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Recently, Kuo [4] has introduced the notion of Riemannian space with
almost contact 3-structure and since then Kashiwada [3], Sasaki [6],
Tachibana and Yu [8] and Tanno [9] have studied several interesting
subjects concerning this structure or Sasakian 3-structure. As is well
known, an almost contact space is odd dimensional and a space with the
structure above stated is of dimensionality 4% + 3 (n: non-negative integer).
So, the case where the dimensionality is 4w + 1 remains on our discus-
sion. The main purpose of this paper is to discuss a structure similar to
almost contact 3-structure or Sasakian 3-structure for the case of dimen-
sion An + 1.

In § 1, we shall define an almost contact 3-structure of the second
kind similar to the one defined by Kuo [4]. In §2, it is proved that the
structure group of the tangent bundle of this space is reduced to Sp(w) x 1,
and the converse is also true. In § 3, we introduce a 3-structure which
is similar to Sasakian 3-structure. One of the three structures is a
Sasakian structure and the remaining two are almost contact structures
such that their fundamental 2-forms are Killing tensors. In § 4, we deal
with the case where these Killing tensors satisfy a certain condition.
In this case we prove that our space is an Einstein space. Finally in
§ 5, we give some examples.

1. Almost contact 3-structure of the second kind. Let M be an
m-dimensional differentiate manifold, which admits two almost contact
structures (φ, f, rj) and {ψ, ξ, rj) such that

φf + ψφ = 0

Define tensor field θ by

(1.1) θ

then we can easily prove that (θ, ξ, η) is an almost contact structure too
and that the following identities are valid:
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(1.2) θ = φψ = — ψφ , <p = ψθ = —θψ , ψ = θφ = —φθ ,
9>£ = fζ = θξ = 0 , ηφ = ηf = ηθ = 0 .

PROPOSITION 1.1. The dimension of a space with the structure above
stated is always in + 1, n being an integer ^ 1.

PROOF. Let Mp be a tangent space at p of M and put

Then we can easily see from (1.2) that Vp admits an almost quaternion
structure. Hence dim Vp = An and so dim Mp = An + 1.

A space with the structure above mentioned is nothing but an almost
quaternion contact space by Hashimoto [2]. We shall say that this space
has an almost contact 3-structure of the second kind. It is known that
if M has an almost contact 3-structure of the second kind, there exists
a positive definite Riemannian metric g such that

V(X) = g{X, ξ) ,

g(φX, φY) = g(ψX, fY) = g(ΘX, ΘY) = g(X, Y) - η{X)η{Y)

hold good for any vector fields X, Y on M. This metric g is called an
associated metric of the structure.

LEMMA [8]. Let M be a differentiable manifold with an almost quater-
nion structure Φ{a) (a = 1,2,3), i.e., three almost complex structures
satisfying

Φ(1)Φ(2) = -Φ(2)Φ ( 1) = 0(3) ,

then there does not exist an almost complex structure Φ(4) such that

0(α)0(4) = -0(4)0(α)

PROPOSITION 1.2. There does not exist an almost contact structure
(p, ζ, rj) satisfying

φp = -pφ, fp = -pf, θp = - pθ

for an almost contact ^-structure of the second kind (φ, ψ, θ, ξ, rj).

PROOF. Take the vector space Vp appeared in the proof of Proposition
1.1. Applying the above Lemma for Vp9 it follows that our assertion is
true.

2. Structure group of the tangent bundle. In a space M with an
almost contact 3-structure of the second kind, let g be an associated
metric of the almost contact 3-structure of the second kind and let {Ua}
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be an open covering of M by coordinate neighborhoods. Let Xι be a unit
vector field over Ua, orthogonal to ζ with respect to g. Then ξ, Xιt φX19 ψXx

and ΘXX are orthonormal If n > 1, we may take a unit vector field X2

over Ua9 orthogonal to f, Xl9 φXu ψX1 and 0Xlβ Then these vector fields
and Xi9 φX2, ψX2, ΘX2 are orthogonal. Proceeding similarly further, in
every Ua, we finally can choose 4w + 1 orthonormal vector fields

Xλ, φXλ, fXx, ΘXλ, ξ (λ = 1, 2, , n) .

We call this an adapted frame and denote it by (u).
Then with respect to the adapted frame, the structure tensors g, φ, ψ

and ξ have components:

9 = φ =

(2.1)

< 0
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0 = ( 0 , 0 , . . - , 0 , 1 ) ,

where In denotes n x n unit matrix.

