DERIVED C*-ALGEBRAS OF PRIMITIVE C*-ALGEBRAS

Dedicated to Professor Masanori Fukamiya on his 60th birthday

Shôichirô Sakai*)

(Received July 18, 1972)

1. Introduction. It has been known that every derivation of a W^* -algebra is inner (as a corollary, every derivation of a C^* -algebra is weakly inner), and every derivation of a simple C^* -algebra with identity is inner (cf. [6]). Moreover it has been shown that for a simple C^* -algebra \mathfrak{A} with or without identity, there exists a unique primitive C^* -algebra $\mathfrak{D}(\mathfrak{A})$ with identity (called the derived C^* -algebra of \mathfrak{A}) such that (1) \mathfrak{A} is an ideal of $\mathfrak{D}(\mathfrak{A})$; (2) for every derivation δ of \mathfrak{A} , there is a unique (modulo scalar multiples of identity) element d in $\mathfrak{D}(\mathfrak{A})$ such that $\delta(a) = [d, a]$ $(a \in \mathfrak{A})$; (3) every derivation of $\mathfrak{D}(\mathfrak{A})$ is inner ([7]).

These results make the study of derivations in general C^* -algebras, more or less, possible to reduce to the study of derivations in simple C^* -algebras if the C^* -algebras have only maximal ideals as primitive ideals.

However there are many C^* -algebras which do not have any maximal ideal ([3]). For the study of derivations in these C^* -algebras, it is desirable to analyse derivations in primitive C^* -algebras.

In the present paper, we shall generalize the notion of derived C^* -algebras to primitive C^* -algebras to make possible to reduce the study of derivations in general C^* -algebras to the study of derivations in primitive C^* -algebras.

We shall explain briefly the main result in this paper. Let \mathfrak{A} be a primitive C*-algebras (more generally, a factorial C*-algebra) and let $D(\mathfrak{A})$ be the Lie algebra of all derivations on \mathfrak{A} . For an arbitrary faithful factorial *-representation $\{\pi, \mathfrak{X}\}$ of \mathfrak{A} on a Hilbert space \mathfrak{X} , it is known that a unique (modulo scalar multiples of identity) element d_s in the weak closure $\overline{\pi(\mathfrak{A})}$ of $\pi(\mathfrak{A})$ such that $\pi(\delta(a)) = [d_s, \pi(a)]$ ($a \in \mathfrak{A}$). Now we shall identify \mathfrak{A} with $\pi(\mathfrak{A})$, and let $\mathfrak{D}_{\pi}(\mathfrak{A})$ be the C*-subalgebra of $B(\mathfrak{X})$ generated by $\{d_s | \delta \in D(\mathfrak{A})\}$ and 1_s . Then it is easily imagined that the C*-algebra $\mathfrak{D}_{\pi}(\mathfrak{A})$ is closely related to the structure of the Lie algebra $D(\mathfrak{A})$ and so we may apply the C*-algebra theory to the study of $D(\mathfrak{A})$. However

^{*)} This research is supported by National Science Foundation.

 $\mathfrak{D}_{\pi}(\mathfrak{A})$ apparently depends on the choice of the representation $\{\pi, \mathfrak{X}\}$. This is troublesome, since a factorial C^* -algebra has generally uncountably many inequivalent faithful factorial *-representations.

The main result of this paper is that the C^* -algebra $\mathfrak{D}_{\pi}(\mathfrak{A})$ does not depend on the special choice of the $\{\pi, \mathfrak{X}\}$ —namely, for an arbitrary faithful factorial *-representation, we get always the same C^* -algebra $\mathfrak{D}(\mathfrak{A})$; therefore we can associate a unique C^* -algebra $\mathfrak{D}(\mathfrak{A})$ (called the derived C^* -algebra of \mathfrak{A}) which is closely related to the structures of \mathfrak{A} and $D(\mathfrak{A})$ to each factorial C^* -algebra \mathfrak{A} .

2. Derived C^* -algebras. We shall begin with a definition.

DEFINITION 1. A C*-algebra \mathfrak{A} is called factorial if \mathfrak{A} has a faithful factorial *-representation $\{\pi, \mathfrak{X}\}$ on a Hilbert space \mathfrak{X} —i.e. π is faithful and $\overline{\pi(\mathfrak{A})}$ is a factor, where $\overline{\pi(\mathfrak{A})}$ is the weak closure of $\pi(\mathfrak{A})$.

REMARK 1. Every primitive C^* -algebra is clearly factorial, and it is known that every separable factorial C^* -algebra is primitive (cf. [2]).

Let \mathfrak{A} be a factorial C^* -algebra and let $\{\pi, \mathfrak{X}\}$ be a faithful factorial *-representation of \mathfrak{A} , and let $D(\mathfrak{A})$ be the Lie algebra of all derivations on \mathfrak{A} . For each $\delta \in D(\mathfrak{A})$, there exists an element d_{δ} in $\overline{\pi(\mathfrak{A})}$ such that $\pi(\delta(a)) = [d_{\delta}, \pi(a)]$ $(a \in \mathfrak{A})$. Suppose that d'_{δ} is another element in $\overline{\pi(\mathfrak{A})}$ such that $\pi(\delta(a)) = [d'_{\delta}, \pi(a)]$ $(a \in \mathfrak{A})$; then $[d_{\delta} - d'_{\delta}, \pi(\mathfrak{A})] = 0$; hence $d_{\delta} - d'_{\delta} =$ $\lambda \mathbf{1}_{\mathfrak{x}}$, where λ is a complex number and $\mathbf{1}_{\mathfrak{x}}$ is the identity operator on \mathfrak{X} . Now let $\mathfrak{D}_{\pi}(\mathfrak{A})$ be the C*-subalgebra of $B(\mathfrak{X})$ generated by $\{d_{\delta} | \delta \in D(\mathfrak{A})\}$ and $\mathbf{1}_{\mathfrak{x}}$, then by the above consideration, $\mathfrak{D}_{\pi}(\mathfrak{A})$ does not depend on the choices of d_{δ} 's. However it apparently depends on the representation $\{\pi, \mathfrak{X}\}$.

In the following considerations, we shall show that the C^{*}-algebra $\mathfrak{D}_{\pi}(\mathfrak{A})$ does not depend on the representation $\{\pi, \mathfrak{X}\}$ either.

