \leqq p<\infty)$ is finite (see [3, §9 of Chap. $\mathrm{XI}])$. It is easy to see that $C_{p} \subset C_{\omega}$ for arbitrary $p(1 \leqq p<\infty)$. In fact, from Hölder's inequality it follows that

$$
\|T\|_{\omega} \leqq\left\{\sum_{n} 1 / n^{q}\right\}^{1 / q}\left\{\sum_{n} \mu_{n}(T)^{p}\right\}^{1 / p}
$$

where $1 / p+1 / q=1$. The class C_{ω} was introduced in the paper of V.I. Macaev [9]. To an operator $T \in C_{\infty}$ we associate the sequences $\lambda_{1}(T)$, $\lambda_{2}(T), \cdots, \lambda_{n}(T), \cdots$ of eigenvalues of T numbered according to decreasing values of their moduli and repeated according to multiplicity and the function $n(t, T)$ (respectively, $\gamma(t, T)$), for $t>0$, giving the number of terms of the sequence $\lambda_{n}(T)$ (respectively, $\mu_{n}(T)$), $n=1,2, \cdots, n, \cdots$, exceeding $1 / t$ in modulus.

The purpose of this section is to show that the following theorem holds.

Theorem 3.1. Let T be an operator in $\mathfrak{B}(\mathfrak{F})$. Write $T=A+B$, where T is the sum of a normal operator A, whose spectrum lies on J and a compact operator B which belongs to the class C_{ω}. If $\sigma(T)$ is not reduced to a single point, then T has a proper closed hyperinvariant subspace in \mathfrak{S}.

On the existence of invariant subspace, in [5] the author has proved in the case that the perturbing term belongs to one of the classes $C_{p}(1 \leqq p<\infty)$. In § 3 of [2], Apostol studies operators of the form $A+B$, which the resolvent of A has polar growth of order n near J and $B \in C_{p}(1 \leqq p<\infty)$.

Remark. In the above theorem if $\sigma(T)$ is a single point, then T has a proper closed invariant subspace. In fact, since the operator T may be translated, we may assume without loss of generality that $\sigma(T)=\{0\}$, from Lemma 2.3 of [5] it follows that the Hilbert space admits a proper closed invariant subspace under T, using Aronszajn-Smith theorem [1].

We shall use the following known result.

Lemma 3.2. (see [4, §5 of Chap. I]) Let T be as above (in the theorem). Then any point λ with $\lambda \notin \sigma(A)(\subset J)$ is either $\lambda \in \rho(T)$ or an eigenvalue with finite multiplicity of T.

Lemma 3.3. If T has an eigenvalue with finite multiplicity, then \mathfrak{G} admits a proper closed subspace which is hyperinvariant under T.

Proof. Let λ_{0} be an eigenvalue with n multiplicity and $S T=T S$ $(S \in \mathfrak{B}(\mathfrak{S}))$. Then the eigensubspace of T corresponding to λ_{0} is an n dimensional subspace invariant under S. In fact, since

$$
\left(T-\lambda_{0} I\right) S\left\{\left(T-\lambda_{0} I\right)^{-1}(0)\right\}=S\left(T-\lambda_{0} I\right)\left\{\left(T-\lambda_{0} I\right)^{-1}(0)\right\}=S(0)=\{0\}
$$

Therefore we have

$$
S\left\{\left(T-\lambda_{0} I\right)^{-1}(0)\right\} \subset\left(T-\lambda_{0} I\right)^{-1}(0)
$$

The proof of Lemma 3.3 is now completed.
The assertion in Theorem follows from Lemma 3.3 and an argument in $\S 2$ in each case that one of the following condition is satisfied:

$$
\text { (i) } \sigma(T)-\sigma(A) \neq \varnothing \text {; } \quad \text { (ii) } \sigma(T) \text { is disconnected . }
$$

Therefore we have only to show that there can exist no operator $T=$ $A+B$, where A is normal such that $\sigma(A) \subset J, B \in C_{\omega}$ and $\sigma(T)(\subset \sigma(A))$ is a connected subarc of J and $\mathscr{S C}^{2}$ admits no proper closed hyperinvariant subspace under T.

