ON ALMOST COMPLEX HYPERSURFACES OF A K-SPACE

Dedicated to Professor Shigeo Sasaki on his 60th birthday

SUMIO SAWAKI AND KICHIRO TAKAMATSU

(Received April 30; Revised June 5, 1973)

Introduction. Let M be a 2n-dimensional almost Hermitian manifold with almost Hermitian metric tensor g_{ji} and almost complex structure tensor $F_j^{(i)}$. By \mathcal{V}_j , R_{kji}^h and R_{ji} we denote the operator of covariant differentiation with respect to Christoffel symbols $\begin{cases} h \\ ji \end{cases}$ formed with g_{ji} , the curvature tensor and the Ricci tensor respectively, and put $R^*_{ji} = (1/2)F^{ab}R_{abci}F_j^c$ where $R_{abci} = g_{ii}R_{abc}^l$ etc.. Then M is said to be a K-space (or almost Tachibane space, nearly Kähler manifold) provided

$$\nabla_i F_i^h + \nabla_i F_j^h = 0.$$

It is well known that a Kähler manifold is a K-space but a K-space is not necessarily a Kähler manifold [3]. The main purpose of the present paper is to prove the following

THEOREM A. Let \tilde{M} be a K-space of constant holomorphic sectional curvature \tilde{c} and M a connected non-Kähler almost complex hypersurface of \tilde{M} . If M is of complex dimension n > 2, then the following statements are equivalent:

- (i) M is totally geodesic in \widetilde{M} ,
- (ii) M is of constant holomorphic sectional curvature,
- (iii) M is an Einstein space satisfying $R^*_{ji} = (\rho^*/2n)g_{ji}$,
- (iv) $\tilde{c}=0$

where
$$c = 1/(4n(n+1))(\rho + 3\rho^*)$$
, $\rho = g^{ji}R_{ji}$ and $\rho^* = g^{ji}R^*_{ji}$.

THEOREM B. Let \widetilde{M} be an 8-dimensional K-space of constant holomorphic sectional curvature and M a non-Kähler almost complex hypersurface of \widetilde{M} . Then M is a space of constant curvature.

For Theorem A, we shall prove that if an almost complex hypersurface M of a K-space \widetilde{M} is a Kähler manifold, then \widetilde{M} is also a Kähler manifold (Proposition 2). But we know Smyth's result [7; p. 257] for the case where M is a Kähler manifold. The analogous problems to those in

The Latin indices run over the range 1, 2, \cdots , 2n.

Theorem A in the case of Kähler manifold were studied by A. Gray [1], B. Smyth [7], T. Takahashi [9] and others. One of the present authors (Sawaki and Sekigawa [5]) proved the equivalence of the first two statements of Theorem A in a more general case than a K-space. In § 1 we shall state some well known properties of a K-space and some recent results on a K-space of constant holomorphic sectional curvature. In § 2, differential geometric properties of almost complex hypersurfaces of an almost Hermitian manifold and as a special case, a K-space will be stated. In § 3 we shall prove some lemmas on almost complex hypersurfaces of a K-space with constant holomorphic sectional curvature. In particular, we shall obtain Codazzi equation which will play an important role in this papar. § 4 will be devoted to the proof of Theorems A and B.

1. K-space. In a 2n-dimensional almost Hermitian manifold M, we define the following linear operators

$$O_{ih}^{ml} = rac{1}{2} (\delta_i^m \delta_h^l - F_i^m F_h^{\; l}) \; , \qquad ^*O_{ih}^{ml} = rac{1}{2} (\delta_i^m \delta_h^l + F_i^m F_h^{\; l}) \; .$$

Then a tensor $T_{ii}(\text{resp. }T_{i}^{i})$ is said to be pure in j, i if it satisfies

$$^*O_{ji}^{ab}T_{ab}=0 \qquad ({
m resp.}\ ^*O_{jb}^{ai}T_a{}^b=0)$$
 ,

and hybrid in j, i if it satisfies

$$O_{ji}^{ab}T_{ab}=0$$
 (resp. $O_{jb}^{ai}T_{a}{}^{b}=0$).

