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1. Introduction. In this paper we discuss the multipliers on a gen-
eral Banach algebra A with an approximate identity. We are embedding
a Banach algebra A into the second conjugate space A** and introduce
the Arens multiplication in A for which the second conjugate space A**
becomes a Banach algebra and then characterize the multiplier algebra
of Banach algebra in its second conjugate algebra as an idealizer. If
the algebra A is a C*-algebra, it was known that A has an approximate
identity and the multiplication in A is Arens regular, and the multipliers
were investigated by Akemann, Pedersen and Tomiyama [1], Busby [2],
Tomiuk and Wong [10], [11] and [12] etc.. Our purpose is to investigate
the multipliers dealing with a general Banach algebra with bounded
approximate identity and the multiplication of non Arens regular will
be discussed.

For convenience we begin in section 2 by establishing the definitions
and some notations, and the multipliers of a Banach algebra can be
extended to be a multiplier of its second conjugate algebra which is
also included. In section 3 we characterize the multiplier algebra as an
idealizer in the second conjugate algebra. Section 4 is to extend the
multipliers of a subalgebra of a Banach algebra to the multipliers of the
Banach algebra by using the idealizer, and shows that the multipliers
of subalgebra can be embedded in the Banach algebra with identity as
an idealizer. The essential applications of idealizers are sections 5 and
6. In section 5 we study the homomorphism extension of Banach alge-
bras to their multiplier algebras. Applying Theorem 5.3, we obtain some
extension theorems of representations of algebra as linear operators in
a Hubert space in which the results of Johnson [5; Theorems 21 and
23] are included. Finally, by applying Theorem 5.2, we determine the
multipliers of the vector-valued functions vanishing at infinity as a
bounded continuous multiplier-valued functions which is a generalization
of Theorem 3.3 and Corollary 3.4 of [1].
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2. Preliminaries and notations. Let A be a Banach algebra. De-
note by A* and A** the first and second conjugate spaces of A. We
denote the elements of A by α, b, the elements of A* by φ, ψ,
the elements of A** by F, G, •••. Arens introduced a multiplication in
the second conjugate space A** as follows (cf. Civin and Yood [4]):

If φe A*, ae A, define φ*ae A* by (φ*a)b = φ(ab) for all be A.
If Fe A**, φeA*, define F*φeA* by (F*φ)b = F(φ*b) for all be A.
If F, Ge A**, define M e i * * by (F*G)φ = F{G*φ) for a l l > e A*.

This multiplication in A** which makes A** to be a Banach algebra.
Throughout we denote by π the cannonical embedding of A into A**.
For some purpose, Arens considered also the following definition of
multiplication in A**:

If ψe A*, aeA, define φoaeA* by (φoά)b = φ{ba) for all be A.
If φeA*, Fe A**, define Foφe A* by (î oφ)6 = 2F(9>o&) for all be A.
If F, Ge A**, define FoGe A** by 0F°G)?> - F(Go?>) for all φe A*.

Again the multiplication FoG in A** as a product makes A** to be a
Banach algebra. If F*G = GoF in A**, the multiplication in A is called
regular. It is known that the multiplication F*G is continuous with
respect to σ(A**, A*) topology in F for fixed GeA** and π(α)*G is
0 (A**, A*) continuous in G for fixed aeA. If the multiplication in A
is regular, then F*G is also σ(A**, A*) continuous in G for fixed F (cf.
Civin and Yood [4]). Note that the algebra A** obtained by the Arens
product needs not be commutative and not be semisimple even if the
original algebra A is commutative and semisimple, and that π(A) is only
a subalgebra of A** but is not an ideal in A** in general (cf. Civin [3]).
Keeping these phenomenon in mind, we start to investigate the multi-
plier algebra of A in A**.

For convenience, throughout this paper we assume that the Banach
algebra A has a (bounded) approximate identity {ea} (without loss of
generality, we may assume that | | e β | | ^ l ) . We say that a bounded
linear operator T on a Banach algebra A is a left (right) multiplier of
A if T(ab) = Ta b (T(ab) = a Tb) for all a, be A. The two-sided ( =
double) multiplier of A is an ordered pair (Tlf Tr) = T of operators on
A such that

a Tιb=Tra-b for all a, be A.

