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Recently, Kuo [4] has introduced the notion of Riemannian space with
almost contact 3-structure and since then Kashiwada [3], Sasaki [6],
Tachibana and Yu [8] and Tanno [9] have studied several interesting
subjects concerning this structure or Sasakian 3-structure. As is well
known, an almost contact space is odd dimensional and a space with the
structure above stated is of dimensionality 4n + 3 (n: non-negative integer).
So, the case where the dimensionality is 4n + 1 remains on our discus-
sion. The main purpose of this paper is to discuss a structure similar to
almost contact 3-structure or Sasakian 3-structure for the case of dimen-
sion 4n + 1.

In §1, we shall define an almost contact 3-structure of the second
kind similar to the one defined by Kuo [4]. In §2, it is proved that the
structure group of the tangent bundle of this space is reduced to Sp(n) X 1,
and the converse is also true. In § 3, we introduce a 3-structure which
is similar to Sasakian 8-structure. One of the three structures is a
Sasakian structure and the remaining two are almost contact structures
such that their fundamental 2-forms are Killing tensors. In § 4, we deal
with the case where these Killing tensors satisfy a certain condition.
In this case we prove that our space is an Einstein space. Finally in
§ 5, we give some examples.

1. Almost contact 3-structure of the second kind. Let M be an
m-dimensional differentiable manifold, which admits two almost contact
structures (@, &, ») and (v, & 1) such that

Py + PP =0.
Define tensor field 4 by
(1.1) 0 =@,

then we can easily prove that (6, &, ) is an almost contact structure too
and that the following identities are valid:
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P=yg'=0=-E+17Q¢,
(1.2) O=Pp= —yP, P=Ab=—0y, y=0p=—90,
Pe=yE=0=0, pp=nyp=700=0.
PropPOSITION 1.1. The dimension of a space with the structure above
stated 1s always 4n + 1, n being an integer = 1.
Proor. Let M, be a tangent space at p of M and put
V, ={XeM,|[9(X)=0}.

Then we can easily see from (1.2) that V, admits an almost quaternion
structure. Hence dimV, = 4n and so dim M, = 4n + 1.

A space with the structure above mentioned is nothing but an almost
quaternion contact space by Hashimoto [2]. We shall say that this space
has an almost contact 3-structure of the second kind. It is known that
if M has an almost contact 3-structure of the second kind, there exists
a positive definite Riemannian metric ¢ such that

(1.3) nX) =9(X, 8,

9(PX, PY) = g(v X, v Y) = 9(6X, 0Y) = g(X, Y) — p(X)(Y)
hold good for any vector fields X, Y on M. This metric g is called an
associated metric of the structure.

LEMMA [8]. Let M be a differentiable manifold with an almost quater-
nion structure @, (a=1,2,38), t.e., three almost complex structures
satisfying

)Py = — 00y = D)

then there does not exist an almost complex structure @, such that
00,P0 = — P9 -
PROPOSITION 1.2. There does mnot exist an almost contact structure
(0, &, 1) satisfying
PO = —pP, YO = —py, 00= —00
Sfor an almost contact 3-structure of the second kind (P, 0, &, 7).

Proor. Take the vector space V, appeared in the proof of Proposition
1.1. Applying the above Lemma for V,, it follows that our assertion is

true.

2. Structure group of the tangent bundle. In a space M with an
almost contact 3-structure of the second kind, let g be an associated
metric of the almost contact 3-structure of the second kind and let {U,}
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be an open covering of M by coordinate neighborhoods. Let X, be a unit
vector field over U,, orthogonal to & with respect to g. Then & X, PX,, v+ X,
and 60X, are orthonormal. If » > 1, we may take a unit vector field X,
over U,, orthogonal to ¢, X,, X, +X, and 6X,. Then these vector fields
and X, ?X,, +X,, 60X, are orthogonal. Proceeding similarly further, in
every U,, we finally can choose 4n + 1 orthonormal vector fields

Xb q)XZ, ”‘l"Xb HXZ’ & (7“ = 1’ 2’ Y In) .

We call this an adapted frame and denote it by (u).
Then with respect to the adapted frame, the structure tensors g, @, 4+
and & have components:

0o I, 0 O
1y 0 -I, 0 0 O
0
gz( . ) =0 0 0 I, |,
0 1 0 0-I, O
| 0 0)
(2.1) ’
0 0 I, O
’!l/‘: _In 0 O 0 0 ’ E:t(0,0’---’O,l),
0 I, 0 0
)

where I, denotes n X % unit matrix.
Now take another adapted frame (&), then we have

U =T

where v is an orthogonal matrix such that

)
—\o 1)’

As the tensors g, # and + have same components as (2.1) with respect
to (%), we can easily see that A,, must have the form

a b ¢ d
A = —b a-—-d ¢
—c d a —b

—d —¢c b a
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where a, b, ¢ and d denote n X n matrices. Thus the group of the tangent
bundle of M can be reduced to Sp(n) x 1.