This definition is the same as a general tensor, for example, T_{ji}^{h} and we can easily verify the following

PROPOSITION 1. (i) If T_j^i is pure (resp. hybrid) in j, i then $F_t^i T_j^t = F_j^t T_t^i \qquad (resp. \ F_t^i T_j^t = -F_j^t T_t^i) \ .$

- (ii) Let T_{ji} be pure in j, i. If S_j^i is pure (resp. hybrid) in j, i then $T_{jr}S_i^r$ is pure (resp. hybrid) in j, i.
- (iii) If T_{ji} is pure and at the same time hybrid in j,i then T_{ji} vanishes.

In particular, let M be a K-space. Then it is easily verified that (1.1) ${}^*O^{ab}_{ib}V_aF_b{}^b=0$, $O^{ab}_{ib}V_iF_a{}^b=0$,

and we know

(1.2)
$$(\nabla_{j}F_{ih})\nabla^{j}F^{ih} = \rho - \rho^{*} = \text{constant} \ge 0$$
 [8].

Moreover, for a K-space, we know the following

LEMMA 1.1. (Gray [2]) There does not exist a 4-dimensional non-Kähler K-space.

LEMMA 1.2. (Takamatsu [10]) In a 6-dimensional K-space, we have

$$R_{ji} - R^*_{ji} = \frac{\rho - \rho^*}{6} g_{ji}$$
.

LEMMA 1.3. (Yamaguchi, Chuman, and Matsumoto [13]) A 6-dimensional non-Kähler K-space is an Einstein space.

LEMMA 1.4. (Watanabe and Takamatsu [12]) In a K-space of constant holomorphic sectional curvature, we have

$$R_{ji} = rac{
ho}{2n} g_{ji} \; , \qquad R^*_{\;ji} = rac{
ho^*}{2n} g_{ji} \; .$$

LEMMA 1.5. (Tanno [11]) A 6-dimensional non-Kähler K-space of constant holomorphic sectional curvature is a space of constant curvature.

2. Almost complex hypersurfaces of an almost Hermitian manifold. Let \widetilde{M} be an almost Hermitian manifold of dimension 2n+2 with almost Hermitian metric tensor g and almost complex structure tensor F. Moreover, let M be an almost complex hypersurface of \widetilde{M} , i.e., suppose that there exists an almost complex analytic mapping $f: M \to \widetilde{M}$. Then we identify, for each $x \in M$, the tangent space $T_x(M)$ with $f_*(T_x(M)) \subset T_{f(x)}(\widetilde{M})$ by means of f_* . Since $f^* \circ g = g'$ and $F \circ f_* = f_* \circ F'$ where g' and F' are the almost Hermitian metric tensor and the almost complex structure tensor of M respectively, g' and F' are respectively identified with the restrictions of the structures g and F to the subspace $f_*(T_x(M))$. Henceforth, under this consideration, we use g and F instead of g' and F' respectively.

As is well known, there exists a local coordinate system $(\widetilde{x}^1, \dots, \widetilde{x}^{2n}, \widetilde{x}^{2n+1}, \widetilde{x}^{2n+2})$ on a neighborhood \widetilde{U} of f(x) in \widetilde{M} such that (x^1, \dots, x^{2n}) is a local coordinate system on the neighborhood U of x in M given by $U = \{y \in M \mid x^{2n+1}(y) = x^{2n+2}(y) = 0\}$, where $x^2 = \widetilde{x}^2 \circ f$ $(\lambda = 1, 2, \dots, 2n+2)$.

By \tilde{V} we always mean the Riemannian covariant differentiation on \tilde{M} and ξ a differentiable unit vector field normal to M at each point of U(x). If X and Y are vector fields on the neighborhood U(x), we may write

(2.1)
$$\tilde{\mathcal{V}}_{X}Y = \mathcal{V}_{X}Y + h(X, Y)\xi + k(X, Y)F\xi$$

where $\nabla_X Y$ denotes the component of $\widetilde{\nabla}_X Y$ tangent to M. Then the following lemma is easily verified (for example see [5]).