Now let δ be a skew-symmetric derivation on \mathfrak{A} —i.e. $\delta^* = -\delta$, where $\delta^*(a) = \delta(a^*)^*$ $(a \in \mathfrak{A})$. Then there exists a positive element d_s in the weak closure $\overline{\pi(\mathfrak{A})}$ such that $||d_s|| = ||\delta||$, where $||\delta||$ is the norm of the derivation δ ([5]). (More generally it is known that for each general derivation δ on \mathfrak{A} , there exists an element d_s in $\overline{\pi(\mathfrak{A})}$ such that $\pi(\delta(a)) = [d_s, \pi(a)]$ for $a \in \mathfrak{A}$ and $(1/2) ||\delta|| = ||d_s||$ ([4], [5], [8], [10])).

It is clear that such a positive element is unique, since $||d_{\delta}+\lambda \mathbf{1}_{x}|| \ge ||d_{\delta}||$ if λ is not zero and $d_{\delta}+\lambda \mathbf{1}_{x} \ge 0$.

More strongly we have

LEMMA 1 (cf. [1]). If h is a positive element in $\overline{\pi(\mathfrak{A})}$ such that $\pi(\delta(a)) = [h, \pi(a)] \ (a \in \mathfrak{A})$ and $||h|| \leq ||\delta||$, then $||h|| = ||\delta||$.

308

PROOF. Suppose that $||h|| < ||\delta||$ and put $k = h - (||h||/2)\mathbf{1}_x$; then $||\pi(\delta(a))|| = ||[k, \pi(a)]|| \le ||k\pi(a)|| + ||\pi(a)k||$. Since π is faithful, $||\delta|| \le ||k|| + ||k|| = 2||h - (||h||/2)\mathbf{1}_x|| < 2||h||/2 = ||h|| < ||\delta||$, a contradiction. This completes the proof.

Now we shall define

DEFINITION 2. A C*-algebra \mathfrak{B} with identity is called a quasi-derived C*-algebra of a factorial C*-algebra \mathfrak{A} if it satisfies the following conditions: (1) \mathfrak{A} is a C*-subalgebra of \mathfrak{B} ; (2) for each skew-symmetric derivation δ of \mathfrak{A} , there exists a positive element d_{δ} in \mathfrak{B} such that $\delta(a) = [d_{\delta}, a]$ $(a \in \mathfrak{A})$ and $||\delta|| \geq ||d_{\delta}||$; (3) \mathfrak{B} is generated by \mathfrak{A} , $\{d_{\delta}|$ skew-symmetric $\delta \in D(\mathfrak{A})$ and the identity 1.

DEFINITION 3. A quasi-derived C^* -algebra \mathfrak{B} of \mathfrak{A} is called a derived C^* -algebra of \mathfrak{A} , if there is no non-zero closed ideal J of \mathfrak{B} such that $\mathfrak{A} \cap J = (0)$.

Then we shall show

THEOREM 1. Let \mathfrak{B} be a quasi-derived C*-algebra of a factorial C*algebra \mathfrak{A} and let $\{\pi, \mathfrak{X}\}$ be a faithful factorial *-representation of \mathfrak{A} on a Hilbert space \mathfrak{X} . Then $\{\pi, \mathfrak{X}\}$ can be uniquely extended to a factorial *-representation $\{\tilde{\pi}, \mathfrak{X}\}$ of \mathfrak{B} on the Hilbert space \mathfrak{X} such that $\tilde{\pi}(\mathfrak{B}) \subseteq \overline{\pi(\mathfrak{A})}$.

Moreover if \mathfrak{B} is a derived C*-algebra of \mathfrak{A} , then the extended representation is again faithful.

PROOF. Since any factorial *-representation is a sum of cyclic factorial *-representations, it suffices to assume that the $\{\pi, \mathfrak{X}\}$ is cyclic and so $\{\pi, \mathfrak{X}\}$ is equivalent to a *-representation $\{\pi_{\varphi}, \mathfrak{X}_{\varphi}\}$ of \mathfrak{A} on a Hilbert space \mathfrak{X}_{φ} constructed via a state φ on \mathfrak{A} . Let $\widetilde{\varphi}$ be an extended state of \mathfrak{B} such that $\widetilde{\varphi} = \varphi$ on \mathfrak{A} . Let $\{\pi_{\widetilde{\varphi}}, \mathfrak{X}_{\widetilde{\varphi}}\}$ be the *-representation of \mathfrak{B} on a Hilbert space $\mathfrak{X}_{\widetilde{\varphi}}$ constructed via $\widetilde{\varphi}$. Let E' be the orthogonal projection of $\mathfrak{X}_{\widetilde{\varphi}}$ onto the closed subspace $[\pi_{\widetilde{\varphi}}(\mathfrak{A})\mathbf{1}_{\widetilde{\varphi}}]$; then the *-representation $a \to \pi_{\widetilde{\varphi}}(a)E'(a \in \mathfrak{A})$ of \mathfrak{A} on $E'\mathfrak{X}_{\widetilde{\varphi}}$ is equivalent to $\{\pi_{\varphi}, \mathfrak{X}_{\varphi}\}$.

Let c(E') be the central support of E' in $\pi_{\tilde{\varphi}}(\mathfrak{A})'$, where $\pi_{\tilde{\varphi}}(\mathfrak{A})'$ is the commutant of $\pi_{\tilde{\varphi}}(\mathfrak{A})$ on $\mathfrak{X}_{\tilde{\varphi}}$.