Conversely, suppose that M be a (4n + 1)-dimensional differentiable
manifold such that the group of its tangent bundle reduces to Sp (n) x 1.
Let {U,} be an open covering of M by coordinate neighborhoods. By
assumption, we can take frames over every U, so that, if U, N U, is not
empty, the transformation of the same vector with respect to frames of
U, and U, is given by a matrix of Sp(n) x 1. In each U,, take the
tensor field g of type (0.2), tensor fields ®, + of type (1.1) and the con-
travariant vector field & having (2.1) as components and covariant vector
field » with components (0, 0, ---, 0, 1) with respect to these frames. As
the components of g satisfy

g="g"y, for ve Sp(n) x1,

all such tensor fields over U,’s constitute a single positive definite tensor
field g over M. The same is true for @, & 0. It is easily seen that
(1.2) and (1.3) hold good with respect to these frames. Since these equa-
tions are all tensor equations, they hold for every natural frame too.
Thus we have

THEOREM 2.1. A mnecessary and sufficient condition for a (4n + 1)-
dimensional space to admit an almost contact 3-structure of the second
kind is that the group of the tangent bundle of the space is reducible to
the group Sp(n) x 1. (This theorem owes to T. Kashiwada.)

3. Sasaki-Killing structure. In this section we shall define a struec-
ture similar to Sasakian 3-structure. A (4n + 1)-dimensional Sasakian
space M (or normal contact metric space) is by definition a Riemannian
space which admits a unit Killing vector field & such that

BX, Y= —9g(X, Y)¢+ g Y)X  or
VxF)Y = —g(X, Y)¢ + g(¢, Y)X,

where X and Y are vector fields on M and R and / are the Riemannian
curvature tensor and the Riemannian connection. If we put ® = V&, then
(®, & n) (M(X) = g(&, X)) gives an almost contact structure on M and ¢
is its associated metric. Furthermore suppose that the Sasakian space
M admits another almost contact metric structure (v, &, 7, g) having the
following properties:

(i) the 2-form 4 defined by (X, Y) = g(+X, Y) is a Killing form,
i.e.,

(3.2) )X =0.

(3.1)
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(ii) for the two tensors @, 4,
(3.3) Py 4+ yP =0

holds good. Then M is said to have a Sasaki-Killing structure, for brevity,

an SK-structure and a space with such a structure is called an SK-space.
Define a tensor field 4 by

(3.4) 0 =Py,

then (6, &, 1, g) is also an almost contact metric structure (see §1).

Hereafter, in order to simplify the statement, we sometimes use clas-
sical tensor notation and replace & by 7. Define a 2-form § by 4(X, Y) =
g(6X, Y). Then we have

PropPoOSITION 3.1. In an SK-space 2-form 6 is also a Killing form.

PrOOF. Let 9,4, = 4,°g., and 6,, = 0,°g,, (0, = P.°y,") are the local
components of & 7 and & respectively. Applying 7; to "y, = 0, we have

0=V + NViArer = —0in — NV in «
Operating /; to the last equation, we get
(3.5) Vibin = — PV Apin + 0V 7 il
Since +;;, is Killing tensor,
ViV iren = U2)(Ryjirts® + Rojrads® + Ryjusip,’)

holds good [7]. Making use of the last equation, we have

NV idren = Nidran «
Substituting this into (3.5) we get
(8.5) Vil = —PiVAban + Nivran
And operating 7; to 0;, = —P,; 1, We have
(3.6) Vibin = Pi'V.bin — Nivrin «
From (3.5) and (8.6), we have

Vi + Vil =0,

i.e., 0;, is a Killing tensor.
Next, by Ricci identity

(3.7) Vijﬁih - Vija,;h = Rkj,ha,;r - Rkj,;rg,.h .

