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Introduction. Let M be a 2n-dimensional almost Hermitian manifold
with almost Hermitian metric tensor g;; and almost complex structure
tensor F;". By V;, R,;* and R; we denote the operator of covariant

differentiation with respect to Christoffel symbols «U;} formed with gj;,

the curvature tensor and the Ricci tensor respectively, and put R*; =
(1/2)F*R,,;F;° where R,,.; = g;R..' etc.. Then M is said to be a K-space
(or almost Tachibane space, nearly Kshler manifold) provided

VjFih‘I‘Vith:O.

It is well known that a Kahler manifold is a K-space but a K-space
is not necessarily a Kahler manifold [3]. The main purpose of the present
paper is to prove the following

THEOREM A. Let M be a K-space of constant holomorphic sectional

curvature & and M a connected non-Kahler almost complex hypersurface

of M. If M is of complex dimension n>2, then the following statements
are equivalent:

(i) M is totally geodesic in I,
(ii) M 1is of comstant holomorphic sectional curvature,
(iii) M 1is an Einstein space satisfying R*; = (0*/2n)g;,
(iv) ¢=0

where ¢ = 1/(dn(n + 1))(0 + 30*), 0 = ¢*R;; and 0* = g R*,.

THEOREM B. Let M be an 8-dimensional K-space of constant holomor-
phic sectional curvature and M a non-Kahler almost complex hypersurface
of M. Then M is a space of constant curvature.

For Theorem A, we shall prove that if an almost complex hypersurface
M of a K-space I is a Kihler manifold, then M is also a Kihler manifold
(Proposition 2). But we know Smyth’s result [7; p. 257] for the case
where M is a Kahler manifold. The analogous problems to those in

1 The Latin indices run over the range 1,2, ---, 2n.
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Theorem A in the case of Kahler manifold were studied by A. Gray [1],
B. Smyth [7], T. Takahashi [9] and others. One of the present authors
(Sawaki and Sekigawa [5]) proved the equivalence of the first two state-
ments of Theorem A in a more general case than a K-space. In §1 we
shall state some well known properties of a K-space and some recent
results on a K-space of constant holomorphic sectional curvature. In §2,
differential geometric properties of almost complex hypersurfaces of an
almost Hermitian manifold and as a special case, a K-space will be stated.
In § 3 we shall prove some lemmas on almost complex hypersurfaces of
a K-space with constant holomorphic sectional curvature. In particular,
we shall obtain Codazzi equation which will play an important role in
this papar. §4 will be devoted to the proof of Theorems A and B.

1. K-space. In a 2n-dimensional almost Hermitian manifold M, we
define the following linear operators

n = %(arsz — FrFY),  *On = %(araz + FrFY .

Then a tensor Tj(resp. T,%) is said to be pure in j, ¢ if it satisfies
*0jiTe =0 (resp. *OxT." = 0),
and hybrid in 7, if it satisfies ’
o%T,, =0 (resp. O%T,>=0).
This definition is the same as a general tensor, for example, T;;* and we
can easily verify the following
ProposiTION 1. (i) If T is pure (resp. hybrid) in j, © then
FiTi = FiT (resp. F,\T; = —F;T, .
(ii) Let T be pure in j, 1. If S; is pure (resp. hybrid) in j, © then
T;.S;" is pure (resp. hybrid) in j, 1.
(iii) If Ty is pure and at the same time hybrid in j, v then Ty
vanishes.
In particular, let M be a K-space. Then it is easily verified that

(1.1) O F =0, Ooxv;,Ft=0,
and we know
1.2) V;F, W F* = o — p* = constant = 0 [8] -

Moreover, for a K-space, we know the following

LeEmMMA 1.1. (Gray [2]) There does mot exist a 4-dimensional non-
Kahler K-space.
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LEmMmA 1.2. (Takamatsu [10]) In a 6-dimensional K-space, we have

Rﬁ — R*:‘i = _p-—.—‘o*gji .
6
LeEmmA 1.3. (Yamaguchi, Chuman, and Matsumoto [13]) A 6-dimen-
stonal non-Kahler K-space is an Einstein space.

LemMA 1.4. (Watanabe and Takamatsu [12]) In a K-space of con-
stant holomorphic sectional curvature, we have
R;; = 'ﬁ‘gji ’ R*ji = —0i: -
2n

LEMMA 1.5. (Tanno [11]) A 6-dimensional mon-Kdhler K-space of
constant holomorphic sectional curvature is a space of comstant curvature.

