
Tδhoku Math. Journ.
25(1973), 527-533.

COMPLEX HYPERSURFACES WITH RS = 0 IN Cn+1

Dedicated to Professor Shigeo Sasaki on his 60th birthday

TSUNERO TAKAHASHI

(Received March 1, 1973)

Recently P. J. Ryan [2] studied complex hypersurfaces in a complex
space form satisfying the condition

( * ) R(X, Y)S = 0

for any tangent vectors X and Y of the hypersurface, where R is the
curvature tensor, S is the Ricci tensor of the hypersurface and R{X, Y)
operates on the tensor algebra as a derivation. He proved that these
hypersurfaces are Einstein manifolds if the holomorphic sectional curvature
of the ambient space does not vanish (Theorem 4).

In the case where the ambient space is a complex Euclidean space
Cn+1, he obtained the following two results: Let M be a complex hyper-
surface in CΛ+1. (1) If M satisfies the condition (*) and the scalar curvature
of M is constant, then M is totally geodesic (Proposition 5). (2) If M is
complete and satisfies the condition

( ϊ ) R(X, Y)R = 0

for any tangent vectors X and Y of M, then M is cylindrical, that is,
the product of Cn~ι and a complex curve (Theorem 6).

In this paper we shall obtain the following result.

THEOREM. A complete complex hypersurface in Cn+1 satisfying the
condition (*) is cylindrical.

1. Hypersurfaces in Cn+ι. Throughout this paper it will be agreed
that Greek indices have the range 1, 2, •••, n.

Let M be an n dimensional complex manifold immersed holomorphically
in Cn+1. Let eθ9el9 * ,en be a unitary frame field in Cn+ί, defined in a
neighborhood of M such that eo(x)f xeM, is orthogonal to the tangent
space of M at x. Its coframe field α>°, ω\ •••,<£>" consists of complex
valued linear differential forms of type (1, 0) on M such that ω° = 0 and
ω1, , ωn, ώ\ , ώn are linearly independent. The induced metric of M
can be written as
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(1.1) ds2 = 2 Σ ωλώλ ,
λ=ι

and the el9 * , en is a unitary frame field of M with respect to this
metric. The ω\ , ωn is a coframe field of el9 , en.

Associated to the frame e0, βx, , βn, there are complex valued linear
differential forms ωj (A, B — 0,1, , n) such that

(1.2) ωi + ώB

A = 0 , (A, # = 0,1, , n) ,

(1.3) dωA+ ±ωiΛωB = 0 (A = 0,1, . . , n) ,

(1.4) Λ u ί + Σ ωA

0 A o)°B = 0 (A, B = 0 , 1 , - - - , n) .
(7=0

Since ω° = 0, (1.3) becomes

(1.5) dω* + Σ ωκ

λ Λ ωλ = 0
λ = l

and

It follows by Cartan's lemma that

(1.6) ω\ = Σ fli^ , H2μ = Hμλ .
μ

Then from (1.2) we have

(1.7) ωl= - Σ ^
μ

The ωjt are the connection forms of Massociated to the frame elf •••, en

and the covariant differential of eμ is given by

(1.8) Deμ = Σ
The curvature forms Ω\ are defined by

Q\ = dωj + Σ < Λ ωj .
a

Then from (1.4), (1.6), and (1.7) we have

(1.9) Ω\ = Σ B*»Hλμώv Λ ω^ .

We take the exterior derivative of (1.6) and make use of (1.4) and
(1.5). Then we have

Σ (dHλμ - Σ (Haμωϊ + Hλaωl) + Hλμω<) Λ # = 0 ,
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It follows that

(1.10) dHλμ - Σ (Haμω«λ + Hλaω
a

μ) + Hλμωl = Σ Hχμvω»,

where Hλμu are symmetric in all indices.

Using (1.4), (1.6), and (1.7) we get

dωl = Σ HλaHaμω
λ A ω^ .

a

In our frame field the Ricci tensor S of M can be expressed by

S = Σ (%<*>' (g)ώ" + Sĵ ώ^ (g) ω )̂

where Sx-μ = Sμλ = Ŝ ^ which are given by

(1 12) Sχ μ = — Σ HχaHaμ .