Now take another adapted frame (ΰ), then we have

ΰ = ΊU

where 7 is an orthogonal matrix such that

Ain

o
As the tensors g, φ and ψ have same components as (2.1) with respect
to (U), we can easily see that A4n must have the form

/ a b c d\

—b a —d c

— c d a —b

— d —c b a/
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where α, b, c and d denote n x n matrices. Thus the group of the tangent
bundle of M can be reduced to Sp (w) x 1.

Conversely, suppose that M be a (4w + l)-dimensional differentiate
manifold such that the group of its tangent bundle reduces to Sp (w) x 1,
Let {Ua} be an open covering of M by coordinate neighborhoods. By
assumption, we can take frames over every Ua so that, if Ua Π Uβ is not
empty, the transformation of the same vector with respect to frames of
Ua and Uβ is given by a matrix of Sp (n) x 1. In each Uaf take the
tensor field g of type (0.2), tensor fields φ, ψ of type (1.1) and the con-
travariant vector field ζ having (2.1) as components and covariant vector
field η with components (0, 0, •••, 0,1) with respect to these frames. As
the components of g satisfy

g = Jgtj, for 7 6 Sp (n) X 1 ,

all such tensor fields over £7α's constitute a single positive definite tensor
field g over M. The same is true for φ, ψ, ξ, yj. It is easily seen that
(1.2) and (1.3) hold good with respect to these frames. Since these equa-
tions are all tensor equations, they hold for every natural frame too.
Thus we have

THEOREM 2.1. A necessary and sufficient condition for a (An + 1)-
dimensional space to admit an almost contact ^structure of the second
kind is that the group of the tangent bundle of the space is reducible to
the group Sp(w) x 1. (This theorem owes to T. Kashiwada.)

3. Sasaki-Killing structure. In this section we shall define a struc-
ture similar to Sasakian 3-structure. A (in + l)-dimensional Sasakian
space M (or normal contact metric space) is by definition a Riemannian
space which admits a unit Killing vector field £ such that

( 3 1 } R(X, ξ)Y= -g(X, Y)ξ + g(ξ, Y)X or

() Y = -g(X, Y)ξ + g(ξ, Y)X ,

where X and Y are vector fields on M and R and V are the Riemannian
curvature tensor and the Riemannian connection. If we put φ — Fξ, then
(φ, ζ, η) (y](X) = g(ξ, X)) gives an almost contact structure on M and g
is its associated metric. Furthermore suppose that the Sasakian space
M admits another almost contact metric structure (φ, ζ, rj, g) having the
following properties:

( i ) the 2-form ψ defined by φ(X, Y) = g(ψX, Y) is a Killing form,
i.e.,

(3.2) (Vxψ)X = 0 .
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(ii) for the two tensors φ, ψ,

(3 3) φψ + ψφ = 0

holds good. Then M is said to have a Sasaki-Killing structure, for brevity,
an Si£-structure and a space with such a structure is called an Sif-space.

Define a tensor field θ by

(3.4) θ = φψ ,

then (0, ί, 97, #) is also an almost contact metric structure (see § 1).
Hereafter, in order to simplify the statement, we sometimes use clas-

sical tensor notation and replace ξ by η. Define a 2-form θ by Θ{X, Y) =
g(ΘX9 Y). Then we have

PROPOSITION 3.1. In an SK-space 2-form θ is also a Killing form.

PROOF. Let ηh,φrh = fr

8gSh and θrh = θr

8gsh (0/ = φt

8φr*) are the local
components of ξ, ψ and θ respectively. Applying F< to ψψrh = 0, we have

Operating Vs to the last equation, we get

(3.5) Vβih - -ΨfVrfih + ηΨfiψrk .

Since ψih is Killing tensor,

VfifrK = (ll2)(Rsjirfh

S + Rsjr^i8 + Rsjkifr*)

holds good [7]. Making use of the last equation, we have

Substituting this into (3.5) we get

(3.5)' Vfiih = -ψjΨrψik + Vrfik

And operating Ft to θjh = —φ/ψrh9 we have

(3.6) Vβsn - φfVrψih - 7Jjψih .
From (3.5)' and (3.6), we have

Vjθih + Vβiκ = 0 ,

i.e., θih is a Killing tensor.
Next, by Ricci identity

(3.7) Vk7άθ> - F/Ah = Rkjr%
r ~ RkJi

rθr

h .

Contracting with respect to h and k in the last equation, we have by
virtue of Bianchi identity and VTΘC — 0 the relation
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(3.8) VJTfiC = RjAr - (l/2)θ"R.rii ,

from which we get

(3.9) RjAr + Rirθf = 0 .

