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Introduction. Let M be a 2^-dimensional almost Hermitian manifold
with almost Hermitian metric tensor gόi and almost complex structure
tensor JFyi}. By Fίf Rkji

h and RH we denote the operator of covariant

differentiation with respect to Christoίfel symbols ] . \ formed with gji9

the curvature tensor and the Ricci tensor respectively, and put R*Si =
(1/2)FabRabciFje where Rabci = gnRaU

ι etc.. Then Mis said to be a if-space
(or almost Tachibane space, nearly Kahler manifold) provided

VάF> + ViFf = 0 .

It is well known that a Kahler manifold is a iΓ-space but a ϋΓ-space
is not necessarily a Kahler manifold [3]. The main purpose of the present
paper is to prove the following

THEOREM A. Let M be a K-space of constant holomorphic sectional
curvature c and M a connected non-Kahler almost complex hypersurface
of M. If M is of complex dimension n>2, then the following statements
are equivalent:

( i ) M is totally geodesic in M,
(ii) M is of constant holomorphic sectional curvature,
(iii) M is an Einstein space satisfying R*j{ = (p*/2n)gjif

(iv) c = 0
where c = l/(in(n + l))(p + 3/0*), p = gjiRH and p* = gjiR*H.

THEOREM B. Let M be an ^-dimensional K-space of constant holomor-
phic sectional curvature and M a non-Kahler almost complex hypersurface
of M. Then M is a space of constant curvature.

For Theorem A, we shall prove that if an almost complex hypersurface
M of a iΓ-space M is a Kahler manifold, then M is also a Kahler manifold
(Proposition 2). But we know Smyth's result [7; p. 257] for the case
where M is a Kahler manifold. The analogous problems to those in

The Latin indices run over the range 1, 2, , 2n.
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Theorem A in the case of Kahler manifold were studied by A. Gray [1],
B. Smyth [7], T. Takahashi [9] and others. One of the present authors
(Sawaki and Sekigawa [5]) proved the equivalence of the first two state-
ments of Theorem A in a more general case than a i£~space. In § 1 we
shall state some well known properties of a ϋΓ-space and some recent
results on a Jf-space of constant holomorphic sectional curvature. In § 2,
differential geometric properties of almost complex hypersurfaces of an
almost Hermitian manifold and as a special case, a if-space will be stated.
In § 3 we shall prove some lemmas on almost complex hypersurfaces of
a ϋΓ-space with constant holomorphic sectional curvature. In particular,
we shall obtain Codazzi equation which will play an important role in
this papar. § 4 will be devoted to the proof of Theorems A and B.

1. i£-space. In a 2n-dimensional almost Hermitian manifold M, we

define the following linear operators

ih jrψi Oh — Ui r h ) , Uih — —\pi oh -f- Hi r h) .
Δ Δ

Then a tensor T^resp. T/) is said to be pure in j , i if it satisfies

*OfiTab = 0 (resp. *OfbTa

h - 0) ,

and hybrid in j, i if it satisfies

O$Tah = 0 (resp. C$7? - 0) .

This definition is the same as a general tensor, for example, TH

h and we
can easily verify the following

PROPOSITION 1. ( i ) If T/ is pure (resp. hybrid) in j, i then

FSTJ - FfTf {resp. Ft

{T/ = -F/TV) .

(ii) Let TH be pure in j, i. If S/ is pure (resp. hybrid) in j, i then
TjrSir is pure (resp. hybrid) in j, i.

(iii) If TH is pure and at the same time hybrid in j, i then TH

vanishes.

In particular, let M be a ίΓ-space. Then it is easily verified that

(1.1) *OtVaFb

h = 0 , OiiVjF* = 0 ,

and we know

(1.2) (VaFih)V*Fih - p- p* = constant ^ 0 [8] .

Moreover, for a iΓ-space, we know the following

LEMMA 1.1. (Gray [2]) There does not exist a ^-dimensional non-
Kahler K-space.



ALMOST COMPLEX HYPERSURFACES OF IT-SPACE 571

LEMMA 1.2. (Takamatsu [10]) In a ^-dimensional K-space, we have

RH - R*H = ^=T£-9H

D

LEMMA 1.3. (Yamaguchi, Chuman, and Matsumoto [13]) A 6-dimen-
sional non-Kdhler K-space is an Einstein space.

LEMMA 1.4. (Watanabe and Takamatsu [12]) In a K-space of con-
stant holomorphic sectional curvature, we have

2n 2n

LEMMA 1.5. (Tanno [11]) A ^-dimensional non-Kdhler K-space of
constant holomorphic sectional curvature is a space of constant curvature.

