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1. Introduction. Let X be a connected complex space and d, be the
intrinsic pseudo-distance, ([4], see also the definition given in §3). We
shall show that if d, is a distance, i.e., if X is hyperbolic, then d, is
inner in the sense of Rinow [6], see also § 2. This is not surprising since
d, is defined in such a way that it is essentially the integrated form of
an infinitesimal pseudo-metric. In fact, Royden [7] has shown that if X
is a complex manifold, then d, is precisely the integrated form of an
intrinsic differential metric F;. But it is perhaps of some interest to
give a direct proof of the fact that d, is inner without assuming that X
is non-singular. The proof works also for infinite dimensional complex
spaces X. The fact that d; is inner allows us to talk about geodesics
and curvature when X is hyperbolic. Although I cannot do very much
with the geodesics and the curvature thus introduced, some of the results
in [4] proved directly can be derived from the general theory of metric
spaces with inner distance.

2. Inner distances. Let X be a metric space with distance function
d. Given a curve ¥(t),a <t £ b, in X, the length L(7) of v is defined by

L) = sup 3} d((ti), V)

where the supremum is taken with respect to all partitions a = ¢, <
t, < ++- <t = Db of the interval [a, b]. A curve v is said to be rectifiable
if its length L(7) is finite. A metric space X is said to be finitely arc-
wise connected if every pair of points x,y of X can be joined by a
rectifiable curve. It is said to be without detour (“ohne Umwege” in
Rinow [6]) if for every point ¢ X and for every positive number ¢, there
exists a positive number ¢ such that every point ye X with d(x, y) < é
can be joined to x by a rectifiable curve v of length L(7) < e.
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Let (X, d) be a finitely arc-wise connected metric space. The induced
inner distance df is defined by
d(x, y) = inf L(7) ,

where the infimum is taken with respect to all rectifiable curves 7 joining
2 and y. From the definition of d’, it follows immediately that

d(x, y) é di(x, y) for x’ Y € X *
For the proofs of the following facts, the reader is refered to Rinow
[6; pp. 119-120]:

(1) Let (X,d) be a finitely arc-wise connected metric space. Then
d and d' define the same topology on X if and only if X is without
detour.

(2) Let (X,d) be a finitely arc-wise connected metric space. Then
L(v) = L¥(v) for all curves v, where L' is the length defined by d'.

A metric space X is said to be complete (or Cauchy-complete) if every
Cauchy sequence converges. A stronger concept is that of finitely compact
space. A metric space X is said to be finitely compact if every bounded
infinite set has at least one accumulation point.

(3) Let (X, d) be a finitely arc-wise connected metric space without
detour. Then (X, d) is complete (resp. finitely compact) if and only if
(X, d) is complete (resp. finitely compact).

A distance d is said to be inner if d = d'. If (X, d) is finitely arc-
wise connected, then d° is always inner (see Rinow [6; p. 121]). Hence,
the term “the inner distance d’ induced by d” is justified. Since the
definition of d' assumes that X is finitely arc-wise connected, we shall
agree that a metric space X with inner distance d is finitely arc-wise
connected. By (1), such a space is also without detour. A curve v from
z to y is called a minimizing geodesic from = to y if L(7v) = d(x, y).
A curve 7 is a geodesic if for every te [a, b], there exists a small number
0 > 0 such that v|[¢t — d, ¢t + 6] is a minimizing geodesic from (¢ — 0) to
v(t + 6). The following result is essentially due to Hilbert, (see Rinow
[6; p. 141]):

(4) If X is a finitely compact metric space with inner distance d,
then any two points x,y of X can be joined by a minimizing geodesic.

The following result goes back to Hopf-Rinow, (see Rinow [6; p. 172]):

(5) For a locally compact metric space X with inner distance d, the
following conditions are mutually equivalent:

(a) X 1is finitely compact;

(b) X is (Cauchy) complete;

(c¢) Ewvery geodesic can be infinitely extended.
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3. Hyperbolic complex spaces. Let X be a connected complex space.
We recall the definition of the intrinsic pseudo-distance dy of X. Given
two points z, y of X, choose points = x,, x,, +++, ,_,, 2, = ¥ in X, points
@y, +oe, ay, by, «++, b, in the unit disk D = {ze C;|z| < 1} and holomorphic
mappings fi, «+«, f; of D into X such that

fia) =x,_, and fib) ==z for i=1,2 -+ k.
Using the Poincaré distance (i.e., non-Euclidean distance) o of D, we
define

k
dX(x’ y) = inf'; (o(ais bz) ’

where the infimum is taken with respect to all possible choices of above
points and mappings. Then d, is a pseudo-distance on X.
We say that X is hyperbolic if dy is a distance. If X is hyperbolic,

then the topology defined by d, coincides with the given topology of X,
(see Barth [1]).

THEOREM. If X is a hyperbolic complex space, then its imtrinsic
distance dy is inner, i.e., dy = dk.