Since $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}E'$ is *-isomorphic to $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}c(E')$, $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}c(E')$ is a factor. Moreover the *-representation $a \to \pi_{\widetilde{\varphi}}(a)c(E')$ $(a \in \mathfrak{A})$ is faithful, since $a \to \pi_{\widetilde{\varphi}}(a)E'$ $(a \in \mathfrak{A})$ is faithful. For each skew-symmetric $\delta \in D(\mathfrak{A})$, there exists a self-adjoint element k in $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$ such that $\pi_{\widetilde{\varphi}}(\delta(a)) = [k, \pi_{\widetilde{\varphi}}(a)]$ $(a \in \mathfrak{A})$. Hence $[k, \pi_{\widetilde{\varphi}}(a)] = [\pi_{\widetilde{\varphi}}(d_{\delta}), \pi_{\widetilde{\varphi}}(a)]$ for $a \in \mathfrak{A}$ and so $k - \pi_{\widetilde{\varphi}}(d_{\delta}) \in \pi_{\widetilde{\varphi}}(\mathfrak{A})'$. Since $\pi_{\widetilde{\varphi}}(\mathfrak{A})$ is generated by $\pi_{\widetilde{\varphi}}(\mathfrak{A}), \pi_{\widetilde{\varphi}}\{d_{\delta}\}$ skew-symmetric $\delta \in D(\mathfrak{A})$ } and $\mathfrak{l}_{\mathfrak{X}_{\widetilde{\varphi}}}$, the central element c(E') of $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$ belongs to the center of $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{B})}$. On the other hand, $1_{\tilde{\varphi}} \in E'\mathfrak{X}_{\tilde{\varphi}}$ and so $\pi_{\tilde{\varphi}}(\mathfrak{B})1_{\tilde{\varphi}} \subset c(E')\mathfrak{X}_{\tilde{\varphi}}$; hence $c(E') = 1\mathfrak{X}_{\tilde{\varphi}}$. Therefore the mapping $a \to \pi_{\tilde{\varphi}}(a)$ $(a \in \mathfrak{A})$ on \mathfrak{X}_{φ} is a faithful factorial *-representation of \mathfrak{A} , and so we can choose a positive element h in $\overline{\pi_{\tilde{\varphi}}(\mathfrak{A})}$ such that $\pi_{\tilde{\varphi}}(\delta(a)) = [h, \pi_{\tilde{\varphi}}(a)]$ $(a \in \mathfrak{A})$ and $||h|| = ||\delta||$.

Let C be the commutative C*-subalgebra of $B(\mathfrak{X}_{\widetilde{\varphi}})$ generated by $\pi_{\widetilde{\varphi}}(d_{\mathfrak{z}}) - h$ and $\mathfrak{l}_{\mathfrak{X}_{\widetilde{\varphi}}}$, and let R be the C*-subalgebra of $B(\mathfrak{X}_{\widetilde{\varphi}})$ generated by $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$ and C. Since $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$ is a factor, R can be canonically identified with the tensor product $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})} \otimes C$ ([9]).

Now suppose that $\pi_{\widetilde{\varphi}}(d_{\delta}) - h$ has a positive spectrum μ_1 and take a character χ_1 on C such that $\chi_1(\pi_{\widetilde{\varphi}}(d_{\delta}) - h) = \mu_1$. Also take a pure state φ_1 on $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$ such that $\varphi_1(h) = ||h||$. Then we have,

$$egin{aligned} ||\delta|| &\geq ||\pi_{\widetilde{arphi}}(d_{\delta})|| \geq |arphi_1 \bigotimes \chi_1(h + \pi_{\widetilde{arphi}}(d_{\delta}) - h)| \ &= arphi_1(h) + \chi_1(\pi_{\widetilde{arphi}}(d_{\delta}) - h) = ||h|| + \mu_1 > ||h|| = ||\delta|| \;, \end{aligned}$$

a contradiction.

Next suppose that $\pi_{\widetilde{\varphi}}(d_{\delta}) - h$ has a negative spectrum μ_2 and take a character χ_2 on C such that $\chi_2(\pi_{\widetilde{\varphi}}(d_{\delta}) - h) = \mu_2$. Now we shall show that h is not invertible in $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$. In fact, if h is invertible in $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$, then there exists a positive number λ such that $h \geq \lambda 1_{x_{\widetilde{\varphi}}}$; hence $h - \lambda 1_{x_{\widetilde{\varphi}}} \geq 0$ and $||h - \lambda 1_{x_{\widetilde{\varphi}}}|| < ||h|| = ||\delta||$. Since $[h, \pi_{\widetilde{\varphi}}(a)] = [h - \lambda 1_{x_{\widetilde{\varphi}}}, \pi_{\widetilde{\varphi}}(a)] = \pi_{\widetilde{\varphi}}(\delta(a))$ for $a \in \mathfrak{A}$, and since $\pi_{\widetilde{\varphi}}$ is faithful on \mathfrak{A} , by Lemma 1 $||h - \lambda 1_{x_{\widetilde{\varphi}}}|| = ||\delta||$, a contradiction. Hence h is not invertible in $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$. Take a pure state φ_2 on $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$ such that $\varphi_2(h) = 0$. Then,

$$arphi_2\otimes\chi_2(\pi_{\widetilde{arphi}}(d_{\scriptscriptstyle\delta}))=arphi_2(h)+\chi_2(\pi_{\widetilde{arphi}}(d_{\scriptscriptstyle\delta})-h)=\mu_2<0$$
 .

On the other hand, $\pi_{\widetilde{\varphi}}(d_{\delta}) \geq 0$ and $\varphi_2 \otimes \chi_2$ is a state on R, hence $\varphi_2 \otimes \chi_2(\pi_{\widetilde{\varphi}}(d_{\delta})) \geq 0$, a contradiction. Therefore, $\pi_{\widetilde{\varphi}}(d_{\delta}) - h = 0$, and so $\overline{\pi_{\widetilde{\varphi}}(\mathfrak{B})} = \overline{\pi_{\widetilde{\varphi}}(\mathfrak{A})}$. Hence $[\pi_{\widetilde{\varphi}}(\mathfrak{B})\mathbf{1}_{\widetilde{\varphi}}] = [\pi_{\widetilde{\varphi}}(\mathfrak{A})\mathbf{1}_{\widetilde{\varphi}}] = E'\mathfrak{X}_{\widetilde{\varphi}} = \mathfrak{X}_{\widetilde{\varphi}}$. This implies that the *-representation $\{\pi_{\widetilde{\varphi}}, \mathfrak{X}_{\widetilde{\varphi}}\}$ of \mathfrak{B} can be considered a *-representation $\{\pi_{\widetilde{\varphi}}, \mathfrak{X}_{\widetilde{\varphi}}\}$ of \mathfrak{B} on the Hilbert space \mathfrak{X}_{φ} such that $\widetilde{\pi}_{\varphi} = \pi_{\varphi}$ on \mathfrak{A} and $\widetilde{\pi}_{\varphi}(\mathfrak{B}) \subseteq \overline{\pi_{\varphi}(\mathfrak{A})}$.