In our notations the condition (*) is

Σ (SaμΩf + SβS?) = 0 .
a

Substituting (1.9) and (1.12) into the above equation, we have an expression
of the condition (*) as follows:

(* ) -fίc^Σ HμaHaβHβu = Σ HκaHaβHβχHμu .
a,β a,β

The scalar curvature k of M is given by

(1.13) fc= - 2 Σ | B i , l f *

and & is a real analytic function on M.

Let ej, e[, , e» be another frame field such that e[ is orthogonal to
the tangent space of M. Then we have

(1.14) e[ = UQ°e0 a n d e'μ = Σ ^ ^ ,

where Z70° is a complex valued function with | US \ = 1 and the matrix
(C/2) is a unitary matrix. Let ωn, ω'j be the differential forms with
respect to the frame field βj, β[, , e'n. Then we have

(1.15) ω* = Σ ϋ2ω^ ,

(1.16) Σ ω'? Eβ = d 172 + Σ ί^ωj,
α α

(1.17) Hl^ϋSΣi

where ω'S = Σ P Hίn©''1.
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2. Proof of the theorem. In this section M is an n dimensional con-
nected complex manifold immersed holomorphically in Cn+i. We assume
that M is complete with respect to the induced metric and satisfies the
condition (*).

From the last formula (1.17) in § 1, it is easily seen that the rank of
the matrix (Hλμ(x))> x e M, is independent of the choice of the frame field.
We shall denote it by p(x).

To prove the theorem it suffices to show that p(x) is smaller than 2
everywhere. In fact, if p(x) ^ 1 everywhere, we see easily that M
satisfies the condition (J). Then we can apply Ryan's result to our situa-
tion and we can conclude the theorem.

In the rest of this section we assume that there is a point xoeM
such that p(xQ) ^ 2 and we shall induce a contradiction.

It is clear that p(x) ^ 2 at a point x in a neighborhood of x0. Take
a unitary frame field e0, el9 •••, en as in § 1. Then in our assumption Hλμ

are satisfying (*'). Let U= (Uμ) be a unitary matrix and put

lμ Σ i Ϊ β β

Then H'λμ also satisfy (*'). By a slight modification of Chern's lemma
([1], page 28) we can choose U so that

H'u = aλ^ 0 and H'Xμ = 0 (λ Φ μ)

at a point a; in a neighborhood of xQ. I t follows by (*') that

aλa
5

μ = α^α^ .

Thus we have aλ = aμ, if aλaμ Φ 0 and λ Φ μ. Therefore, p(x) is constant
in a neighborhood of x0.

Let m = p(x0). We can take a frame field e0, el9 , en in a neighbor-
hood W of xQ such that the matrix (Hχμ) is diagonal and

Hn = . . . = # m m > 0 and ffm+lm+1 = = Hnn = 0 .

Since the scalar curvature fc is non-positive on M, a continuous func-
tion c on ilf is defined by

c = V-kβm .

Let M' = [x e M; k(x) Φ 0}. Then M is an open subset of M and c is
analytic on ikf.

From (1.13) we have

k = -2mH2

n = = -2mH2

mm Φ 0

on the neighborhood W of x0. Therefore, W is contained in M! and we
have
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Hn= . . . =Hmm = C

on W.

In the following we agree that the indices have the following ranges:

1 ^ i, i , & ̂  m and ra + l g r, s, £<^w.

If we put λ = r and μ = s in the formula (1.10), we have

(2.1) Hr8V = 0 u = l, . . , n .

Also if we put λ = i, μ = i and i =£ i in (1.10), we have

that is,

(2.2) c(ω} + ω|) = - Σ fliipωv .

Since c is real and {ω) + ω() + (ό)} + ώ|) = 0, we get

Σ H^ωv + Σ Sufi* = 0 .