In the sequel, we shall show a growth condition of the resolvent of T near its spectrum $\sigma(T)$. If S has finite dimensional range, $S=P S$, where P is the orthogonal projection on the range of S. Thus $S^{*}=S^{*} P$, so that S^{*} also has finite dimensional range. Let \mathscr{S}_{0} be a finite dimensional space including both the range of S and the range of S^{*}. Then plainly, \mathfrak{E}_{0} is invariant under S and S^{*}, and since $\left(S \mathfrak{F}_{0}^{\perp}, x\right)=\left(\mathfrak{S}_{0}^{\perp}, S^{*} x\right)=0$ for all $x \in \mathscr{S}_{2}$, we have $S \mathfrak{S}_{0}^{+}=\{0\}$ and similarly $S^{*} \mathfrak{S}_{0}^{\perp}=\{0\}$. We denote by $\Phi=\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}\right\}$ an orthonormal basis of \mathscr{S}_{0} and define an $n \times n$ matrix $S_{(n)}=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ by the following relation

$$
S \varphi_{j}=\sum_{i=1}^{n} a_{i j} \varphi_{i} \quad(j=1,2, \cdots, n)
$$

Thus $S_{(n)}$ is the matrix of the operator $S \mid \mathfrak{F}_{0}(=$ the restriction of S to \mathfrak{S}_{0}) with respect to the basis Φ.

We define

$$
D_{1}(S)=\operatorname{det}\left(I_{(n)}-S_{(n)}\right)
$$

the determinant of $I_{(n)}-S_{(n)}$, where $I_{(n)}$ is the $n \times n$ identity matrix.

Now, we denote by $K=\left(k_{i j}\right)_{1 \leq i, j \leq n}$ the cofactor matrix of $I_{(n)}-S_{(n)}$ i.e., $k_{i j}$ is the (j, i) cofactor of $I_{(n)}-S_{(n)}$. We have

$$
\left(I_{(n)}-S_{(n)}\right) K=K\left(I_{(n)}-S_{(n)}\right)=D_{1}(S) I_{(n)}
$$

We define an $n \times n$ matrix $\left(h_{i j}\right)_{1 \leq i, j \leq n}=S_{(n)} K$ and an operator H on \mathscr{E} such that

$$
H x=\sum_{j=1}^{n} \sum_{i=1}^{n} h_{i j}\left(x, \varphi_{j}\right) \varphi_{i} \quad \text { for } \quad x \in \mathscr{S} .
$$

Then we have $H \mathfrak{S}_{0} \subset \mathfrak{S}_{0}$ and $H \mathfrak{S}_{0}^{\perp}=\{0\}$. Therefore the restriction $H \mid \mathfrak{S}_{0}$ of H to \mathfrak{S}_{0} is the operator whose matrix representation with respect to the basis Φ is the matrix $\left(h_{i j}\right)$. For operators $\left(D_{1}(S) I+H\right)(I-S)$ and $(I-S) \times$ $\left(D_{1}(S) I+H\right)$, the subspaces \mathfrak{S}_{0} and \mathfrak{S}_{0}^{\perp} are invariant and it follows that by the above relations

$$
\left(D_{1}(S) I+H\right)(I-S) x=(I-S)\left(D_{1}(S) I+H\right) x=D_{1}(S) x
$$