2. Almost complex hypersurfaces of an almost Hermitian manifold.
Let M be an almost Hermitian manifold of dimension 2n + 2 with almost
Hermitian metric tensor g and almost complex structure tensor F. More-
over, let M be an almost complex hypersurface of fit, i.e., suppose that
there exists an almost complex analytic mapping f:M—+M. Then we
identify, for each x e M, the tangent space TX{M) with f*{Tx{M)) c Tf{x){M)
by means of /*. Since f*og = g' and Fof* = f*oF' where g' and F' are
the almost Hermitian metric tensor and the almost complex structure
tensor of M respectively, g' and Ff are respectively identified with the
restrictions of the structures g and F to the subspace f*(Tx(M)). Hence-
forth, under this consideration, we use g and F instead of g' and Ff

respectively.
As is well known, there exists a local coordinate system (x\ , x2n,

x2n+1,x2n+2) on a neighborhood U of f(x) in M such that (a?1, -- ,a;2%) is
a local coordinate system on the neighborhood U of x in M given by U =
{yeM\ x2n+ί(y) = x2n+2(y) = 0}, where xλ = xλof (λ = 1, 2, , 2n + 2).

By V we always mean the Riemannian covariant differentiation on M
and ζ a differentiable unit vector field normal to M at each point of U(x).
If X and Y* are vector fields on the neighborhood U{x), we may write

(2.1) Vx Y = F x Y + h(X, Y)ξ + k(X,

where Vx Y denotes the component of Vx Y tangent to M. Then the fol-
lowing lemma is easily verified (for example see [5]).

LEMMA 2.1. ( i ) V is the covariant differentiation of the almost
Hermitian manifold M.

(ii) h and k are symmetric covariant tensor fields of degree 2 on
U(x).
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The identities g(ξ, ξ) = 1 and g(Fξ, Fξ) = 1 imply g(Fxξ9 ξ) = 0 and

g(Px(Fξ), Fξ) = 0 respectively. Therefore, we may put

(2.2) 7zξ = -A(X) + a(X)Fξ ,

(2.3) Fx(Fξ) = -B(X) + t(X)ξ

where A(X) and B(X) are tangent to M.
In this place, we know the following

LEMMA 2.2. ( i ) A, B and s, t are tensor fields on U{x) of type
(1.1) and (0.1) respectively.

(ii) A and B are symmetric with respect to g and satisfy

(2.4) h(X, Y) = g(AX9 Y) ,

(2.5) k(X, Y) = g{BX, Y) .

LEMMA 2.3. Let R and R be Riemannian curvature tensors of M and
an almost complex hypersurface M of M respectively. Then for any vector
fields X, Y, Z, and W on U(x) c M, we have

R(X, Y)W=R(X, Y)W-{h(Y, W)AX- h(X, W)AY) - {k(Y, W)BX

- k(x, W)BY) + {{vxh){Y9 w) - (rτh)(x, w) + k(Y,
{ ' ) - k(x, w)t(Y)}ξ + {(rzk)(Y, w) - (rrk)(x, w)

+ h(Y, W)s(X) - h(X, W)s(Y)}Fξ ,

R(X, Y, Z, W)

(2.7) = B(X9 Y, Z, W) - {g(AX9 Z)g(AY9 W) - g{AY, Z)g(AX9 W)}

- {g(BX9 Z)g{BY9 W) - g(BY9 Z)g(BX9 W)} .

(Gauss)

In particular, let M be a iΓ-space, i.e., suppose that

φzF) Y + φγF)X = 0 (or equivalents {VXF)X = 0)

for any vector fields X and Y on M.
It is well known that an almost complex hypersurface M of a ίf-space

M is also a iT-space [4].

LEMMA 2.4. (Sawaki and Sekigawa [5]) In an almost complex hyper-
surface M of a K-space M, we have

( i ) FA=-AFf FB=-BFt

(ii) FA and FB are symmetric with respect to g,
(iii) B — FA (or equivalently h(X9 Y) — k(X9 FY) for any vector

fields X and Y on M).

LEMMA 2.5. (Sawaki and Sekigawa [5]) In an almost complex hyper-
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surface M of a K-space M, for a unit vector X tangent to M, we have

H(X) = H{X) + 2{g(AX, X)> + g(FAX, X)2}

where H{X) {resp. H(X)) is holomorphic sectional curvature in M (resp.
M).

LEMMA 2.6. Let M be an almost complex hypersurface of a K-space

M. If X and Y belong to Ty(M) (ye U(x)), then (FXF)Y also belongs to

Ty(M).