Contracting with respect to - and %k in the last equation, we have by
virtue of Bianchi identity and /,.6," = 0 the relation
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(3.8) 7707 = Ry — (126 Ry
from which we get
(3.9) R;, 07+ R,0;7=0.
Transvecting (3.8) with 6, we have
(3.10) VW06, = —Rj; + 4nnm, + R*,(00) ,
where we have put

R*;(6) = (1/2)0° R, 465" -

Applying 7,F; to 6,70, = —4," + 7,1 and then contracting with respect
to » and k& we have

(3-11) Verai"ahi + Vjair'Vhair - 0’i7,7i05h = —gin+ (4n =+ 1)771‘771» .
Transvecting (3.7) with 6* we have
6"7er0‘£}1 = R*th(e) - R*hi(a) *

As R*;,(0) is symmetric with respect to ¢ and % [5], the last equation
reduces to

(8.12) 07 7,0 =0.
Making use of (3.10), (3.11) and (3.12), we have

(3.13) Rj — R*ju(60) = gin — i + Vibs V30",
from which we get

(3.14) R — R*(6) = 4n + 7 ,0,,.-Vio'",

where we have put
E*(6) = R*;u(0)g™ .

PROPOSITION 3.2. In an SK-space we have
(3.15) R*,40) = gis — M7 -

PRrROOF. Operating 7/, to (3.1) we find

Vil iPar = Prigin — Prnbii «
From this and Ricci identity for #,,, we have
(Prigin — Purdis) — (PisGin — Pirdis) = —Pualiss™ — PirBrin” «
Transvecting the last equation with +**, we get
R,;;"0,F = 20,; ,

from which we can easily see that (8.15) holds good.
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4. Special Sasaki-Killing structure. When, in an SK-space M, Killing
tensor <, is special, that is, 4, satisfies

(4.1) Vil jrin = —c(griVrin + Grivrni + Gentris) »

where ¢ is a constant, then such an SK-space is called a special SK-space.
Substituting (4.1) into (8.5) we have

(4.2) Vibin = —PiVrin + Nivran «
From this and (3.5) we find ¢ = 1.

PROPOSITION 4.1. In a special SK-space, the Killing tensor 6;, 1is
also special.

ProoF. Applying 7, to (4.2) substituted 1 for ¢, we have
Vil il = — (10" — 79l eirin + Pi"(@ertin + Gustnr + Gentres)
+ Peitrin + 0 ibin = Gei)V i + Guibin — Genbis
= —(9eibir + 91iOni + Ginbis) -
This shows that 6, is special.
PROPOSITION 4.2. In a special SK-space we have
R,; — R*,;(0) = (4n — L)gi; + 77 » R — R*(6) = 16n*.
Proor. From 4,,0°" = 4n, we have
Vil oV 0,0°" = —0°V V0, = (4n — 2)g; + 29,1, ,
from which we get
V0,7 = 16m* — 4n .

THEOREM 4.3. A (4n + 1)-dimenstonal special SK-space is an Einstein
space with scalar curvature 4n(4dn + 1).

Proor. By Proposition 3.2 and 4.2, it is evident.

COROLLARY 4.4. If a special SK-space is of constant P-holomorphic
sectional curvature with respect to its Sasakian structure, them our space
18 of comstant curvature 1.

Proor. Let k be the constant ®-holomorphic sectional curvature.
Then, as is well known, the Ricci tensor of the space satisfies

2R = [2n(k + 3) + k — 1]g; — (2n + Dk — 1)757; .

On the other hand, by Theorem 4.3, our space is an Einstein one.
Hence the last equation gives us k = 1, which is to be proved.
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5. Examples. (i) We take a (4n + 1)-dimensional number space.
We define structure tensors ®,+, & by (2.1) and % by (0, ---, 0, 1) with
constant components, then they and 6 = @+ define an almost contact
3-structure of the second kind and g defined by (2.1) is an associated
metric with respect to the almost contact 3-structure of the second kind.

(ii) We take a Cayley space R, that is, a 7-dimensional Euclidean
space considered as the space of purely imaginary Cayley numbers. It is
well known [1], [11] that a Cayley space is characterized by the existence
of a bilinear scalar product A-B and bilinear skew-symmetric vector

product A x B satisfying

(5.1) (A x B)-C = A-(B x C)
- (A x B) x C— (A-C)-B + (B-C)-A
(5.2) = —AXx (BxC)+ (A:C)-B— (A-B)-C,

both members of (5.2) being not identically zero.

We consider a 5-dimensional subspace V in R. If we denote by X the
position vector in R, then V will be represented locally by a parametric
equation

X = X@"),
x* being coordinates on the subspace where and in this section the indices
run over the range 1,2 ... 5. The vectors

e; = 0;X (0; = 0/ox’)

tangent to V are linearly independent. The subspace V is a Riemannian
space with metric g; = e;-¢; naturally induced from R.

Assume that V is oriented and that the orthonormal vectors » and
m orthogonal to V may be globally taken along V. We can easily see
the existence of such a subspace in R (for example, 5-dimensional sphere
in R which will be appear).