Lemma 2.1. (i) V is the covariant differentiation of the almost Hermitian manifold M.

(ii) h and k are symmetric covariant tensor fields of degree 2 on U(x).

The identities $g(\xi,\xi)=1$ and $g(F\xi,F\xi)=1$ imply $g(\tilde{V}_x\xi,\xi)=0$ and $g(\tilde{V}_x(F\xi),F\xi)=0$ respectively. Therefore, we may put

$$\tilde{V}_X \xi = -A(X) + s(X)F\xi,$$

(2.3)
$$\tilde{\mathcal{V}}_X(F\xi) = -B(X) + t(X)\xi$$

where A(X) and B(X) are tangent to M.

In this place, we know the following

LEMMA 2.2. (i) A, B and s, t are tensor fields on U(x) of type (1.1) and (0.1) respectively.

(ii) A and B are symmetric with respect to g and satisfy

$$(2.4) h(X, Y) = g(AX, Y),$$

(2.5)
$$k(X, Y) = g(BX, Y)$$
.

LEMMA 2.3. Let \widetilde{R} and R be Riemannian curvature tensors of \widetilde{M} and an almost complex hypersurface M of \widetilde{M} respectively. Then for any vector fields X, Y, Z, and W on $U(x) \subset M$, we have

$$\tilde{R}(X, Y) W = R(X, Y) W - \{h(Y, W)AX - h(X, W)AY\} - \{k(Y, W)BX - k(X, W)BY\} + \{(\mathcal{V}_{x}h)(Y, W) - (\mathcal{V}_{y}h)(X, W) + k(Y, W)t(X) - k(X, W)t(Y)\}\xi + \{(\mathcal{V}_{x}k)(Y, W) - (\mathcal{V}_{y}k)(X, W) + h(Y, W)s(X) - h(X, W)s(Y)\}F\xi,$$

 $\widetilde{R}(X, Y, Z, W)$

$$(2.7) = R(X, Y, Z, W) - \{g(AX, Z)g(AY, W) - g(AY, Z)g(AX, W)\} - \{g(BX, Z)g(BY, W) - g(BY, Z)g(BX, W)\}.$$
 (Gauss)

In particular, let \widetilde{M} be a K-space, i.e., suppose that

$$(\tilde{\mathcal{V}}_{x}F)Y + (\tilde{\mathcal{V}}_{x}F)X = 0$$
 (or equivalently $(\tilde{\mathcal{V}}_{x}F)X = 0$)

for any vector fields X and Y on \widetilde{M} .

It is well known that an almost complex hypersurface M of a K-space \widetilde{M} is also a K-space [4].

LEMMA 2.4. (Sawaki and Sekigawa [5]) In an almost complex hypersurface M of a K-space \widetilde{M} , we have

- (i) FA = -AF, FB = -BF,
- (ii) FA and FB are symmetric with respect to g,
- (iii) B = FA (or equivalently h(X, Y) = k(X, FY) for any vector fields X and Y on M).

LEMMA 2.5. (Sawaki and Sekigawa [5]) In an almost complex hyper-

surface M of a K-space \widetilde{M} , for a unit vector X tangent to M, we have

$$\widetilde{H}(X) = H(X) + 2\{g(AX, X)^2 + g(FAX, X)^2\}$$

where $\widetilde{H}(X)$ (resp. H(X)) is holomorphic sectional curvature in \widetilde{M} (resp. M).

LEMMA 2.6. Let M be an almost complex hypersurface of a K-space \widetilde{M} . If X and Y belong to $T_y(M)$ $(y \in U(x))$, then $(\widetilde{V}_x F) Y$ also belongs to $T_y(M)$.