Next we shall show the unicity of the extension. Let $\{\pi', \mathfrak{X}_{\varphi}\}$ be another *-representation of \mathfrak{B} on the Hilbert space \mathfrak{X}_{φ} such that $\pi' = \pi_{\varphi}$ on \mathfrak{A} and $\pi'(\mathfrak{B}) \subseteq \overline{\pi_{\varphi}(\mathfrak{A})}$. Then $||\pi'(d_{\delta})|| \leq ||\delta||$ and $\pi'(d_{\delta}) \geq 0$. Moreover $[\pi'(d_{\delta}), \pi_{\varphi}(a)] = \pi'(\delta(a)) = \pi_{\varphi}(\delta(a))$ $(a \in \mathfrak{A})$. Hence by the unicity of such an element, $\pi'(d_{\delta}) = \tilde{\pi}_{\varphi}(d_{\delta})$ for all skew-symmetric $\delta \in D(\mathfrak{A})$. Therefore we have $\pi' = \tilde{\pi}_{\varphi}$ on \mathfrak{B} —i.e. $\{\tilde{\pi}_{\varphi}, \mathfrak{X}_{\varphi}\}$ is unique.

Next suppose that \mathfrak{B} is a derived C^* -algebra of \mathfrak{A} . Put $J = \{b \mid \tilde{\pi}_{\varphi}(b) = 0, b \in \mathfrak{B}\}$; then J is a closed ideal of \mathfrak{B} . Since $\tilde{\pi}_{\varphi} = \pi_{\varphi}$ on $\mathfrak{A}, J \cap \mathfrak{A} = (0)$; hence J = (0). This completes the proof.

REMARK 2. Let I be a closed ideal of a quasi-derived C^* -algebra \mathfrak{B}

of \mathfrak{A} such that $\mathfrak{A} \cap I = (0)$; then the quotient C^* -algebra \mathfrak{B}/I can be considered again a quasi-derived C^* -algebra of \mathfrak{A} , since \mathfrak{A} can be identified with $\mathfrak{A} + I/I$. By the unicity of the extension in Theorem 1, $\tilde{\pi}(I) = 0$. Now put $I_0 = \{x | \tilde{\pi}(x) = 0, x \in \mathfrak{B}\}$; then $I_0 \cap \mathfrak{A} = (0)$. Therefore I_0 is the greatest closed ideal of \mathfrak{B} in all closed ideals I with $I \cap \mathfrak{A} = (0)$. Clearly \mathfrak{B}/I_0 is a derived C^* -algebra of the C^* -algebra \mathfrak{A} .

Hence we have the following result: Let \mathfrak{B} be a quasi-derived C^* -algebra of a factorial C^* -algebra \mathfrak{A} ; then there exists the greatest closed ideal I_0 of \mathfrak{B} in all closed ideals I with $I \cap \mathfrak{A} = (0)$, and the quotient C^* -algebra \mathfrak{B}/I_0 is a derived C^* -algebra of \mathfrak{A} .

THEOREM 2. Let \mathfrak{A} be a factorial C*-algebra and let φ be a factorial state on \mathfrak{A} such that the factorial *-representation $\{\pi_{\varphi}, \mathfrak{X}_{\varphi}\}$ of \mathfrak{A} is faithful, and let \mathfrak{B} be a quasi-derived C*-algebra of \mathfrak{A} . Then φ has a unique state extension $\tilde{\varphi}$ to \mathfrak{B} .

Moreover if \mathfrak{B} is a derived C*-algebra of \mathfrak{A} , then the extended state $\tilde{\varphi}$ satisfies again the condition that the representation $\{\pi_{\tilde{\varphi}}, \mathfrak{X}_{\tilde{\varphi}}\}$ of \mathfrak{B} is faithful.

PROOF. By the considerations in the proof of Theorem 1, we showed that for an arbitrary state $\tilde{\varphi}$ of \mathfrak{B} with $\tilde{\varphi} = \varphi$ on \mathfrak{A} , $\{\pi_{\tilde{\varphi}}, \mathfrak{X}_{\tilde{\varphi}}\} = \{\tilde{\pi}_{\varphi}, \mathfrak{X}_{\varphi}\}$ with $\tilde{\pi}_{\varphi} = \pi_{\varphi}$ on \mathfrak{A} and $\tilde{\pi}_{\varphi}(\mathfrak{B}) \subseteq \overline{\mathfrak{X}(\mathfrak{A})}$, and moreover $\{\tilde{\pi}_{\varphi}, \mathfrak{X}_{\varphi}\}$ is unique. Hence $\tilde{\varphi}$ must be unique. Moreover if \mathfrak{B} is a derived C^* -algebra of \mathfrak{A} , then $\{\tilde{\pi}_{\varphi}, \mathfrak{X}_{\varphi}\}$ is faithful. This completes the proof.

REMARK 3. From Theorem 2, we can conclude the results of the author concerning simple C^{*}-algebras ([6], [7]). In fact, suppose that \mathfrak{A} is a simple C^* -algebra and let I be the least closed ideal of a quasi-derived C^* -algebra \mathfrak{B} of \mathfrak{A} containing \mathfrak{A} . Let S be the set of all bounded selfadjoint linear functionals f on \mathfrak{B} such that $f(\mathfrak{A}) = 0$ and $||f|| \leq 1$. If $\mathfrak{A} \subsetneq I$, there is an extreme point g in S such that $g(I) \neq (0)$. Let $g = g_1 - g_2$ be the orthogonal decomposition of g with $g_1, g_2 \ge 0$, ||g|| = $||g_1|| + ||g_2||$, and let $\xi = g_1 + g_2$. Let $\{\pi_{\xi}, \mathfrak{X}_{\xi}\}$ be the *-representation of \mathfrak{B} constructed by ξ . Then the extremity of g implies that $\overline{\pi_{\xi}(\mathfrak{A})}$ is a factor if $\pi_{\varepsilon}(\mathfrak{A}) \neq (0)$ (cf. [6], [7]). Since \mathfrak{A} is simple, $\{\pi_{\varepsilon}, \mathfrak{X}_{\varepsilon}\}$ is faithful, factorial on \mathfrak{A} ; hence by Theorem 2, $g_1 \equiv g_2$ on \mathfrak{B} and so $g \equiv 0$ on \mathfrak{B} , a contradiction. Hence $\pi_{\xi}(\mathfrak{A}) = 0$ and so $\pi_{\xi}(I) = 0$. This implies g(I) = 0, a contradiction. Hence $\mathfrak{A} = I$. If \mathfrak{A} has an identity, then $\mathfrak{A} = \mathfrak{B}$, and if A has no identity, then A is an ideal of \mathfrak{B} . Moreover if \mathfrak{B} is a derived C^* -algebra of the simple C^* -algebra \mathfrak{A} in the sense of this paper, then \mathfrak{B} is primitive and so it coincides with the derived C*-algebra in [7].