for any $x \in \mathfrak{S}_{0}{ }_{0}^{1}$. Moreover, since

$$
D_{1}(S) I_{(n)}+S_{(n)} K=\left(I_{(n)}-S_{(n)}\right) K+S_{(n)} K=K,
$$

we have the matrix relations

$$
\begin{aligned}
& \left(D_{1}(S) I_{(n)}+S_{(n)} K\right)\left(I_{(n)}-S_{(n)}\right) \\
& \quad=\left(I_{(n)}-S_{(n)}\right)\left(D_{1}(S) I_{(n)}+S_{(n)} K\right)=D_{1}(S) I_{(n)},
\end{aligned}
$$

i.e., by restriction each operator to \mathfrak{S}_{0} we have the last above relations with respect to the basis Φ. Thus we have the following equations of operators on the subspace \mathfrak{S}_{0},

$$
\begin{aligned}
& \left(D_{1}(S) I\left|\mathfrak{S}_{0}+H\right| \mathfrak{S}_{0}\right)\left(I\left|\mathfrak{S}_{0}-S\right| \mathfrak{S}_{0}\right) \\
& \quad=\left(I\left|\mathfrak{S}_{0}-S\right| \mathfrak{S}_{0}\right)\left(D_{1}(S) I\left|\mathfrak{S}_{0}+H\right| \mathfrak{S}_{0}\right)=D_{1}(S) I \mid \mathfrak{S}_{0}
\end{aligned}
$$

therefore we obtain the operator relations on $\mathscr{S}_{\text {, }}$,

$$
\left(D_{1}(S) I+H\right)(I-S)=(I-S)\left(D_{1}(S) I+H\right)=D_{1}(S) I
$$

So that $(I-S)^{-1}$ exists, when $D_{1}(S) \neq 0$, i.e., $1 \notin \sigma(S)$,

$$
(I-S)^{-1}=I+D_{1}(S)^{-1} H
$$

Now, we define

$$
D_{2}(S)=D_{1}(S)\left((I-S)^{-1} x, y\right)
$$

for unit vectors x, y in \mathscr{S}.
Lemma 3.4. Let S be a finite dimensional operator, $1 \notin \sigma(S)$, and let $D_{1}(S)$ and $D_{2}(S)$ be as above. Then we have the followings,

$$
\log \left|D_{1}(S)\right| \leqq \sum_{j=1}^{n} \log \left(1+\mu_{j}(S)\right)
$$

$$
\log \left|D_{2}(S)\right| \leqq \sum_{j=1}^{n} \log \left(1+\mu_{j}(S)\right)+3 \log \left(3+\mu_{1}(S)\right)
$$

Proof. To prove the second assertion, it is sufficient to establish the corresponding inequality for the operator obtained by restricting $I+$ $D_{1}(S)^{-1} H$ to the subspace \mathscr{S}_{0}. In fact, since $H \mathscr{S}_{0}^{\perp}=\{0\}$, the restriction $(I-S)^{-1}$ to \mathfrak{S}_{0}^{\perp} is $I \mid \mathfrak{S}_{0}^{\perp}$ and the second assertion follows from the first assertion. Now, the matrix representation of $\left(I+D_{1}(S)^{-1} H\right) \mid \mathscr{S}_{0}$ with respect to the basis Φ of \mathscr{S}_{0} is $I_{(n)}+D_{1}(S)^{-1} S_{(n)} K$ and we have

$$
\left(I+D_{1}(S)^{-1} H\right) \varphi_{j}=D_{1}(S)^{-1}\left(D_{1}(S) I+H\right) \varphi_{j}=D_{1}(S)^{-1} \sum_{i=1}^{n} k_{i j} \varphi_{i}
$$