PROOF. By (2.1), from $\tilde{\mathcal{V}}_x(FY) = (\tilde{\mathcal{V}}_x F) Y + F \tilde{\mathcal{V}}_x Y$, we have

On the other hand, from Lemma 2.4 (iii), we have h(X, FY) = -k(X, Y) or h(X, Y) = k(X, FY) and therefore (2.8) turns out to be

$$\nabla_{x}(FY) = (\tilde{\nabla}_{x}F)Y + F\nabla_{x}Y$$

from which we have

$$(2.9) (\tilde{\mathcal{P}}_x F) Y = (\mathcal{P}_x F) Y \in T_y(M) .$$

Moreover, we prove the following lemma and proposition which we owe much to Prof. Tanno.

LEMMA 2.7. s(X) + t(X) = 0.

PROOF. By (2.3) - F(2.2) we have

$$(\tilde{\mathcal{V}}_{\scriptscriptstyle{X}}F)\xi=(s(X)\,+\,t(X))\xi$$
 ,

where we have used Lemma 2.4 (iii). Since $\tilde{V}_x F$ is skew-symmetric with respect to g, we obtain s(X) + t(X) = 0.

PROPOSITION 2. Let M be an almost complex hypersurface of a K-space \widetilde{M} . If M is a Kähler manifold, then \widetilde{M} is also a Kähler manifold.

PROOF. In the proof of Lemma 2.7, we have $(\tilde{\mathcal{V}}_x F)\xi = 0$. Similarly, $(\tilde{\mathcal{V}}_x F)F\xi = 0$. Since \tilde{M} is a K-space we have $(\tilde{\mathcal{V}}_{\varepsilon}F)X = (\tilde{\mathcal{V}}_{F\varepsilon}F)X = 0$. By (2.9) we have $(\tilde{\mathcal{V}}_x F)Y = (\mathcal{V}_x F)Y = 0$, since M is Kählerian. Next we extend ε to a vector field on a neighborhood of $y \in M$ in \tilde{M} . Then we have

$$(\tilde{\mathcal{V}}_{\varepsilon}F)F\xi = -\tilde{\mathcal{V}}_{\varepsilon}\xi - F(\tilde{\mathcal{V}}_{\varepsilon}(F\xi)) = -F(\tilde{\mathcal{V}}_{\varepsilon}F)\xi$$

from which it follows that $(\tilde{\mathcal{V}}_{\xi}F)F\xi=0$ because \tilde{M} is a K-space. Similarly $(\tilde{\mathcal{V}}_{F\xi}F)\xi=0$. Therefore, $\tilde{\mathcal{V}}F=0$ at y (or on its neighborhood in M). Thus, by (1.2) we have $\tilde{\rho}-\tilde{\rho}*=0$ at y, and hence $\tilde{\mathcal{V}}F=0$ on \tilde{M} .

The following corollary follows immediately from Proposition 2.

COROLLARY. Let \widetilde{M} be a non-Kähler K-space and M an almost complex submanifold of \widetilde{M} which is a Kähler manifold. Then dim $M \leq \dim \widetilde{M} - 4$.

3. Almost complex hypersurfaces of a K-space with constant holomorphic sectional curvature. Recently Sawaki, Watanabe, and Sato [6] proved the following

Lemma 3.1. Let \tilde{M} be a K-space of constant holomorphic sectional curvature \tilde{c} and \tilde{R} the Riemannian curvature tensor. Then we have

$$\widetilde{R}(X, Y, Z, W)$$

$$\begin{split} & = \frac{1}{4} \widetilde{c} \{ g(X,Z) g(Y,W) - g(X,W) g(Y,Z) + g(X,FZ) g(Y,FW) \\ & - g(X,FW) g(Y,FZ) + 2 g(X,FY) g(Z,FW) \} + \frac{1}{4} \{ g((\tilde{\mathcal{V}}_{_{X}}F)Z,(\tilde{\mathcal{V}}_{_{Y}}F)W) \\ & - g((\tilde{\mathcal{V}}_{_{X}}F)W,(\tilde{\mathcal{V}}_{_{Y}}F)Z) + 2 g((\tilde{\mathcal{V}}_{_{X}}F)Y,(\tilde{\mathcal{V}}_{_{Z}}F)W) \} \end{split}$$

for any tangent vectors X, Y, Z, and W at every point of \widetilde{M} .