Now we shall show a general method to construct quasi-derived C^* -

algebras and derived C*-algebras of \mathfrak{A} . Let \mathfrak{A} be a factorial C*-algebra, and let $\{\pi_1, \mathfrak{X}_1\}$ be an arbitrary faithful (not necessarily factorial) *representation of \mathfrak{A} on a Hilbert space \mathfrak{X}_1 . We shall identify \mathfrak{A} with $\pi_1(\mathfrak{A})$. Then for each skew-symmetric $\delta \in D(\mathfrak{A})$, there exists a positive element e_{δ} in $\overline{\pi_1(\mathfrak{A})}$ such that $\pi_1(\delta(a)) = [e_{\delta}, \pi_1(a)]$ $(a \in \mathfrak{A})$ and $||e_{\delta}|| \leq ||\delta|| ([5])$.

Let \mathfrak{B} be a C^* -subalgebra of $B(\mathfrak{X}_1)$ generated by $\pi_1(\mathfrak{A})$, $\{e_{\delta} | \text{skew-symmetric } \delta \in D(\mathfrak{A})\}$ and $\mathfrak{1}_{\mathfrak{X}_1}$. Then clearly \mathfrak{B} is a quasi-derived C^* -algebra of \mathfrak{A} . Moreover, by Remark 2, there exists the greatest closed ideal I_0 of \mathfrak{B} in all closed ideals I such that $I \cap \mathfrak{A} = (0)$.

Put $\mathfrak{D}_1(\mathfrak{A}) = \mathfrak{B}/I_0$. Since $\mathfrak{A} \cap I_0 = (0)$, we can identify \mathfrak{A} with the image in $\mathfrak{D}_1(\mathfrak{A})$ under the canonical mapping. Then we can easily see that $\mathfrak{D}_1(\mathfrak{A})$ is a derived C^* -algebra of \mathfrak{A} .

Now we shall show

THEOREM 3 (The unicity of the derived C*-algebra). Let \mathfrak{A} be a factorial C*-algebra; then there exists a unique derived C*-algebras $\mathfrak{D}(\mathfrak{A})$ of \mathfrak{A} in the following sense: Let $\mathfrak{D}_1(\mathfrak{A})$, $\mathfrak{D}_2(\mathfrak{A})$ be two derived C*-algebras of \mathfrak{A} ; then there exists a *-isomorphism Φ of $\mathfrak{D}_1(\mathfrak{A})$ onto $\mathfrak{D}_2(\mathfrak{A})$ such that (1) $\Phi(a) = a$ for $a \in \mathfrak{A}$; (2) $\Phi(d_{\delta,1}) = d_{\delta,2}$ for $\delta \in D(\mathfrak{A})$ with $d_{\delta,i} \geq 0$, $||d_{\delta,i}|| = ||\delta||$ (i = 1, 2), where $\delta(a) = [d_{\delta,1}, a]$ $(a \in \mathfrak{A})$ in $\mathfrak{D}_1(\mathfrak{A})$ and $\delta(a) = [d_{\delta,2}, a]$ $(a \in \mathfrak{A})$ in $\mathfrak{D}_2(\mathfrak{A})$.

Moreover, let $\{\pi, \mathfrak{X}\}$ be a faithful factorial *-representation of \mathfrak{A} on a Hilbert space \mathfrak{X} , and let \mathfrak{B} be the C*-subalgebra of $B(\mathfrak{X})$ generated by $\{d_s | \delta \in D(\mathfrak{A})\}$ and $\mathfrak{l}_{\mathfrak{X}}$; then \mathfrak{B} is the derived C*-algebra $\mathfrak{D}(\mathfrak{A})$ of \mathfrak{A} , when \mathfrak{A} is identified with the image $\pi(\mathfrak{A})$.

PROOF. We have shown already that there exists a derived C^* -algebra $\mathfrak{D}_1(\mathfrak{A})$ of \mathfrak{A} . Now let $\{\pi, \mathfrak{X}\}$ be a faithful factorial *-representation of \mathfrak{A} on a Hilbert space \mathfrak{X} ; then by Theorem 1, it can be uniquely extended to a faithful factorial *-representation $\{\tilde{\pi}, \mathfrak{X}\}$ of $\mathfrak{D}_1(\mathfrak{A})$. The image $\tilde{\pi}(\mathfrak{D}_1(\mathfrak{A}))$ is clearly the C*-algebra generated by $\{d_s | \delta \in D(\mathfrak{A})\}$ and $\mathfrak{1}_{\mathfrak{X}}$. Moreover by Lemma 1, it is easily seen that $\tilde{\pi}(d_{s,1}) = d_s$ if $d_{s,1} \geq 0$, $d_s \geq 0$ and $||d_{s,1}|| = ||d_s|| = ||\delta||$ for all skew-symmetric $\delta \in D(\mathfrak{A})$.

This completes the proof.

Now let \mathfrak{A} be a factorial C^* -algebra and let $\{\pi, \mathfrak{A}\}$ be a faithful factorial *-representation of \mathfrak{A} . We shall identify \mathfrak{A} with the image $\pi(\mathfrak{A})$. If \mathfrak{A} is a simple C^* -algebra with identity, then $\mathfrak{D}(\mathfrak{A}) = \mathfrak{A}$. If \mathfrak{A} is a simple C^* -algebra without identity, then $\mathfrak{D}(\mathfrak{A}) = \mathfrak{D}(\mathfrak{A})$.

We shall denote $\mathfrak{D}(\mathfrak{D}(\mathfrak{A})) = \mathfrak{D}^{(2)}(\mathfrak{A}), \ \mathfrak{D}(\mathfrak{D}(\mathfrak{D}(\mathfrak{A}))) = \mathfrak{D}^{(3)}(\mathfrak{A}), \text{ and so on.}$ Then the following problem would be interesting.