Transvecting (3.8) with θh* we have

(3.10) VJβΐ-θf = -RJh

where we have put

R*jh(θ) =

Applying VkVά to θCθf = — δh

r + ̂ ^ r and then contracting with respect
to r and k we have

(3.11) VJΐflC-βf + FAr-?hθ
ir - WjTfiii = -gjh + (4w + l)ηόηh .

Transvecting (3.7) with θkj we have

θrΨrFAκ - R\κ(θ) - R*M(Θ) .

As R*ih(θ) is symmetric with respect to i and fc [5], the last equation
reduces to

(3.12) PΨfAk = 0 .

Making use of (3.10), (3.11) and (3.12), we have

(3.13) Rjh - R*ik(θ) = gjh - ηflh + Vfi^V

from which we get

(3.14) R - i?*(0) = An + Fjθ8r'F
jθ8r,

where we have put

R*(θ) = R*jk(θ)g'k .

PROPOSITION 3.2. In an SK-space we have

(3.15) R*ki(θ) = gkj - VkVj

PROOF. Operating Vh to (3.1) we find

From this and Ricci identity for <pih9 we have

(<Pki9ih - Vug*) - ("Poidkh - Ψiκ9ki) = -ΨTAH

Transvecting the last equation with ψih

9 we get

from which we can easily see that (3.15) holds good.
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4. Special Sasaki-Killing structure. When, in an SiΓ-space M, Killing
tensor ψih is special, that is, ψih satisfies

(4.1) VhPjψih = -c(gkjψih + gkifhj + gkhψa) >

where c is a constant, then such an Sif-space is called a special SiΓ-space.
Substituting (4.1) into (3.5) we have

(4.2) Vfln = -ΦfVrfih + crjάψih .

From this and (3.5)' we find c = 1.

PROPOSITION 4.1. In a special SK-space, the Killing tensor θih is
also special.

PROOF. Applying Vk to (4.2) substituted 1 for c, we have

+ ΦkitiK + Vfkfih = gktfPrfih + gki0jh - gkhθH

= -(gicAh + gkiθh3 + Qkhθji).

This shows that θih is special.

PROPOSITION 4.2. In a special SK-space we have

PROOF. From θ8rθ
8r = An, we have

Vfltr VJ" = -θ*ΨhVόθsr = (in - 2)gik + 2ηάηh ,

from which we get

Vάθsr-Vjθsr = 16^2 - 4n .

THEOREM 4.3. A (4^ + l)-dimensional special SK-space is an Einstein
space with scalar curvature 4n(in + 1).

PROOF. By Proposition 3.2 and 4.2, it is evident.

COROLLARY 4.4. If a special SK-space is of constant φ-holomorphic
sectional curvature with respect to its Sasakian structure, then our space
is of constant curvature 1.

PROOF. Let k be the constant ^-holomorphic sectional curvature.
Then, as is well known, the Ricci tensor of the space satisfies

2RH = [2n(k + 3) + k - ϊ\g3i - (2n + l)(fc - 1 ) ^ 4 .

On the other hand, by Theorem 4.3, our space is an Einstein one.
Hence the last equation gives us k = 1, which is to be proved.
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5. Examples. ( i ) We take a (4n + l)-dimensional number space.
We define structure tensors φ,ψyξ by (2.1) and rj by (0, * ,0,1) with
constant components, then they and θ = φψ define an almost contact
3-structure of the second kind and g defined by (2.1) is an associated
metric with respect to the almost contact 3-structure of the second kind.

(ii) We take a Cayley space R, that is, a 7-dimensional Euclidean
space considered as the space of purely imaginary Cayley numbers. It is
well known [1], [11] that a Cayley space is characterized by the existence
of a bilinear scalar product A B and bilinear skew-symmetric vector
product A x B satisfying

(5.1) (A x B)-C = A-(Bx C)

(Ax B)x C- (A.C) B + (B-C)-A
( 5 # 2 ) = -Ax (Bx C) + (A-C)-B - (A £) C ,

both members of (5.2) being not identically zero.
We consider a 5-dimensional subspace V in R. If we denote by X the

position vector in R, then V will be represented locally by a parametric
equation

X = X(xh) ,

xh being coordinates on the subspace where and in this section the indices
run over the range 1, 2, •••, 5. The vectors

tangent to V are linearly independent. The subspace V is a Riemannian
space with metric g^ = e^βi naturally induced from R.

Assume that V is oriented and that the orthonormal vectors n and
m orthogonal to V may be globally taken along V. We can easily see
the existence of such a subspace in R (for example, 5-dimensional sphere
in R which will be appear).