$(j=1,2, \cdots, n)$. Thus we have

$$
\left(\left(D_{1}(S) I+H\right) \varphi_{j}, \varphi_{i}\right)=k_{i j}
$$

Given any unit vectors x, y in \mathscr{K}_{0}, we may put $x=x_{1} \varphi_{1}+\cdots+x_{n} \varphi_{n}$ and $y=y_{1} \varphi_{1}+\cdots+y_{n} \varphi_{n}$, where $\sum_{i=1}^{n}\left|x_{i}\right|^{2}=\sum_{i=1}^{n}\left|y_{i}\right|^{2}=1$. Then

$$
\begin{aligned}
D_{1}(S) & \left((I-S)^{-1} x, y\right)=\left(\left(D_{1}(S) I+H\right) x, y\right) \\
& =\sum_{i, j=1}^{n} k_{i j} x_{j} \bar{y}_{i}=-\operatorname{det}\left[\begin{array}{lll}
0 & \bar{y}_{1} & \bar{y}_{2} \cdots \bar{y}_{n} \\
x_{1} & \\
x_{2} & I_{(n)}-S_{(n)} \\
\vdots & \\
x_{n} &
\end{array}\right] .
\end{aligned}
$$

On the other hand, since we have the relation (by Lemma 16 of Chap. XI. 9 of [3]),

$$
\log \left|\operatorname{det}\left[\begin{array}{lll}
0 & \bar{y}_{1} & \bar{y}_{2} \cdots \bar{y}_{n} \\
x_{1} & & \\
x_{2} & I_{(n)}-S_{(n)} \\
\vdots &
\end{array}\right]\right|=\sum_{j=1}^{n} \log \left|1-\lambda_{j}\right| \leqq \sum_{j=1}^{n} \log \left(1+\mu_{j}\right)
$$

with the eigenvalues $\left\{\lambda_{j}\right\}$ (respectively, $\left\{\mu_{j}\right\}$) of

$$
S_{0}=\left[\begin{array}{lll}
1 & \bar{y}_{1} & \bar{y}_{2} \cdots \\
x_{1} & & \bar{y}_{n} \\
x_{2} & S_{(n)} \\
\vdots & & \\
x_{n} &
\end{array}\right]
$$

(respectively, $\left.\left(S_{0}{ }^{*} S_{0}\right)^{1 / 2}\right)$. If we put

$$
\begin{array}{ll}
S_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cdots & 0 \\
0 & & 0 \\
\vdots & & \\
0 & &
\end{array}\right], \quad S_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
x_{1} & & \\
x_{2} & 0 & \\
\vdots & & \\
x_{n} & &
\end{array}\right], \\
S_{3}=\left[\begin{array}{llll}
0 & \bar{y}_{1} & \bar{y}_{2} \cdots & \bar{y}_{n} \\
0 & & \\
0 & 0 \\
\vdots & &
\end{array}\right], \quad S_{4}=\left[\begin{array}{lll}
0 & 0 & 0 \cdots \\
0 & & \\
0 & S_{(n)} \\
\vdots & &
\end{array}\right],
\end{array}
$$

then $S_{0}=S_{1}+S_{2}+S_{3}+S_{4}$. By virtue of corollary 3 of Chap. XI. 9 of [3], for $\mu_{j}\left(S_{0}\right)$ we have the followings

$$
\begin{aligned}
& \mu_{1}\left(S_{0}\right) \leqq \mu_{1}\left(S_{1}\right)+\mu_{1}\left(S_{2}\right)+\mu_{1}\left(S_{3}\right)+\mu_{1}\left(S_{4}\right)=3+\mu_{1}(S), \\
& \mu_{2}\left(S_{0}\right) \leqq \mu_{1}\left(S_{1}\right)+\mu_{1}\left(S_{2}\right)+\mu_{2}\left(S_{3}\right)+\mu_{1}\left(S_{4}\right)=2+\mu_{1}(S), \\
& \mu_{3}\left(S_{0}\right) \leqq \mu_{1}\left(S_{1}\right)+\mu_{2}\left(S_{2}\right)+\mu_{2}\left(S_{3}\right)+\mu_{1}\left(S_{4}\right)=1+\mu_{1}(S), \\
& \mu_{4}\left(S_{0}\right) \leqq \mu_{2}\left(S_{1}\right)+\mu_{2}\left(S_{2}\right)+\mu_{2}\left(S_{3}\right)+\mu_{1}\left(S_{4}\right)=\mu_{1}(S), \\
& \mu_{j}\left(S_{0}\right) \leqq \mu_{j-3}(S), \\
& \mu_{n+1}\left(S_{0}\right) \leqq \mu_{n-2}(S),
\end{aligned}
$$