PROOF. By (2.1), from FX(FY) = (FXF)Y + FFXY, we have

(2.8) VX(FY) + h(X, FY)ζ + k{X, FY)Fξ

= (FXF)Y+ FVXY+ h(X, Y)Fξ - k(X9 Y)ζ .

On the other hand, from Lemma 2.4 (iii), we have h(X, FY) = —k(X, Y)
or h{X, Y) = k{X, FY) and therefore (2.8) turns out to be

= (FXF)Y+FFXY

from which we have

(2.9) (FXF) Y = (FXF) Y e Ty(M) .

Moreover, we prove the following lemma and proposition which we
owe much to Prof. Tanno.

LEMMA 2.7. s(X) + t(X) = 0.

PROOF. By (2.3) - i^(2.2) we have

{FxF)ζ = (s(X) + t(X))ζ ,

where we have used Lemma 2.4 (iii). Since FXF is skew-symmetric with
respect to g, we obtain s(X) + t(X) = 0.

PROPOSITION 2. Let M be an almost complex hypersurface of a K-
space M. If M is a Kdhler manifold, then M is also a Kdhler manifold.

PROOF. In the proof of Lemma 2.7, we have (FxF)ζ = 0. Similarly,

(FxF)Fξ = 0. Since l i s a ίΓ-space we have {FξF)X = (FFξF)X = 0. By

(2.9) we have (FXF) Y = (FXF)Y= 0, since M is Kahlerian. Next we extend

ζ to a vector field on a neighborhood of y e M in M. Then we have

{FξF)Fξ = -Fe5 - F(Fς(Fξ)) = -F(FξF)ξ

from which it follows that (FξF)Fξ = 0 because M is a iΓ-space. Similarly

(FFξF)ξ = 0. Therefore, FF = 0 at y (or on its neighborhood in M).

Thus, by (1.2) we have p — p* = 0 at y, and hence FF = 0 on M.
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The following corollary follows immediately from Proposition 2.

COROLLARY. Let M be a non-Kahler K-space and M an almost com-
plex submanifold of M which is a Kahler manifold. Then dim M^
dim M — 4.

3. Almost complex hypersurfaces of a i£-space with constant holo-
morphic sectional curvature. Recently Sawaki, Watanabe, and Sato [6]
proved the following

LEMMA 3.1. Let M be a K-space of constant holomorphic sectional
curvature c and R the Riemannian curvature tensor. Then we have

R(X, Y, Z, W)

= ±c{g(X, Z)g(Y, W) - g(X, W)g{Y, Z) + g(X, FZ)g{Y, FW)

(3-1)

- g(X, FW)g{ Y, FZ) + 2g(X, FY)g(Z, FW)}+±{g((ΓxF)Z, (FrF) W)

, ψγF)Z) + 2g((FxF)Y, (FZF)W)}

for any tangent vectors X, Y, Z, and W at every point of M.

From (3.1) it follows that

R(X, Y)W

= ±c{g(Y, W)X-g(X, W)Y + g(FY, W)FX- g(FX, W)FY
(3.2)

+ 2g(X, FY)FW) + ±.{-ψxF)ψYF)W + {VYF){VXF)W
4

+ 2(FWF)(FXF)Y}.

In particular, let M be an almost complex hypersurface of a ίΓ-space M
and X, Y, W belong to TV(M) (ye U(x)). Then, by Lemma 2.6, (FXF)Y
belongs to Ty(M) and therefore ψxF){FγF)W also belongs to TV{M).
Hence, from (3.2) it follows that if X, Y, and W belong to Ty{M), then
M(X, Y)W belongs to TV(M).

Thus, for an almost complex hypersurface M of a .K-space M with
constant holomorphic sectional curvature c, from (2.6) we have

R{X, Y)W= R(X, Y)W- {h(Y, W)AX- h(X, W)AY)

- {k(Y, W)BX- k(X, W)BY)

for X, Y, We TV(M), y e U(x)

or by (2.4), (2.5), and Lemma 2.4 (iii), this equation reduces to
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(3.3) R(X, Y)W= R(X, Y)W- {g(AY, W)AX - g{AX, W)AY)

- {g(FAY, W)FAX - g(FAX, W)FAY) .

Now, from (3.2) it follows that the linear endomorphism Ty(M) (y e M)
determined by X-+ϊt{X, Y)W has the trace (for example see [7] p. 254)

4~{2ng(Y, W) - g(Y, W) + g(Y, W) + 2g(Y, W)} + hσ(Y, W)-<τ*(Γ, W)}
4 4

where

σ(Yf W) = RHY'W* , σ*(Y, W) = R*HY5Wι , Y = Yj-^ , W = Wj-^ .
dx3 dx3

On the other hand, from (3.3), we see that the same linear endomor-
phism has the trace

σ(Y, W) + 2g(A2Y, W)

where we have used the fact that M is minimal in M.
Thus, we have

f W) + -Uσ(Y, W) - σ*(Y, W)} = σ(Y, W) + 2g(AΎ, W)
Δ 4

or with local components this equation can be written as

—\fl -r l JQji -r —\-Kji — -tί ji) — it a -f- άri^rii
2 4

where

lyι and H/ = gilHόι .