From (3.1) it follows that

$$\widetilde{R}(X, Y)W$$

$$(3.2) = \frac{1}{4} \tilde{c} \{ g(Y, W)X - g(X, W)Y + g(FY, W)FX - g(FX, W)FY + 2g(X, FY)FW \} + \frac{1}{4} \{ -(\tilde{\mathcal{V}}_{x}F)(\tilde{\mathcal{V}}_{x}F)W + (\tilde{\mathcal{V}}_{y}F)(\tilde{\mathcal{V}}_{x}F)W + 2(\tilde{\mathcal{V}}_{y}F)(\tilde{\mathcal{V}}_{x}F)Y \} .$$

In particular, let M be an almost complex hypersurface of a K-space \tilde{M} and X, Y, W belong to $T_v(M)$ ($y \in U(x)$). Then, by Lemma 2.6, $(\tilde{V}_x F) Y$ belongs to $T_v(M)$ and therefore $(\tilde{V}_x F)(\tilde{V}_y F) W$ also belongs to $T_v(M)$. Hence, from (3.2) it follows that if X, Y, and W belong to $T_v(M)$, then $\tilde{R}(X, Y) W$ belongs to $T_v(M)$.

Thus, for an almost complex hypersurface M of a K-space \widetilde{M} with constant holomorphic sectional curvature \widetilde{c} , from (2.6) we have

$$\widetilde{R}(X, Y) W = R(X, Y) W - \{h(Y, W)AX - h(X, W)AY\}$$

$$- \{k(Y, W)BX - k(X, W)BY\}$$
for $X, Y, W \in T_v(M), y \in U(x)$

or by (2.4), (2.5), and Lemma 2.4 (iii), this equation reduces to

(3.3)
$$\tilde{R}(X, Y)W = R(X, Y)W - \{g(AY, W)AX - g(AX, W)AY\} - \{g(FAY, W)FAX - g(FAX, W)FAY\}.$$

Now, from (3.2) it follows that the linear endomorphism $T_{\nu}(M)$ $(y \in M)$ determined by $X \to \widetilde{R}(X, Y)W$ has the trace (for example see [7] p. 254)

$$\frac{\widetilde{c}}{4}\{2ng(Y,W) - g(Y,W) + g(Y,W) + 2g(Y,W)\} + \frac{3}{4}\{\sigma(Y,W) - \sigma^*(Y,W)\}$$

where

$$\sigma(Y, W) = R_{ji}Y^{j}W^{i}$$
 , $\sigma^{*}(Y, W) = R^{*}_{ji}Y^{j}W^{i}$, $Y = Y^{j}\frac{\partial}{\partial x^{j}}$, $W = W^{j}\frac{\partial}{\partial x^{j}}$.

On the other hand, from (3.3), we see that the same linear endomorphism has the trace

$$\sigma(Y, W) + 2g(A^2Y, W)$$

where we have used the fact that M is minimal in \widetilde{M} . Thus, we have

$$\frac{\widetilde{c}}{2}(n+1)g(Y, W) + \frac{3}{4}(\sigma(Y, W) - \sigma^*(Y, W)) = \sigma(Y, W) + 2g(A^2Y, W)$$

or with local components this equation can be written as

$$\frac{c}{2}(n+1)g_{ji} + \frac{3}{4}(R_{ji} - R^*_{ji}) = R_{ji} + 2H_{jl}H_i^l$$

where

$$A(X)=X^lA_l{}^jrac{\partial}{\partial x^j}$$
 , $H_{ji}=g_{il}A_j{}^l$ and $H_j{}^i=g^{il}H_{jl}$.