therefore we have

$$
\begin{aligned}
\sum_{j=1}^{n+1} \log \left(1+\mu_{j}\left(S_{0}\right)\right) & \leqq \sum_{j=1}^{n-2} \log \left(1+\mu_{j}(S)\right)+\log \left(4+\mu_{1}(S)\right)\left(3+\mu_{1}(S)\right)\left(2+\mu_{1}(S)\right) \\
& \leqq \sum_{j=1}^{n} \log \left(1+\mu_{j}(S)\right)+3 \log \left(3+\mu_{1}(S)\right)
\end{aligned}
$$

Thus the second assertion follows. The first assertion follows immediately, in fact

$$
\log \left|D_{1}(S)\right|=\sum_{j=1}^{n} \log \left|1-\lambda_{j}(S)\right| \leqq \sum_{j=1}^{n} \log \left(1+\mu_{j}(S)\right)
$$

This completes the proof of Lemma 3.4.
Now without loss of generality, we may assume that $\|B\| \leqq 1 / 2$. For any sufficiently small number $\delta>0$, let P be the projection to the spectral subspace of $\left(B^{*} B\right)^{1 / 2}$ relative to ($\delta, 1 / 2$] and $B_{1}=B P, B_{2}=B(I-P)$. Since A is normal, we have $\left\|(\lambda I-A)^{-1}\right\| \leqq\{d(\lambda, \sigma(A))\}^{-1}$. Thus by $\left\|B_{2}(\lambda I-A)^{-1}\right\| \leqq \delta / d(\lambda, \sigma(A))$,

$$
\begin{aligned}
\left\|\left(\lambda I-A-B_{2}\right)^{-1}\right\| & =\left\|(\lambda I-A)^{-1}\left\{I-B_{2}(\lambda I-A)^{-1}\right\}^{-1}\right\| \\
& \leqq\left\|(\lambda I-A)^{-1}\right\|\left\|\left\{I-B_{2}(\lambda I-A)^{-1}\right\}^{-1}\right\| \\
& \leqq\{d(\lambda, \sigma(A))-\delta\}^{-1} \\
& \leqq 1 / \delta,
\end{aligned}
$$

for λ with $d(\lambda, \sigma(A)) \geqq 2 \delta$. We have

$$
\begin{aligned}
& \log \left\|(\lambda I-T)^{-1}\right\| \\
& \quad \leqq \log \left\|\left(\lambda I-A-B_{2}\right)^{-1}\right\|+\log \left\|\left\{I-B_{1}\left(\lambda I-A-B_{2}\right)^{-1}\right\}^{-1}\right\|
\end{aligned}
$$

Now, to obtain an estimate of the second term in the sequel, extending the method for estimating the resolvent of a compact operator in [10], we shall show a growth condition of the resolvent of T near its spectrum $\sigma(T)(\subset \sigma(A))$. Let $D_{k}(\lambda)=D_{k}\left(B_{1}\left(\lambda I-A-B_{2}\right)^{-1}\right)$, for $k=1$, 2 . Let $z=$ $\tau(\lambda)$ be the conformal mapping of the domain $\{\lambda ; d(\lambda, \sigma(A)) \geqq 2 \delta\}$ onto the disc of radius r with center at the origin and $\tau(\infty)=0$. We put $n(t)=$ $n\left(t, B_{1}\left(\tau^{-1}(z) I-A-B_{2}\right)^{-1}\right)$, by Jensen's formula [6, Theorem 5, p. 14]

$$
\begin{aligned}
\int_{0}^{r} \frac{n(t)}{t} d t= & \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|D_{1}\left(\tau^{-1}\left(r e^{i \theta}\right)\right)\right| d \theta-\log \left|D_{1}\left(\tau^{-1}(0)\right)\right| \\
= & -\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{-}\left|D_{1}\left(\tau^{-1}\left(r e^{i \theta}\right)\right)\right| d \theta \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|D_{1}\left(\tau^{-1}\left(r e^{i \theta}\right)\right)\right| d \theta
\end{aligned}
$$