It follows that

(2.3) HiSy = 0 i ^ = j , v = 1, - . , n ,

(2.4) ί£>} + ωί = 0 i Φ j .

If we p u t λ = μ = i in (1.10), we have

If i φ j , we know from (2.3) that Hui = HiH = 0. Thus we get

de + cωl- 2cωl = HiUωι + Σ Hiirω
r.

r

If we take the real part of the above equation, we have

2dc = flittO)' + Σ Hiirω
r + H^ώ* + Σ Riirώ*.

r r

Since the left-hand side of this equation does not depend on the indices
i = 1, •••, m, we get

JEZin = = Hmmm = 0 and Hnr = = fiTmmr .

Thus we obtain

(2.5) dc + cωl ~ 2cωf = Σ K&r i = 1, , m ,
r

(2.6) 2dc = Σ (^rώ)r + Krώ
r) ,
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where we put

hr = Hnr = = Hmmr .

If we put λ = i and μ = r in (1.10), we have

-cωι

r = Σ f l ^ ω 1 ' .

The right-hand side is

Σ Hirjω* + Σ #<„<»• = Hir^ = Hiirω* = hrω*.
3 *

Thus we get

(2.7) cωi = -hM ,

(2.8) cω\ = hrw
{ .

From (2.4) we see easily that

(2.9) ω) A ω{ = 0 % Φ j .

Using (2.7), (2.8), (2.9), and flj = c2ώ* Λ ω% we have

c4 - Σ 1 Ar l 2 ) ^ ' Λ ω* .

Since — 2cω\ = Σ r ^ r ω r — dc - cωg, we have ω} = ••• = ωZ. I t follows

t h a t

U - Σ I r̂ l2)^1 Λ ω1 = = (V - Σ I K | f)ώ" Λ ωw .

Therefore, we obtain

(2.10) β4 = Σ | A r l l .
r

We take the exterior derivative of (2.7) and make use of (1.5), (2.7),
and Ωi = 0. Then we have for i = 1, , m,

(dAr - Σ M j ) Λ ω* = c~ιhr(dc + Σ Kωή A ω{ .

From this we obtain

(2.11) dhr - Σ hM = c-%(dc + Σ ^8^
8)

If m = n, the formula (2.10) becomes & = 0 on IF, that is, the matrix
(ϋΓ )̂ = 0 on W, which contradicts our assumption. Thus we can assume
that m < n. Then we can define a real vector field X on W by

r

The covariant differential of X is
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DX = -c-'dcX + <r3 Σ (Khsώ
ser + hrh8ω

ser) - cΣ (ω'e,- + &£>) .

Thus the covariant derivative of X by itself is

DXX = 0 ,

which means that the trajectories of X are geodesies of M.
By the completeness of M, there exists a geodesic τ(t) (—00 < £ < 00)

and ε > 0 such that

7(0) = x0, 7(ί) e W and 7'(ί) = Xm ) for \t\ <ε .

Since M7 is open in M, there exists an open interval / of real numbers
such that 7(ί) e M for ί e /. We take a maximal interval with this
property.

From (2.6) and (2.10) we have

dc(X) = c2

which implies that c satisfies the differential equation

(2.12) ^1 = (COT)'

at
along the geodesic 7 within an interval — ε < t < ε. But c is analytic on
M7 and 7 is also analytic, (2.12) is also satisfied for t e I.

Then we have

(2.13) c(7(ί)) = co/(l - cot) for t e I,

where c0 = c(a?0)
From (2.13) we see that l/c0 is not contained in /. So / is upper

bounded. Let ΐ0 be the right limit of I. Then 0 < ί0 < l/c0. Since (2.13)
is satisfied for ί, 0 < £ < ί0, we have

lim c(7(ί)) = co/(l - coίo) ^ 0 .

On the other hand, c(y(t)) is defined for all real numbers and continuous.
Since 7(ί0) ί M', c(7(t0)) = 0. Thus we have

limc(7(ί)) = c(7(ί0)) - 0 .

This is a contradiction.
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