At the same time, from the coefficient of ξ in (2.6), we have $(\mathcal{V}_X h)(Y, W) - (\mathcal{V}_Y h)(X, W) + k(Y, W)t(X) - k(X, W)t(Y) = 0$

or

$$(\mathcal{V}_{x}h)(Y,\ W) - (\mathcal{V}_{y}h)(X,\ W) - h(Y,FW)t(X) + h(X,FW)t(Y) = 0 \ . \eqno(Codazzi)$$

Since $h(X, Y) = H_{ji}X^{j}Y^{i}$, with local components Codazzi equation can be written as

$$V_{i}H_{jk} - V_{j}H_{ik} + t_{j}F_{k}{}^{l}H_{il} - t_{i}F_{k}{}^{l}H_{jl} = 0$$

where $t(X) = t_i X^i$.

Similarly, from the coefficient of $F\xi$, we have

$$(\mathcal{V}_x k)(Y, W) - (\mathcal{V}_Y k)(X, W) + h(Y, W)s(X) - h(X, W)s(Y) = 0.$$
 (Codazzi)

Later, we shall see that these two Codazzi equations are equivalent (see Remark).

With local components, the second Codazzi equation can be written as

$$V_{i}(F_{k}^{l}H_{jl}) - V_{j}(F_{k}^{l}H_{il}) - s_{i}H_{jk} + s_{j}H_{ik} = 0$$

where $s(X) = s_i X^i$ and we have used that $k(Y, W) = -h(Y, FW) = -F_{i}^{\ i} H_{it} Y^j W^i$.

Gathering these results, we have the following

Lemma 3.2. Let M be an almost complex hypersurface of a K-space \widetilde{M} with constant holomorphic sectional curvature \widetilde{c} . Then we have

(3.5)
$$\frac{\widetilde{c}}{2}(n+1)g_{ji}-\frac{1}{4}(R_{ji}+3R^*_{ji})=2H_{ji}H_i^l,$$

$$(3.6) V_i H_{il} - V_j H_{il} + t_j F_l^h H_{ih} - t_i F_l^h H_{jh} = 0,$$

$$(3.7) V_i(F_k^l H_{il}) - V_i(F_k^l H_{il}) - s_i H_{ik} + s_i H_{ik} = 0.$$

Lemma 3.3. Let M be an almost complex hypersurface of a K-space \widetilde{M} with constant holomorphic sectional curvature. Then we have

$$(3.8) H_{il} \mathcal{V}_i F_k^{\ l} = 0.$$

PROOF. By Lemma 2.7, we have $s_i + t_i = 0$. From (3.7) we have

$$(3.9) F_k{}^l(V_iH_{il}-V_iH_{il})+H_{il}V_iF_k{}^l-H_{il}V_jF_k{}^l-s_iH_{ik}+s_iH_{ik}=0.$$

Multiplying (3.6) by F_k^l and making use of $t_i = -s_i$, we have

$$F_k^{\ l}(V_iH_{il}-V_iH_{il})+s_iH_{ik}-s_iH_{ik}=0$$
.

Therefore, (3.9) reduces to

$$(3.10) H_{ii} \mathcal{V}_i F_k^l = H_{ii} \mathcal{V}_i F_k^l.$$

Now, in (3.10) $V_i F_k^l$ is pure in i, k and $V_j F_k^l$ is hybrid in k, l by virtue of (1.1). On the other hand, since Lemma 2.4 (i) means that H_{il} is pure in i, l, $H_{il} V_j F_k^l$ is hybrid in i, k by virtue of Proposition 1 (ii). Thus, the left hand side of (3.10) is pure in i, k and at the same time the right hand side is hybrid in i, k. Hence, by Proposition 1 (iii), we have $H_{il} V_i F_k^l = 0$.

REMARK. By Lemma 2.7, from (3.9) and (3.10) it follows that (3.6) and (3.7) are equivalent.

4. Proof of Theorems.

PROOF OF THEOREM A. (i) implies (ii): by the assumption A=0, from Lemma 2.5, we have

 $\widetilde{c} = H(X)$ for any unit vector X tangent to M.