Problem 1. Does there exist a primitive C^* -algebra \mathfrak{A} such that

 $\mathfrak{D}(\mathfrak{A}) \subsetneq \mathfrak{D}^{(2)}(\mathfrak{A})?$

Problem 2. Does there exist a primitive C^* -algebra \mathfrak{A} such that $\mathfrak{D}^{(n)}(\mathfrak{A}) \subsetneq \mathfrak{D}^{(n+1)}(\mathfrak{A})$ for all positive integers n?

REMARK 4. By using the operation D, we can obtain an increasing family of C*-subalgebras $\{\mathfrak{A}_{\rho}\}\ (0 \leq \rho \leq \alpha)$ of $\overline{\pi(\mathfrak{A})}$, indexed by the ordinals ρ between 0 and a certain ordinal α as follows: (1) $\mathfrak{A}_0 = \mathfrak{A}$; (2) $\mathfrak{A}_{\rho+1} = \mathfrak{D}(\mathfrak{A}_{\rho})$ if ρ is not a limit ordinal; (3) \mathfrak{A}_{ρ} = the uniform closure of $\bigcup_{\rho' < \rho} \mathfrak{A}_{\rho'}$ if ρ is a limit ordinal; (4) $\mathfrak{D}(\mathfrak{A}_{\alpha}) = \mathfrak{A}_{\alpha}$. This is clear, since $\mathfrak{D}(\overline{\pi(\mathfrak{A})}) = \overline{\pi(\mathfrak{A})}$. However \mathfrak{A}_{α} does not generally coincide with $\overline{\pi(\mathfrak{A})}$. For example, let M be a non type I-factor on a separable Hilbert space \mathfrak{X} and let \mathfrak{A} be a uniformly separable C^* -subalgebra of M which is weakly dense in M. Let $\mathfrak{F} = \{\varepsilon_{\beta}\}_{\beta \in II}$ be a family of C*-subalgebras of M such that $\mathfrak{A} \subset \varepsilon_{\beta}$ for $\beta \in II$, and for each faithful factorial *-representation $\{\pi_0, \mathfrak{X}_0\}$ of \mathfrak{A} , there exists a unique *-representation $\{\widetilde{\pi}_0,\mathfrak{X}_0\}$ of ε_β such that $\widetilde{\pi}_0=\pi_0$ on \mathfrak{A} and $\tilde{\pi}_{0}(\varepsilon_{\beta}) \subset \overline{\pi_{0}(\mathfrak{A})}$. We shall define an order in \mathfrak{F} by inclusion, and let $\mathfrak{F}_1 = \{\varepsilon_{\beta_1}\}_{\beta_1 \in II_1}$ be a linearly ordered subset of \mathfrak{F} and let ε be the C*-subalgebra of M generated by $\bigcup_{\beta_1 \in II_1} \varepsilon_{\beta_1}$; then it is clear that ε belongs to F. Hence by Zorn's lemma, there exists a maximal element in F. Clearly $\mathfrak{A}_{\rho} \in \mathfrak{F}$ for all ρ with $0 \leq \rho \leq \alpha$.

Now let ε_0 be a maximal element in \mathfrak{F} such that $\mathfrak{A}_{\alpha} \subseteq \varepsilon_0$. Since \mathfrak{A} is separable, it is primitive. Now let $\{\pi_1, \mathfrak{X}_1\}$ be a faithful irreducible *-representation of \mathfrak{A} ; then \mathfrak{X}_1 is separable. If $\varepsilon_0 = M$, then M have an irreducible *-representation on a separable Hilbert space. Since any *-representation of M on a separable Hilbert space is σ -continuous ([11]), $\pi_1(M)$ is weakly closed; hence $\pi_1(M) = B(\mathfrak{X}_1)$. This contradicts that M is a non type *I*-factor. Hence $\mathfrak{A}_{\alpha} \subsetneq M$.

The following problem would be intresting.

Problem 3. Let G be a countable, discrete group such that every conjugate class is infinite except for the conjugate class of the identity, and let U(G) be the W*-algebra generated by the left regular representation; then U(G) is a II_1 -factor. Let \mathfrak{A} be the C*-subalgebra of U(G)generated by the left regular representation. Then what is \mathfrak{A}_{α} ?; what is ε_0 ? Let τ be the unique trace on U(G) and let $\check{\tau}$ be the restriction of τ to \mathfrak{A} . Then by Theorem 2, $\check{\tau}$ must be uniquely extended to \mathfrak{A}_{α} . Can we conclude $\mathfrak{A}_{\alpha} = \mathfrak{A}$?

Next we shall investigate a certain class of derivations. Let $\mathfrak{D}_0(\mathfrak{A})$ be the subset of all elements d in $\mathfrak{D}(\mathfrak{A})$ such that $[d, \mathfrak{A}] \subset \mathfrak{A}$ —i.e. the d will define a derivation δ on \mathfrak{A} ; then $\mathfrak{D}_0(\mathfrak{A})$ is a self-adjoint closed linear subspace of $\mathfrak{D}(\mathfrak{A})$ and moreover it is a Lie subalgebra of $\mathfrak{D}(\mathfrak{A})$ with the

Lie product [x, y] = xy - yx $(x, y \in \mathfrak{D}(\mathfrak{A}))$.

Let J_0 be the least closed ideal of \mathfrak{A} such that $[\mathfrak{A}, \mathfrak{A}] \subset J_0$. Then the quotient C^* -algebra \mathfrak{A}/J_0 is commutative and so $\delta | \mathfrak{A}/J_0 = 0$ for all $\delta \in D(\mathfrak{A})$, where $\delta | \mathfrak{A}/J_0$ is the derivation on \mathfrak{A}/J_0 induced by δ . Now let d be an element of $\mathfrak{D}_0(\mathfrak{A})$; then it is easily seen that there exists the least closed ideal J(d) of \mathfrak{A} such that $[d, \mathfrak{A}] \subset J(d)$. Clearly $J(d) \subset J_0$ and $\delta | \mathfrak{A}/J(d) = 0$, where δ is the derivation on \mathfrak{A} defined by d.

Now we shall show

THEOREM 4. Let d be a self-adjoint element of $\mathfrak{D}(\mathfrak{A})$. Suppose that d and d² belong to $\mathfrak{D}_0(\mathfrak{A})$; then $d \cdot J(d) \subset J(d)$ and $J(d) \cdot d \subset J(d)$.