2. Almost complex hypersurfaces of an almost Hermitian manifold.
Let M be an almost Hermitian manifold of dimension 2n + 2 with almost
Hermitian metric tensor g and almost complex structure tensor F. More-
over, let M be an almost complex hypersurface of I, i.e., suppose that
there exists an almost complex analytic mapping f: M — . Then we
identify, for each « € M, the tangent space T,(M) with fy(T,(M)) < Ty.,(M)
by means of f,. Since f*og = ¢’ and Fof, = f,oF where ¢’ and F' are
the almost Hermitian metric tensor and the almost complex structure
tensor of M respectively, ¢’ and F” are respectively identified with the
restrictions of the structures g and F' to the subspace f,(7.(M)). Hence-
forth, under this consideration, we use g and F instead of ¢’ and F’
respectively.

As is well known, there exists a local coordinate system (&, ---, Z*",
7% on a neighborhood U of f(x) in M such that (!, ---, ) is
a local coordinate system on the neighborhood U of ¢ in M given by U=
{ye M| 2> (y) = 2***(y) = 0}, where &* = Flof W =1,2 -+, 2n + 2).

By 7 we always mean the Riemannian covariant differentiation on I
and ¢ a differentiable unit vector field normal to M at each point of U(x).
If X and Y are vector fields on the neighborhood U(x), we may write

(2.1) .Y =r.Y+ WX, V)& + kX, Y)F¢

where 7Y denotes the component of 7,.Y tangent to M. Then the fol-
lowing lemma is easily verified (for example see [5]).

w2
wﬂ

LEMMA 2.1. (i) V7 1is the covariant differentiation of the almost
Hermaitian manifold M.

(i) h and k are symmetric covariant temsor fields of degree 2 on
U(x).
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The identities g(¢, &) =1 and g(F%, F& =1 imply g(7:£ £ =0 and
P4 <(F€), F¢) = 0 respectively. Therefore, we may put
(2.2) 7i& = —AX) + s(X)F¢,
(2.3) 7:(F&) = —B(X) + t(X)§
where A(X) and B(X) are tangent to M.
In this place, we know the following

LEMMA 2.2. (i) A, B and s,t are temsor fields on U(x) of type
(1.1) and (0.1) respectively.

(ii) A and B are symmetric with respect to g and satisfy
(2.9) KX, Y)=9(AX, Y),

2.5) kKX, Y)=9BX,Y).

LEMMA 2.3. Let R and R be Riemannian curvature tensors of M and
an almost complex hypersurface M of M respectively. Then for any vector
fields X, Y, Z, and W on U(x) C M, we have

RX, YYW=RX, Y)W — (MY, W)AX — (X, W)AY} — {k(Y, W)BX
— kX, W)BY} + {(Fz0)(Y, W) — "yh)(X, W) + k(Y, W)i(X)
— E(X, WUY)Y + {(T2h) (Y, W) — Prh)(X, W)
+ h(Y, W)s(X) — KX, W)s(Y)}F¢,
R(X,Y,Z W)
(2.7 =RX,Y,Z, W) - {9g(AX, Z)g(AY, W) — g(AY, Z)g(AX, W)}
— {9(BX, Z)g(BY, W) — g(BY, Z)g(BX, W)} .

(2.6)

(Gauss)

In particular, let / be a K-space, i.e., suppose that
FxF)Y + 7,F)X =0  (or equivalently (7,F)X = 0)

for any vector fields X and Y on I.

It is well known that an almost complex hypersurface M of a K-space
M is also a K-space [4].

LEMMA 2.4, (Sawaki ~and Sekigawa [5]) In an almost complex hyper-
surface M of a K-space M, we have

(i) FA = —AF, FB = —BF,

(ii) FA and FB are symmetric with respect to g,

(iiiy B = FA (or equivalently WX, Y) = k(X, FY) for any wvector
fields X and Y on M).

LEMMA 2.5. (Sawaki and Sekigawa [5]) In an almost complex hyper-
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surface M of a K-space M, for a unit vector X tangent to M, we have
H(X) = HX) + 2{g(AX, X)* + g(FAX, X)}

where H(X) (resp. H(X)) is holomorphic sectional curvature in I (resp.
).

LEMMA 2.6. Let M be an almost complex hypersurface of a K-space

M. If X and Y belong to T,(M) (ye U)), then (7zF)Y also belongs to
T,.(M).

PROOF. By (2.1), from Fy(FY) = (7,F)Y + FV,Y, we have
(2.8) V(FY) + WX, FY): + k(X, FY)Fz
= (PxF)Y + FV,Y + KX, Y)Ft — kX, Y)& .