- (ii) implies (iii): this follows immediately from Lemma 1.4.
- (iii) implies (iv): making use of $R_{ji} = (\rho/2n) g_{ji}$ and $R^*_{ji} = (\rho^*/2n)g_{ji}$, from (3.5), we have

$$H_{il}H_{i}^{\;l}=\left\{rac{n+1}{4}\widetilde{c}-rac{1}{16n}ig(
ho+3
ho^{*}ig)
ight\}g_{ji}$$

or

where

$$c = \frac{1}{4n(n+1)}(\rho + 3\rho^*)$$
.

Multiplying (3.8) by H_h^j and making use of (4.1), we have

$$\frac{n+1}{4}(\tilde{c}-c)V_{i}F_{kh}=0.$$

In this place, we notice that $\tilde{c}-c=$ constant by virtue of (1.2). Hence if $\tilde{c}-c\neq 0$, then we have $V_iF_{kh}=0$. This contradicts the assumption that M is non-Kähler. Thus, we have $\tilde{c}=c$.

(iv) implies (i): transacting (3.5) with g^{ji} , we have

$$\widetilde{c}n(n+1)-rac{1}{4}(
ho+3
ho^*)=2H_{jl}H^{jl} \quad ext{i.e.}, \quad n(n+1)(\widetilde{c}-c)=2H_{jl}H^{jl}$$

from which it follows that $H_{ji} = 0$, that is, M is totally geodesic. q.e.d.

PROOF OF THEOREM B. By Lemmas 1.2 and 1.3, we have

$$R_{ji} = \frac{
ho}{6} g_{ji} \; , \qquad R^*_{ji} = \frac{
ho^*}{6} g_{ji} \; ,$$

because M must be 6-dimensional by virtue of Lemma 1.1. Thus, by Theorem A, we see that M is a K-space of constant holomorphic sectional curvature. Hence, Theorem B follows from Lemma 1.5.

REFERENCES

 A. GRAY, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J., 12 (1965), 273-287.

- [2] A. GRAY, Vector cross products on manifolds, Trans. Amer. Math. Soc., 141 (1969), 465-504.
- [3] T. FUKAMI AND S. ISHIHARA, Almost Hermitian structure on S^8 , Tōhoku Math. J., 7 (1955), 151-156.
- [4] S. Kotō, On invariant subspaces in almost Hermitian spaces, Mem. of Fac. Ed. Niigata Univ., 3 (1961), 1-5.
- [5] S. SAWAKI AND K. SEKIGAWA, On almost Hermitian manifolds with constant holomorphic sectional curvature, to appear in J. Differential Geometry.
- [6] S. SAWAKI, Y. WATANABE AND T. SATO, Notes on a K-space with constant holomorphic sectional curvature, to appear in Kōdai Math. Sem. Rep..
- [7] B. SMYTH, Differential Geometry of Complex Hypersurfaces, Thesis, 1966.
- [8] S. TACHIBANA, On infinitesimal conformal and projective transformations of compact K-space, Tohōku Math. J., 13 (1961), 386-392.
- [9] T. TAKAHASHI, Hypersurface with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J, Math. Soc. Japan, 19 (1967), 199-204.
- [10] K. TAKAMATSU, Some properties of 6-dimensional K-spaces, Kōdai Math. Sem. Rep., 23 (1971), 215-232.
- [11] S. TANNO, Constancy of holomorphic sectional curvature in almost Hermitian manifolds, Kōdai Math. Sem. Rep., 25 (1973), 190-201.
- [12] Y. WATANABE AND K. TAKAMATSU, On a K-space of constant holomorphic sectional curvature, Kōdai Math. Sem. Rep., 25 (1973), 297-306.
- [13] S. YAMAGUCHI, G. CHUMAN, AND M. MATSUMOTO, On a special almost Tachibana space, Tensor N. S., 24 (1972), 351-354.

NIIGATA UNIVERSITY, NIIGATA KANAZAWA UNIVERSITY, KANAZAWA