PROOF. Let \mathfrak{G} be the C^* -subalgebra of $\mathfrak{D}(\mathfrak{A})$ generated by J(d), dand 1, and let \mathfrak{R} be the C^* -subalgebra of \mathfrak{G} generated by J(d) and 1. Let \mathfrak{F} be the least closed ideal of \mathfrak{G} containing J(d). Let S be the set of all self-adjoint linear functionals f on \mathfrak{G} such that $f(\mathfrak{R}) = 0$. If $J(d) \cong \mathfrak{F}$, then there is an extreme point g in S such that $g(\mathfrak{F}) \neq (0)$. Let $g = g_1 - g_2$ be the orthogonal decomposition of g and put $\xi = g_1 + g_2$. Let $\{\pi_{\xi}, \mathfrak{X}_{\xi}\}$ be the *-representation of \mathfrak{G} ; then $\overline{\pi_{\xi}(\mathfrak{R})}$ is a factor (cf. [6], [7]). If $\pi_{\xi}(J(d)) \neq (0)$, then $\overline{\pi_{\xi}(J(d))} = \overline{\pi_{\xi}(\mathfrak{R})}$. Take self-adjoint elements h, k such that $h \in \overline{\pi_{\xi}(J(d))}$, $k \in \pi_{\xi}(J(d))'$ and $\pi_{\xi}(d) = h + k$. Then $\pi_{\xi}(d^2) = \pi_{\xi}(d)^2 = h^2 + 2hk + k^2$. Since $\frac{d^2 \in \mathfrak{D}_0(\mathfrak{A})}{\pi_{\xi}(J(d))}$. [$hk, \ \pi_{\xi}(J(d))$] $\subset [h^2, \ \pi_{\xi}(J(d))] + [k^2, \ \pi_{\xi}(J(d))] + [\pi_{\xi}(d^2), \ \pi_{\xi}(J(d))] \subset [\pi_{\xi}(J(d))]$.

On the other hand,

$$[hk, x] = [h, x]k$$
 for $x \in \overline{\pi_{\varepsilon}(J(d))}$.

If $k = \lambda 1_{\mathfrak{X}_{\varepsilon}}$ for some complex number λ , then $\pi_{\varepsilon}(d) \in \overline{\pi_{\varepsilon}(J(d))}$. Hence $\pi_{\varepsilon}(\mathfrak{Y}) \subset \overline{\pi_{\varepsilon}(J(d))}$. This implies that $g(\mathfrak{Y}) = 0$, a contradiction. Let C be the C^* -subalgebra of $B(\mathfrak{X}_{\varepsilon})$ generated by k and $1\mathfrak{X}_{\varepsilon}$; then dim $(C) \geq 2$. Since $\overline{\pi_{\varepsilon}(J(d))}$ is a factor, the C^* -subalgebra R of $B(\mathfrak{X}_{\varepsilon})$ generated by $\overline{\pi_{\varepsilon}(J(d))}$ and C is canonically identified with $\overline{\pi_{\varepsilon}(J(d))} \otimes C$. Since k and $1\mathfrak{X}_{\varepsilon}$ are linearly independent, $[h, x]k \in \overline{\pi_{\varepsilon}(J(d))}$ implies [h, x] = 0 for $x \in \overline{\pi_{\varepsilon}(J(d))}$ and so $h = \lambda 1\mathfrak{X}_{\varepsilon}$ for some complex number λ . Hence $[\pi_{\varepsilon}(d), \pi_{\varepsilon}(J(d))] = 0$. Since J(d) is a closed ideal of \mathfrak{A} , the *-representation $\{\pi_{\varepsilon}, \mathfrak{X}_{\varepsilon}\}$ of J(d) can be uniquely extended to a *-repesentation $\{\tilde{\pi}_{\varepsilon}, \tilde{\mathfrak{X}_{\varepsilon}\}$ of \mathfrak{A} such that $\tilde{\pi}_{\varepsilon}(\mathfrak{A}) \subset \overline{\pi_{\varepsilon}(J(d))}$ (cf. [7]). Let J_1 be the kernel of $\tilde{\pi}_{\varepsilon}$; then $[\pi_{\varepsilon}(d), \tilde{\pi}_{\varepsilon}(\mathfrak{A})] = \tilde{\pi}_{\varepsilon}([d, \mathfrak{A}]) = 0$ and so $[d, \mathfrak{A}] \subset J_1$. Hence $J_1 \supset J(d)$ and so $\pi_{\varepsilon}(J(d)) = 0$, a contradiction. Therefore $\pi_{\varepsilon}(J(d)) = 0$; hence $\pi_{\varepsilon}(\mathfrak{Y}) = 0$ and so $g(\mathfrak{Y}) = 0$, a contradiction. This completes the proof.

COROLLARY 1. Let \mathfrak{A} be a general C*-algebra with identity on a Hilbert space \mathfrak{X} , and let δ be a skew-symmetric derivation on \mathfrak{A} . Suppose

314

that there exists a self-adjoint element h in $B(\mathfrak{X})$ such that $\delta(a) = [h, a]$ $(a \in \mathfrak{A})$ and $[h^2, \mathfrak{A}] \subset \mathfrak{A}$. Then if $J(h) = \mathfrak{A}$, the δ is an inner derivation.

This is clear, since we do not use the fact that \mathfrak{A} is factorial in the proof of Theorem 4.

THEOREM 5. Let \mathfrak{L} be a C^* -subalgebra of $\mathfrak{D}(\mathfrak{A})$ such that $\mathfrak{A} \subset \mathfrak{L} \subset \mathfrak{D}_0(\mathfrak{A})$; then $\mathfrak{Q}J_0 \subset J_0$ and $J_0\mathfrak{Q} \subset J_0$.