Thus we have for any unit vectors x, y in \mathscr{S},

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\left(\left\{I-B_{1}\left(\tau^{-1}\left(r e^{i \theta}\right) I-A-B_{2}\right)^{-1}\right\}^{-1} x, y\right)\right| d \theta+\int_{0}^{r} \frac{n(t)}{t} d t \\
& \quad=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{D_{2}\left(\tau^{-1}\left(r e^{i \theta}\right)\right)}{D_{1}\left(\tau^{-1}\left(r e^{i \theta}\right)\right)}\right| d \theta+\int_{0}^{r} \frac{n(t)}{t} d t \\
& \quad \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\log ^{+}\left|D_{2}\left(\tau^{-1}\left(r e^{i \theta}\right)\right)\right|+\log ^{-}\left|D_{1}\left(\tau^{-1}\left(r e^{i \theta}\right)\right)\right|\right] d \theta \\
& \quad+\int_{0}^{r} \frac{n(t)}{t} d t \\
& \quad \leqq \frac{1}{2 \pi}\left[\int_{0}^{2 \pi} \log ^{+}\left|D_{2}\left(\tau^{-1}\left(r e^{i \theta}\right)\right)\right| d \theta+\int_{0}^{2 \pi} \log ^{+}\left|D_{1}\left(\tau^{-1}\left(r e^{i \theta}\right)\right)\right| d \theta\right] \\
& \leqq \\
& \quad \sum_{j} \log \left\{1+\mu_{j}\left(B_{1}\left(\lambda_{1} I-A-B_{2}\right)^{-1}\right)\right\} \\
& \quad+\sum_{j} \log \left\{1+\mu_{j}\left(B_{1}\left(\lambda_{2} I-A-B_{2}\right)^{-1}\right)\right\} \\
& \quad+3 \log (3+1 / 2 \delta)
\end{aligned}
$$

where $\lambda_{1}, \lambda_{2} \in\{\lambda: d(\lambda, \sigma(A))=2 \delta\}$, since the inequality $1+t \leqq e^{t}$ for a real number t, it follows

$$
\begin{aligned}
& \leqq \sum_{i=1}^{2}\left\|B_{1}\left(\lambda_{i} I-A-B_{2}\right)^{-1}\right\|_{1}+3 \log (3+1 / 2 \delta) \\
& \leqq(2 / \delta)\left\|B_{1}\right\|_{1}+3 \log (3+1 / 2 \delta)
\end{aligned}
$$

Thus we have, for any unit vectors x, y in \mathscr{S} and for λ with $d(\lambda, \sigma(A)) \geqq 2 \delta$,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\left(\left\{I-B_{1}\left(\tau^{-1}\left(r e^{i \theta}\right) I-A-B_{2}\right)^{-1}\right\}^{-1} x, y\right)\right| d \theta \\
& \quad \leqq(2 / \delta)\left\|B_{1}\right\|_{1}+3 \log (3+1 / 2 \delta)
\end{aligned}
$$