Now we put, in (5.1), A =¢;, B=C = n (resp. A =¢;, B=C = m),
then we have (¢; X n)-n =0 (resp. (¢; X m )-m = 0) which shows that e¢; x n
(resp. e; X m) is linear combination of ¢; and m (resp. e; and u):

(5.3) e; X n = Ple; + n;m, e; X m = ie; + p;n,

where the dot of the scalar product will be omitted hereafter.
Furthermore, in (5.1), putting A=%n, B=m, C=n (or A =m,
B =n, C =m) we see that n x m is tangent to V. Therefore we can

put
(5.4) n X m= &e; .
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Putting A =e¢, B=C=mn and A =¢, B=C = m in (5.2) we have
(5.5) (s xn)xXn+e=0, (e; x m) x m+ e, =0.

In (5.2), putting A =n, B=C=m and A = m, B= C = n, we have by
virtue of (5.3) and (5.4),

(5.6) =1, P =0, =0, pf=—-1.
The scalar product of (5.3), and m (resp. (5.3), and %) gives us
(5.7) n=&= —0;, (& = 9.8 .

Similarly, taking the vector product (5.8), and % (resp. (5.3), and m) and
using (5.5), (resp. (5.5),) we have

PPt = —0t + nEt, P, =0,
“pir"/,‘rh = _a‘ih - piEh ’ "lf‘i,rlor = 0 .

From (5.6), (5.7) and (5.8), we see that V admits two almost contact
metric structures (@, &, 7, 9), (+, & 7,9) on V (cf. [10]). Next if we put

(5.9) e; X e; = Ty"e, + Tym + S;m ,

(5.8)

then using (5.1) we see that
Ti=—Pu(= —Pi'gn) » Sii = —vu( = —¥i70.)
and
Tjih = Tjirgrh

being skew-symmetric in all of its indices. In (5.2), putting A = ¢;, B = n,
C = ¢;, we have

¢ir"ﬁri = ——“Ifjr@ri .
And if we put
(5.10) 0r = P,

then it follows that (6, &, 7, g) is also an almost contact metric structure.
From the above fact we can easily see that V has three almost contact
metric structures (%, &, 7, 9), (v, &, 7, g) and (6, &, 7, g) such that

0=Ph = —4P, P=ol = —0f, §=0P=—p0.
Thus we have

THEOREM 5.1. In a Cayley space, an orientable 5-dimensional sub-
space V with unit normals globally defined along V has an almost con-
tact 3-structure of the second kind.
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REMARK. If a space admits » almost contact structures (@,, &, 7)(A =
1,2 ..., 7), then we say that they are linearly independent if
P, + OGP, + 200 +a,P, =0 (a, @, «++, a,: real constants)

always implies ¢, = a, = +++ = a, = 0. We can see that @, 4, 6 on V are
linearly independents in the above sense.

Next, we denotes by /,; the so-called van der Waerden-Bortolotti
covariant differentiation along V with respect to the Riemannian connection
determined by g;. Then the derived equations of Gauss and Weingarten
for V are respectively given by

Vie; = Hym + Kym ,

5.11
( ) Vj’n = ——H,-'e, + ij N V_/,'m = —Kjre,. - L_.,'n y

where H;;, K;; and L; are the second fundamental tensors and the third
fundamental tensor of V and we have put H;" = H;¢*, K;” = K,,g*.
Operating 7; to (5.3) and (5.4) along V and using (5.11), we have after
some calculations

VP = H;j, T + K — Kjiw + Lipyin
(5.12) Vibin = Ky T — HpMs + Hyly — LiPay
Vin, = —H".; + KjP,; .

Now we consider a 5-dimensional sphere S in R which is represented
by

(5.13) @)Y+ @)+ e +@)P=1 2"=0.
An orthonormal normal vectors m, n of S are given respectively by
m= —zx, n=(00-+--,01).
In this case we have
H;=0, K;=g;.
Substituting this into (5.11), we have
(5.11) Ve, = g.m, rin =Lm, Vim = —e; — Ljn .
The equations of Gauss and Codazzi for S are easily seen to be
Risin = 9isGen — Guilin » Lgin — Ligin =0, Vil —ViL; =0,
and so we have L; = 0. Hence (5.12) reduces in this case to

(5.12) ViPin = 0i@in — il » Vivin = Tin » Vilh = Pan
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By (5.12)" we see that 4, is a Killing tensor. Since in a Riemannian
space of constant curvature every Killing tensor is special [8], we have

THEOREM 5.2. In a Cayley space, let S be a b5-dimensional wunit

sphere expressed as (5.13). Then S has a special SK-structure.

I should like to express my hearty thanks to Professors S. Sasaki,

S. Tanno who gave many valuable guidances in the course of preparation
of this paper.
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