PROOF. Let \mathfrak{G} be the C^* -subalgebra of $\mathfrak{D}(\mathfrak{A})$ generated by J_0 , \mathfrak{A} and 1, and let \mathfrak{R} be the C^* -subalgebra of \mathfrak{G} generated by J_0 and 1. Let Sbe the set of all self-adjoint linear functionals f on \mathfrak{G} such that $f(\mathfrak{R}) = 0$. Let \mathfrak{F} be the least closed ideal of \mathfrak{G} containing J_0 . If $J_0 \subsetneq \mathfrak{F}$, then there is an extreme point g in S such that $g(\mathfrak{F}) \neq (0)$. Let $g = g_1 - g_2$ be the orthogonal decomposition of g and put $\xi = g_1 + g_2$. Let $\{\pi_{\xi}, \mathfrak{X}_{\xi}\}$ be the *-representation of \mathfrak{G} ; then $\overline{\pi_{\xi}(\mathfrak{R})}$ is a factor. If $\pi_{\xi}(J_0) \neq (0)$, then $\overline{\pi_{\xi}(J_0)} =$ $\overline{\pi_{\xi}(\mathfrak{R})}$. For each $d \in \mathfrak{R}$, there exist two elements h_d and k_d such that $h_d \in \overline{\pi_{\xi}(J_0)}, \ k_d \in \pi_{\xi}(J_0)'$ and $\pi_{\xi}(d) = h_d + k_d$. Since \mathfrak{A} is a C^* -algebra containing $\mathfrak{A}, \ \pi_{\xi}(ad) = \pi_{\xi}(a)h_d + \pi_{\xi}(a)k_d$ for $a \in \mathfrak{A}$. Since $[\pi_{\xi}(ad), \ \pi_{\xi}(J_0)] \subset \pi_{\xi}(J_0)$, $[\pi_{\xi}(a)k_d, \ \pi_{\xi}(J_0)] \subset \overline{\pi_{\xi}(J_0)}$.

On the other hand,

$$[\pi_{\varepsilon}(a)k_d, x] = [\pi_{\varepsilon}(a), x]k_d \text{ for } x \in \overline{\pi_{\varepsilon}(J_0)}.$$

Suppose that d is self-adjoint, and let C be the C*-subalgebra of $B(\mathfrak{X}_{\epsilon})$ generated by k_d and $1_{\mathfrak{X}_{\epsilon}}$. Let R be the C*-subalgebra of $B(\mathfrak{X}_{\epsilon})$ generated by $\overline{\pi_{\epsilon}(J_0)}$ and C; then $R = \overline{\pi_{\epsilon}(J_0)} \otimes C$. If $k_d = \lambda 1_{\mathfrak{X}_{\epsilon}}$ for some complex number λ , then $\pi_{\epsilon}(d) \in \overline{\pi_{\epsilon}(J_0)}$. If $\pi_{\epsilon}(d) \in \overline{\pi_{\epsilon}(J_0)}$ for all self-adjoint $d \in \mathfrak{X}$, then $\pi_{\epsilon}(\mathfrak{G}) \subset \overline{\pi_{\epsilon}(J_0)}$ and so $g(\mathfrak{G}) = 0$, a contradiction. Hence there exists a self-adjoint element d in \mathfrak{X} such that $k_d \neq 1_{\mathfrak{X}_{\epsilon}}$ for all complex number λ . Then k_d and $1_{\mathfrak{X}_{\epsilon}}$ are linearly independent, so that $[\pi_{\epsilon}(a), x]k_d \in \overline{\pi_{\epsilon}(J_0)}$ for $x \in \overline{\pi_{\epsilon}(J_0)}$ implies $[\pi_{\epsilon}(a), x] = 0$ for all $a \in \mathfrak{A}$ and $x \in \overline{\pi_{\epsilon}(J_0)}$. Therefore $[\pi_{\epsilon}(\mathfrak{A}), \pi_{\epsilon}(J_0)] = 0$. Since $\overline{\pi_{\epsilon}(J_0)}$ contains $1_{\mathfrak{X}_{\epsilon}}$ and since $\pi_{\epsilon}(\mathfrak{A})\pi_{\epsilon}(J_0) =$ $\pi_{\epsilon}(\mathfrak{A}J_0) \subset \pi_{\epsilon}(J_0), \ \overline{\pi_{\epsilon}(\mathfrak{A})} = \overline{\pi_{\epsilon}(J_0)}$. Hence $[\pi_{\epsilon}(\mathfrak{A}), \pi_{\epsilon}(\mathfrak{A})] = 0$ and so the kernel J_1 of π_{ϵ} in \mathfrak{A} contains $[\mathfrak{A}, \mathfrak{A}]$; hence $J_0 \subset J_1$. Therefore $\pi_{\epsilon}(J_0) = 0$ and so $g(\mathfrak{F}) = 0$, a contradiction. Hence $J_0 = \mathfrak{F}$. This completes the proof.

COROLLARY 2. Suppose that \mathfrak{A} is a factorial C*-algebra with identity such that the smallest closed ideal of \mathfrak{A} containing $[\mathfrak{A}, \mathfrak{A}]$ is \mathfrak{A} . Then if $\mathfrak{D}_0(\mathfrak{A}) = \mathfrak{D}(\mathfrak{A})$, then $\mathfrak{D}(\mathfrak{A}) = \mathfrak{A}$ —namely, every derivation of \mathfrak{A} is inner.

References

[1] W. ARVESON, On groups of automorphisms of operator algebras, to appear.

[2] J. DIXMIER, Les C*-algebres et leuers representations, Gauthier-villars, Paris, 1964.

- [3] E. EFFROS AND F. HAHN, Locally compact transformation groups and C*-algebras, Memoirs of Amer. Math. Soc., 75 (1967).
- [4] P. GAJENDRAGADKAR, The norm of derivations, to appear.
- [5] R. V. KADISON, E. C. LANCE AND J. R. RINGROSE, Derivations and automorphisms of operator algebras, II, J. of Functional Analysis, 1 (1967), 204-221.
- [6] S. SAKAI, C*-algebras and W*-algebras, Springer Verlag, Berlin, 1971.
- [7] S. SAKAI, Derivations of simple C*-algebras, II, Bull. Soc. Math. France, 99 (1971), 259-263.
- [8] J. G. STAMFLI, The norm of a derivation, Pacific J. Math., 33 (1970), 737-747.
- [9] M. TAKESAKI, On the cross-norm of the direct product of C*-algebras, Tôhoku Math. J., 16 (1964), 111-122.
- [10] L. ZSIDO, The norm of a derivation in a W^* -algebra, to appear.
- [11] J. FELDMAN AND J. M. G. FELL, Separable representations of rings of operators, Ann. of Math., 65 (1957), 241-249.

UNIVERSITY OF PENNSYLVANIA Tôhoku University