At the same time, from the coefficient of ξ in (2.6), we have

(rzh)(Y, w) - (rrh)(x, w) + k(Y. w)t(X) - k(x, w)t(Y) = o

or

(Pxh)(Y, W) - (Fγh)(X, W) - h(Y, FW)t(X) + h(X, FW)t(Y) = 0 .

(Codazzi)

Since h{Xy Y) = HHX3Ύ\ with local components Codazzi equation can be
written as

F{Hjk - FjHik + tjFJHn - UFk

ιHn = 0

where t(X) = UX\
Similarly, from the coefficient of Fζ, we have
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{Fxk){Y, W) - (Fγk)(X, W) + h(Y, W)s(X) - h(X, W)s(Y) = 0 .

(Codazzi)

Later, we shall see that these two Codazzi equations are equivalent (see
Remark).

With local components, the second Codazzi equation can be written as

+ SjHik = 0

where s(X) = s,Xl and we have used that k(Y, W) = -h(Y, FW) =
-Fk

ιHάιTWK
Gathering these results, we have the following

LEMMA 3.2. Let M be an almost complex hypersurface of a K-space
M with constant holomorphic sectional curvature c. Then we have

(3.5) - | ( n + l)βii ~(R* + 322**) - 2MiιHi

ι ,

(3.6) F{Rn - FjHu + tjFfHu - tiFι

hHih - 0 ,

(3.7) W* !iϊy«) - Vά{Fk

ιHu) - 8iHik + SjHik = 0 .

LEMMA 3.3. Let M be an almost complex hypersurface of a K-space
M with constant holomorphic sectional curvature. Then we have

(3.8) fΓy,W = 0 .

PROOF. By Lemma 2.7, we have sά + tά = 0. From (3.7) we have

(3.9) FWtHn - FjHu) + Hj.F.F,1 - HuF3Fk

ι - SiHjk + s3Hik = 0 .

Multiplying (3.6) by Fk

ι and making use of tό = — sj9 we have

Fk\F{Hn - FjHu) + SjHik - SiHjk = 0 .

Therefore, (3.9) reduces to

(3.10) fliiW - HtftFJ .

Now, in (3.10) FtFk

ι is pure in i, A: and FάFk

ι is hybrid in &, I by
virtue of (1.1). On the other hand, since Lemma 2.4 (i) means that Hi%

is pure in ΐ, I, HuFjFk

ι is hybrid in i, k by virtue of Proposition 1 (ii).
Thus, the left hand side of (3.10) is pure in i, k and at the same time
the right hand side is hybrid in i, k. Hence, by Proposition 1 (iii), we
have HnFiFk

ι = 0 .

REMARK. By Lemma 2.7, from (3.9) and (3.10) it follows that (3.6)
and (3.7) are equivalent.

4. Proof of Theorems.
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PROOF OF THEOREM A. ( i ) implies (i i) : by the assumption A = 0,
from Lemma 2.5, we have

c = H(X) for any unit vector X tangent to M.

(ii) implies (iii): this follows immediately from Lemma 1.4.
(iii) implies (iv): making use of RH = (p/2n) gH and R*Si = (p*/2n)gS'i9

from (3.5), we have

or

(4.1) HnHi = ^±l(c - c)gH

4

where

An(n + 1) M

Multiplying (3.8) by Hh

ύ and making use of (4.1), we have

In this place, we notice that c — c = constant by virtue of (1.2).
Hence if c — c Φ 0, then we have ViFkh = 0. This contradicts the assum-
ption that M is non-Kahler. Thus, we have c — c.

(iv) implies ( i ) : transacting (3.5) with gj\ we have

cn(n + 1) - — (p + 3^*) = 2fl"yiJPl i.e., n{n + l)(c - c) = 2fl>

yzlP
I

4

from which it follows that i ϊ i z = 0, that is, M is totally geodesic. q.e.d.

PROOF OF THEOREM B. By Lemmas 1.2 and 1.3, we have

τ> P r>* ί °*

D Ό

because M must be 6-dimensional by virtue of Lemma 1.1. Thus, by
Theorem A, we see that M i s a l£-space of constant holomorphic sectional
curvature. Hence, Theorem B follows from Lemma 1.5.
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