On the other hand, from Lemma 2.4 (iii), we have (X, FY) = —k(X, Y)
or (X, Y) = kX, FY) and therefore (2.8) turns out to be

VAFY) = (FzF)Y + FV,Y
from which we have
(2.9) PxF)Y = P F)Ye T,(M) .

Moreover, we prove the following lemma and proposition which we
owe much to Prof. Tanno.

LEMMA 2.7. s(X) + ¢(X) = 0.
Proor. By (2.3) — F(2.2) we have
(7:F)& = (s(X) + t(X))¢ ,

where we have used Lemma 2.4 (iii). Since 7 F is skew-symmetric with
respect to g, we obtain s(X) + t(X) = 0.

PROPOSITION 2. Let M be an almost corizplex hypersurface of a K-
space M. If M is a Kihler manifold, then M is also a Kahler manifold.

PrROOF. In the proof of Lemma 2.7, we have (7 F)& = 0. Similarly,
7 ,F)F& = 0. Since I is a K-space we have (7.F)X = (7;,F)X = 0. By
(2.9) we have FxF)Y = 74F)Y =0, since M is K'aihlgrian. Next we extend
& to a vector field on a neighborhood of ye€ M in M. Then we have
(7:F)Ft = —V& — FP{(F¢) = —F(:F)¢

from which it follows that (7. F)F& = 0 because I is a K-space. Similarly
(7 peF)e = 0. Therefore, YF'=0 at y (or on its neighborhood in M).
Thus, by (1.2) we have p — px = 0 at y, and hence VF =0 on M.
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The following corollary follows immediately from Proposition 2.

COROLLARY. Let 117 be a non-Kahler K-space and M an almost com-
plex submanifold of M which is a Kahler manifold. Then dim M <
dim i — 4.

3. Almost complex hypersurfaces of a K-space with constant holo-
morphic sectional curvature. Recently Sawaki, Watanabe, and Sato [6]
proved the following

LEMMA 3.1. Let II be a K-space of constant holomorphic sectional
curvature ¢ and R the Riemannian curvature temsor. Then we have

RX, Y, 2 W)
= Lol0(X, 2)9(Y, W) — o(X, W)g(Y, Z) + 9(X, FZ)g(Y, FW)
(8.1) . .
— (X, FW)g(Y,FZ)+29(X,FY)g(Z, F W)}-I--}l-{g((V )2,V F)W)
— 9(T<F)W, 7xF)Z) + 29("F)Y, 7 ,F) W)}
for any tangent vectors X, Y, Z, and W at every point of .
From (3.1) it follows that
Rx, vyw
= 71—(?{g(Y, W)X — g(X, W)Y + gFY, W)FX — g(FX, W)FY
3.2 1 . . R .
+ 29(X, FY)FW} + —4-{—-(VXF)(VYF)W + Py YV FYW
+ 20y F)(7F)Y} .

In particular, let M be an almost complex hypersurface of a K-space M
and X, Y, W belong to T,(M) (ye U(x)). Then, by Lemma 2.6, (7, F)Y
belongs to T,(M) and therefore (7 F)P,F)W also belongs to T,(M).
Hence, from (3.2) it follows that if X, Y, and W belong to T (M), then
R(X, Y)W belongs to T,(M).

Thus, for an almost complex hypersurface M of a K-space M with
constant holomorphic sectional curvature ¢, from (2.6) we have

RX, YW =RX, Y)W — (MY, W)AX — (X, W)AY}
— {k(Y, W)BX — k(X, W)BY}
for X, Y, WeT, (M), ye Ux)

or by (2.4), (2.5), and Lemma 2.4 (iii), this equation reduces to
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83 RX, YYW=RX, Y)W —{g(AY, W)AX — g(AX, W)AY}
—{g(FAY, W)FAX — g(FAX, W)FAY}.
Now, from (3.2) it follows that the linear endomorphism T,(M) (y € M)
determined by X — R(X, Y)W has the trace (for example see [7] p. 254)
%{2?%9(1’, W) —g(Y,W)+g(Y, W)+ 29(Y, W)} + %{G(Y, W)—o*(Y, W)}

where

o(Y, W) = R, YW+, oX(Y, W) = R*, YW, ¥ = Yfai, W= w2 .

i o’

On the other hand, from (3.3), we see that the same linear endomor-
phism has the trace

(Y, W) + 29(A*Y, W)
where we have used the fact that M is minimal in 7.
Thus, we have
L+ Dg(¥, W) + o (¥, W) = 0*(¥, W)} = o(¥, W) + 29(4°Y, W)

or with local components this equation can be written as

—3-(Rj¢ — R*;) = Ry + 2H;H!