ProOF. Since we have d(x, y) < d'(x, y) for any distance d, it suffices to
prove dy(v, y) = di(w, y). Let o = o, @, +o+, @, =¥, @, +=+, @, by, ==+, by,
fi, +++, fr be as above. It suffices to construct a rectifiable curve v from
2 to y such that

L(7) £ 3 00, b) -

Let C; be the geodesic from a; to b; in the disk D. Joining f,(C), -+, fi(Cy)
consecutively, we obtain a curve 7 from x to y. Since L(7) = >k,
L(f:(C;)), it suffices to prove

L(f(Cy)) = o(as, b;) -

In proving the inequality above, we omit the subscript 7; let C(¢), ¢, =<
t < t, be the geodesic in D from a to b. Consider a partition ¢, = s, <
§ < evo < 8, = t, of the interval [f, t]. Since

L(f(C)) = sup X dx(f(C(s;-0), F(C(s,))

and
lo(a'y b) = Z P(C(Sj_l), C(SJ)) ’
it suffices to prove

dx(f(C(s5-1)), F(C(s)) = 0(Cs5-1), Clsy)) -
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But this is clear from the definition of dy. g.e.d.

This allows us to apply a number of results in the book of Rinow [6],
some of which are listed in § 2, to hyperbolic complex spaces.

It is mot clear if a hyperbolic complex space X with dy is a G-space
in the sense of Busemann [2].

As in [4] we define an intrinsic infinitesimal pseudo-metric F'y. For
every tangent vector & of X at a point 2, let v be a tangent vector of
the unit disk D at the origin 0 and f be a holomorphic mapping of D
into X such that f,.(v) = & We set

Fy(§) = inf ||v]],

where ([v|| denotes the length of v with respect to the Poincaré metric
of D and the infimum is taken with respect to all possible choices of v
and f. Then F, is a non-negative upper semicontinuous function on the
tangent bundle T'(X) such that Fx(c&) = |¢|+Fx(§) for ce C and &e T(X).
Royden [7] has shown that d, is the integrated form of F, i.e.,

d(w,v) = int | Fy,

where the infimum is taken over all piecewise differentiable curves v from
x to y. This result of Royden shows at once that dj is an inner distance
and X is also a G-space of Busemann if X is a hyperbolic complex manifold.
The question remains unanswered for a complex space X with singularities.
It is not knmown if the metric Fy satisfies the convexity condition:

Fx(§+ 1) = Fx(§) + Fx(9) -

This condition is usually assumed in the theory of Finsler metrics.
Relatedly, it is not known if a sufficiently small spherical meighborhood
Ulz; e) = {ye X; dx(z, ¥) < €} is geodesically convex.

Another (pseudo-) distance of interest is the Carathéodory (wseudo-

distance ¢y defined by
cx(x, y) = sup o(f(x), [(¥)) »

where the supremum is taken over all holomorphic mappings f: X — D.
In general, ¢, is not an inner distance. The induced inner distance c%
was studied by Reiffen [5] as well as by Carathéodory himself, [3].
Since ¢y < dy, (see [4]) and d, is inner, we have

cy Scy =dy.

Reiffen has shown that c% is the integrated form of a (pseudo-) differential
metric.
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4. Curvature. Let X be a metric space with inner distance d. A
geometric configuration consisting of three distinet points and three mini-
mizing geodesics is called simply a triangle. The three points and the
three minimizing geodesics are called vertices and edges of the triangle.
Let 4 be a triangle with vertices =z, y, 2 and edges e,, ¢,, ¢,. (The edge
facing @, i.e., joining y, 2, is denoted by e,. It may not be determined
uniquely by y, 2). We denote the midpoints of e,, ¢, e, by Z, 7,7, re-
spectively. Let Sy be a 2-dimensional simply connected, complete rieman-
nian space of constant curvature K < 0. Let 4’ be a triangle with vertices
2,9, 2" and edges e,,e,,e,, in Sy which is congruent to the triangle 4.
Such a triangle 4’ is unique up to a motion in Sgx. (For K > 0, 4" may
not exist or may not be unique if it exists). The midpoints of e, e,, e,
will be denoted by 7', %', z’, respectively. We say that the curvature of
the metric space X is < K at a point « if there exists a neighborhood U
of « such that for every triangle 4 with vertices z, y, z in U the distance
d(¥,Z) is less than or equal to the distance between % and z'. This
definition is essentially the same as the one in Rinow [6; p. 310].

If X is a complex manifold with inner distance d, then we define the
holomorphic sectional curvature as follows. Let V be a complex sub-
manifold of X. The restriction of d to V is not usually an inner distance.
So we consider the inner distance induced from the restriction of d to V.
We say that the holomorphic sectional curvature of (X, d) is <K at a
point x if the curvature of every l-dimensional complex submanifold V
through x is <K at .

We know [4] that a hermitian manifold whose holomorphic sectional
curvature is bounded above by a negative constant is hyperbolic. It s
not known if, conversely, every hyperbolic complex manifold admits such
a hermitian metric. In connection with this question, one can ask if a
hyperbolic complex manifold X with dy has holomorphic sectional curvature
< K < 0 in the sense defined above.
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