On the other hand by the Poisson-Jensen formula [12, Theorem 1.1, p. 1] we have

$$
\begin{aligned}
\log \mid & \left.\left(\left\{I-B_{1}\left(\tau^{-1}\left(\rho e^{i \varphi}\right) I-A-B_{2}\right)^{-1}\right\}^{-1} x, y\right)\left|-\sum_{k} \log \right| \frac{r\left(z-z_{k}\right)}{r^{2}-\bar{z}_{k} z} \right\rvert\, \\
= & \left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \right\rvert\,\left(\left\{I-B_{1}\left(\tau^{-1}\left(r e^{i \theta}\right) I-A-B_{2}\right)^{-1} x, y\right) \mid\right. \\
& \times \frac{r^{2}-\rho^{2}}{r^{2}-2 r \rho \cos (\theta-\varphi)+\rho^{2}} d \theta
\end{aligned}
$$

where $z=\rho e^{i \varphi}, 0 \leqq \rho<r$ and $\left\{z_{k}\right\}$ are zeros of the function

$$
\left(\left\{I-B_{1}\left(\tau^{-1}(z) I-A-B_{2}\right)^{-1}\right\}^{-1} x, y\right)
$$

in $|z|<r$. Since $0<\left|r\left(z-z_{k}\right) /\left(r^{2}-\bar{z}_{k} z\right)\right|<1$ and

$$
\frac{r-\rho}{r+\rho} \leqq \frac{r^{2}-\rho^{2}}{r^{2}-2 r \rho \cos (\theta-\varphi)+\rho^{2}} \leqq \frac{r+\rho}{r-\rho}
$$

we have

$$
\begin{aligned}
& \log \mid\left(\left\{I-B_{1}\left(\tau^{-1}\left(\rho e^{i \varphi}\right) I-A-B_{2}\right)^{-1}\right\}^{-1} x, y\right) \mid \\
& \leqq \frac{r+\rho}{r-\rho} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\left(\left\{I-B_{1}\left(\tau^{-1}\left(r e^{i \theta}\right) I-A-B_{2}\right)^{-1}\right\}^{-1} x, y\right)\right| d \theta \\
& \quad \leqq \frac{r+\rho}{r-\rho}\left\{(2 / \delta)\left\|B_{1}\right\|_{1}+3 \log (3+1 / 2 \delta)\right\}
\end{aligned}
$$

Since τ is a conformal mapping, therefore we have

$$
\begin{aligned}
& \log \left\|\left\{I-B_{1}\left(\lambda I-A-B_{2}\right)^{-1}\right\}^{-1}\right\| \\
& \quad \leqq O(1 / \delta)\left\{(2 / \delta)\left\|B_{1}\right\|_{1}+3 \log (3+1 / 2 \delta)\right\}
\end{aligned}
$$

for λ with $d(\lambda, \sigma(A)) \geqq 3 \delta$. Therefore from the already proved inequalities in above, we have
$\log \left\|(\lambda I-T)^{-1}\right\| \leqq \log (1 / \delta)+O(1 / \delta) \cdot\left\{(2 / \delta)\left\|B_{1}\right\|_{1}+3 \log (3+1 / 2 \delta)\right\}$, for λ with $d(\lambda, \sigma(A)) \geqq 3 \delta$.
We put $\gamma(t)=\gamma(t, B)$. Using this function we can write
$\log \left\|(\lambda I-T)^{-1}\right\| \leqq \log (1 / \delta)+O(1 / \delta) \cdot\{(2 / \delta) \gamma(1 / \delta)+3 \log (3+1 / 2 \delta)\}$, for λ with $d(\lambda, \sigma(A)) \geqq 3 \delta$. Then we have for sufficiently small $\delta>0$,

$$
\begin{aligned}
& \sup _{d(\lambda, \sigma(A) \geq 3 \delta} \log \log \left\|(\lambda I-T)^{-1}\right\| \\
& \leqq \\
& \quad \log \log (1 / \delta)+O \log (1 / \delta)+\log (2 / \delta)+\log \gamma(1 / \delta) \\
& \quad+\log \{3 \log (3+1 / 2 \delta)\}
\end{aligned}
$$