C
- 1)g;;
2(n+ )g,+4

where

A = XA/, Hy=gud} and Hf = g'Hj .
x]

At the same time, from the coefficient of & in (2.6), we have
Vxh)(Y, W) — (Fyh)(X, W) + E(Y, W)H(X) — kX, W)XY) =0
or
V)Y, W) — (Fyh)(X, W) — (Y, FW){(X) + (X, FW){(Y) =0.
(Codazzi)

Since W(X, Y) = H;X’Y?, with local components Codazzi equation can be
written as

V.H; —V;Hy + t;F,)H;, — t,F,'H;, = 0

where ¢(X) = ¢, X".
Similarly, from the coefficient of F¢&, we have
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k)Y, W) — k)X, W) + MY, W)s(X) — (X, W)s(Y) =0.
(Codazzi)

Later, we shall see that these two Codazzi equations are equivalent (see
Remark).
With local components, the second Codazzi equation can be written as

VAF,/'H;) — V{F'H;) — 8;H;, + 8$;H;, = 0
where s(X) = s;,X* and we have used that k(Y, W)= —W(Y, FW) =
_FleJ'l Yj Wk.
Gathering these results, we have the following

LEMMA 3.2. Let M be an almost complex hypersurface of a K-space

M with constant holomorphic sectional curvature & Then we have

(3.5) Z(n+ Doy —F(Bi + 3R,) = 2H,H}
(3.6) V:H; — V;H,; + t;F*H;, — t,F,*H;, = 0,
(3.7 Vi(FVHy) — Vi (F, Hy) — s;Hy, + 8;Hy, = 0.

LEMMA 3.3. Let M be an almost complex hypersurface of a K-space
M with constant holomorphic sectional curvature. Then we have

(3.8) HJ.F'=0.

Proor. By Lemma 2.7, we have s; + ¢t; = 0. From (3.7) we have
3.9 F!VH;, —V;H,) + HV.F,} — HJV;F}'— s;Hy + 8;H,;, = 0.
Multiplying (3.6) by F,' and making use of ¢; = —s;, we have

F'V,H; — V;H;) + s;H;, — s;H;;, = 0.
Therefore, (3.9) reduces to
(3.10) H,V.F' = HJWF'.

Now, in (3.10) 7/, F' is pure in ¢,k and /;F,' is hybrid in %, by
virtue of (1.1). On the other hand, since Lemma 2.4 (i) means that H
is pure in 4,1, H/;F}} is hybrid in ¢, £k by virtue of Proposition 1 (ii).
Thus, the left hand side of (38.10) is pure in ¢, k¥ and at the same time
the right hand side is hybrid in 4, k. Hence, by Proposition 1 (iii), we
have H;/ .F} = 0.

REMARK. By Lemma 2.7, from (3.9) and (3.10) it follows that (3.6)
and (3.7) are equivalent.

4. Proof of Theorems.
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PROOF OF THEOREM A. (i) implies (ii): by the assumption 4 = 0,
from Lemma 2.5, we have

¢ = H(X) for any unit vector X tangent to M.

(ii) implies (iii): this follows immediately from Lemma 1.4.
(iii) implies (iv): making use of R; = (0/2n) g;; and R*;; = (0*/2n)g;,
from (3.5), we have

H;H}! = {n + 15 - /P + 340*)}9:'1'

4 167 \
or
(4.1) HuH = 2 1@ — oy,
where
1
= e 30%) .

¢ 4n(n+1)(p+ )
Multiplying (3.8) by H,’ and making use of (4.1), we have

’”I L oPF,=0.

In this place, we notice that ¢ — ¢ = constant by virtue of (1.2).
Hence if ¢ — ¢ # 0, then we have F,F,, = 0. This contradicts the assum-
ption that M is non-Kidhler. Thus, we have ¢ = c.

(iv) implies (i): transacting (3.5) with ¢’*, we have
cn(n + 1) — %(P + 80*) = 2H;H"' i.e., wn(n + 1)(¢ — ¢) = 2H; H"

from which it follows that H;, = 0, that is, M is totally geodesic. q.e.d.
ProOF oF THEOREM B. By Lemmas 1.2 and 1.3, we have

£ 3
E; = —‘g‘gii s R*;; = ‘%’ga’i ’
because M must be 6-dimensional by virtue of Lemma 1.1. Thus, by
Theorem A, we see that M is a K-space of constant holomorphic sectional
curvature. Hence, Theorem B follows from Lemma 1.5.
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