Now we put, in (5.1), A = eif B = C = n (resp. A = eif B = C = m),
then we have (e< x n) n = 0 (resp. (e* x m) m = 0) which shows that et x n
(resp. βi x m) is linear combination of es and m (resp. es and n):

(5.3) et x n = φ/βj + %ra , e{ x m = ψi

ύeύ + p{n ,

where the dot of the scalar product will be omitted hereafter.
Furthermore, in (5.1), putting A = n, B = m, C = n (or A = m,

B = n, C = m) we see that n x m is tangent to V. Therefore we can
put

(5.4) n x m =
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Putting A = eif B = C = n and A = ei9 B = C = m in (5.2) we have

(5.5) (e< x n) x w + eζ = 0 , (e< x m) x m + e< = 0 .

In (5.2), putting A = w, B = C = m and A = m, B = C = n, we have by-
virtue of (5.3) and (5.4),

(5.6) %5* = 1, ?>,*£' = 0, ^ £ ' = 0, ft£'=-l.

The scalar product of (5.3X and m (resp. (5.3)2 and n) gives us

(5.7) ?< = £< = ~Pi , (A - ΛrΓ)

Similarly, taking the vector product (5.3)! and n (resp. (5.3)2 and m) and
using (5.5)! (resp. (5.5)2) we have

0 W * = - V + %f* , ^ / ^ = 0 ,

From (5.6), (5.7) and (5.8), we see that V admits two almost contact
metric structures (φ, ξ, η, g), (ψ, ξ, η, g) on V (cf. [10]). Next if we put

(5.9) eά x et = Γy<

rβr + T3in + S^m ,

then using (5.1) we see that

TSi = -Ψd = -<Pfg«) , SH = -ψH( - -ffgri) ,

and

being skew-symmetric in all of its indices. In (5.2), putting A = eif B = n,
C = ei9 we have

And if we put

(5.10) 0,* - 9>r*ψ/ ,

then it follows that (θ9 ζ, η, g) is also an almost contact metric structure.
From the above fact we can easily see that V has three almost contact
metric structures (φ, ζ, η, g), (ψ, ξ, η, g) and (θ, ξ, η, g) such that

θ = φψ = —ψφ, φ - fθ = -θf, ψ = θφ — ~φθ .

Thus we have

THEOREM 5.1. In a Cayley space, an orίentable ^-dimensional sub-
space V with unit normals globally defined along V has an almost con-
tact ^-structure of the second kind.
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REMARK. If a space admits r almost contact structures (φλ, ξ, 37)(λ =
1,2, « ,r), then we say that they are linearly independent if

βi9>i + #2̂ 2 + + arφr = 0 (α:, α2, , αr: real constants)

always implies αx = α2 = = αr = 0. We can see that φ, ψ, θ on V are
linearly independents in the above sense.

Next, we denotes by F< the so-called van der Waerden-Bortolotti
covariant differentiation along V with respect to the Riemannian connection
determined by gH. Then the derived equations of Gauss and Weingarten
for V are respectively given by

(5 11) Vfii =

Fj n = —H/er + Ljin , V5m = —K/er — Lάn ,

where iϊ^, ϋΓyί and Ly are the second fundamental tensors and the third
fundamental tensor of V and we have put Hf = Hjsg

8r, Kf = Kjsg
sr.

Operating V$ to (5.3) and (5.4) along V and using (5.11), we have after
some calculations

F/Pik = HjrTih

r + KJM - Kjflh

(5.12) Fjfih = KjrTih

r - Hihr){ + HSiηh - L/Pih ,

Vfli = -HfψH + K/φri .

Now we consider a 5-dimensional sphere S in R which is represented

by

(5.13) (x1)2 + (α2)2 + + {xj = 1, x7 = 0 .

An orthonormal normal vectors m, n of S are given respectively by

m = -x , w = (0, 0, ••-, 0,1) .

In this case we have

jfZyi = 0 , Kji = ^yi

Substituting this into (5.11), we have

(5.11)' Vfii — g^m , Vsn = L^m , Vάm = —βj — LjU .

The equations of Gauss and Codazzi for S are easily seen to be

RkHh = gaQkh ~ QkiQih , L3 gih - Ligjh = 0 , V3Li - FiLj = 0 ,

and so we have L3 = 0. Hence (5.12) reduces in this case to

(5.12)' VfPih = Tjofih ~ Vug* , Vjψih = Tm , V{ηh = φih .
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By (5.12)' we see that fih is a Killing tensor. Since in a Riemannian
space of constant curvature every Killing tensor is special [8], we have

THEOREM 5.2. In a Cayley space, let S be a 5-dimensional unit
sphere expressed as (5.13). Then S has a special SK-structure.

I should like to express my hearty thanks to Professors S. Sasaki,
S. Tanno who gave many valuable guidances in the course of preparation
of this paper.
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