Here, $\log \log (1 / \delta)$ and $\log (1 / \delta)$ are integrable on some interval $(0, \varepsilon]$, let us prove that $\log \gamma(1 / \delta)$ is integrable on $(0, \varepsilon]$. This follows from the assumption, $B \in C_{\omega}$, in fact

$$
\begin{aligned}
\int_{0}^{\varepsilon} \log \gamma(1 / \delta) d \delta & =\int_{1 / \varepsilon}^{\infty} \frac{\log \gamma(t)}{t^{2}} d t \\
& =\int_{1 / \varepsilon}^{\infty} \frac{d \gamma(t)}{\gamma(t) t}-\varepsilon \log \gamma(1 / \varepsilon)+\lim _{t \rightarrow \infty} \frac{\log \gamma(t)}{t},
\end{aligned}
$$

while

$$
\int_{1 / \varepsilon}^{\infty} \frac{d \gamma(t)}{\gamma(t) t} \leqq \sum_{n} \mu_{n}(B) / n
$$

with $\varepsilon \mu_{1}(B)=1$, since $\log n<1+1 / 2+1 / 3+\cdots+1 / n$, we have

$$
\frac{\log \gamma(t)}{t} \leqq \sum^{\prime} \mu_{k}(B) / k \leqq \sum_{n} \mu_{n}(B) / n
$$

where Σ^{\prime} denotes the summation over k such that $\mu_{k}(B) \geqq 1 / t$. Therefore we can obtain the following growth condition of the resolvent of T near its spectrum

$$
\int_{0}^{\varepsilon} \log \log M(\delta) d \delta<\infty
$$

where $M(\delta)=\sup _{d(\lambda, \sigma(A)) \geq 3 \delta}\left\|(\lambda I-T)^{-1}\right\|$.
From the above growth condition of the resolvent of T near its spectrum, by virtue of Theorem 2.2 (in section 2) Theorem in this section was obtained.

Corollary 3.5. Let $T \in \mathfrak{B}(\mathfrak{S})$. If $T-T^{*} \in C_{\omega}(i . e .$, the imaginary part of T belongs to C_{ω}) and $\sigma(T)$ is not reduced to a single point, then T has a proper closed hyperinvariant subspace in 5 .

References

[1] N. Aronszajn and K. T. Smith, Invariant subspace of completely continuous operators, Ann. of Math., 60 (1954), 345-350.
[2] C. Apostol, On the growth of resolvent, perturbation and invariant subspaces, Rev. Roum. Math. Pures et Appl., 16 (1971), 161-172.
[3] N. Dunford and J. T. Schwartz, Linear operators, Part I, 1958; Part II, 1963, Interscience, New York.
[4] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non-selfadjoint operators, Transl. Math. Mono., Vol. 18, Amer. Math. Soc., 1969.
[5] K. Kitano, Invariant subspaces of some non-selfadjoint operators, Tôhoku Math. J., 20 (1968), 313-322.
[6] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Mono., Vol. 5, Amer. Math. Soc., 1964.
[7] N. Levinson, Gap and density theorem, Amer. Math. Soc. Colloq. Publ., Vol. 26, 1940.
[8] Ju. I. Ljubič and V. I. Macaev, On operators with a separable spectrum, Mat. Sb., 56 (98) (1962), 433-468; Amer. Math. Soc. Transl., (2), 47 (1965), 89-129.
[9] V. I. Macaev, A class of completely continuous operators, Dokl. Akad. Nauk SSSR, 139 (1961), 548-551.
[10] V. I. Macaev, A method for the estimation of the resolvents of non-selfadjoint operators, Dokl. Akad. Nauk SSSR, 154 (1964), 1034-1037.
[11] F. Riesz and B. Sz.-Nagy, Functional analysis, Fredrick Unger, New York, 1955.
[12] W. K. Hayman, Meromorphic functions, Oxford Math. Mono., Oxford Univ., London, 1964.

Department of Mathematics
Yamagata University, Yamagata, Japan