We denote by Mι{A) (Mr(A), M{A)) the space of all left (right, double)
multiplier operators on A. For any aeA, we define
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Da = (La, Ra) where La{x) — ax, and Ra(%) = xa for all xe A .

Since A has an approximate identity, it is not hard to show that for
T = (Tlf Tr) in M(A), Tt e Λf,(A), Γr e ilfr(A) and || Γ|| = || Tr \\ = \\ T, || (cf.
Johnson [5] and Busby [2]). Now we identify

a+-> La (resp. a «-> i?α, a «-> Z)α),

then A is a dense left (right, two-sided) ideal in M^A) (Mr(A), M(A))
with respect to the strict topology /3. That is the topology generated
by seminorms of the form

for double multipliers T = (Tlt Tr)e M(A)). Some elementary properties
and definitions for double multipliers, we refer to Johnson [5] and Busby [2],

Now we show that a multiplier Te Mt(A) (or Mr(A)) can be extended
to a left (right) multiplier in A** and hence for the two-sided multipliers
in A**.

PROPOSITION 2.1. LetTeM^A). Then
(i) φ*Ta = T'φ*a, (ii) T'(G*φ) = G*T'φ, (iii) T"(F*G) = T"F*G
for any aeA, φeA*, F,GeA** where T and T" are defined by

φ(Ta) = (T'φ)a and (T"F)φ = F(T'φ) .

PROOF, (i) For any TeM^A) and φeA*, aeA, we have

(φ*Ta)x = φ(Tax) = φ{T{ax)) = (T'φ(ax)) = (T'φ*a)x

for all xeA. This implies Tφ*a = φ*Ta.
(ii) For any GeA**, 9€A*, we have

{G*T'φ)x - G(T'φ*x) = G(φ*Tx) (by (i))

= T'(G*φ)x

for all α e A, then T'(G*φ) = G*T'φ.
(iii) For any F, Ge A**, we have

T"{F*G)φ = (F*G)(T'φ) = F(G*T'φ) = F{T\G*φ)) (by (ii))

= (T"F*G)φ

for all φeA*. Then T"(F*G) = T"F*G. q.e.d.

COROLLARY 2.2. 1/ TeikZr(A), ίfcew /or α e i , Ge A** we Aαw?
(i) T'(φ*a) = T'φ*a, (ii) T"F*φ = F*T'φ, (iii) Γ"(F*G) - F*T"G.

By above proposition and corollary, we see that every multiplier of
A can be extended as a multiplier of A**. Thus the question arises
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that whether we can characterize the algebra Mι(A) (resp. Mr(A), M(A))
in A**. To this end we define

= {Fe A** I F*π(a) e π(A) for all aeA} ,

M'r{A) = {Fe A** I π(a)*Fe π(A) for all aeA} ,

M'(A) = {Fe A** I π(a)*F and F*π(a) e π(A) for all aeA} .

Then M!(A), Mr

r{A) are closed subalgebras in A**, they are the (left,
right) idealizers of A in A**. For any F G M ' ( A ) , we identify

F<-* DF = (LF, RF)

where LF{π(a)) = F*π(a) and RF{π(a)) — π(a)*F for any aeA, then M\A)
is defined as the idealizer of A in A**. Under this identification, the
discussion of the double multiplier algebra M(A) in A** is almost the
same as the discussion of M^A) in A**. We use the following notations
for mappings

θt: Ml{A) — Mt(A) (ί = I, r) and θ: ikΓ(A) -> M(A) .

The kernel of those mappings are denoted by θγ\G) = ^ ~ (i = ί, *̂)̂  ^"^O) =
^ " = {i^l^α)*^7 = F*π(a) = 0 for all aeA}. Denote by q the quotient
mapping of

A**-+A**/^;(i = l,r) or A** — A**/^~

3. Characterization of multiplier algebras as the idealizers. Mate
[7] investigated the right multipliers of a Banach algebra A dealing with
conjugate algebra A**. In [7; Theorem 6], he showed that the Mr(A)
is isometric isomorphic to a certain closed subalgebra of A**/^7 with
Arens product. In this section we will do a systematic discussion con-
cerning the multiplier algebras in A**.

THEOREM 3.1. Let A be a Banach algebra. Then there is an algebra
homomorphism θι of M[(A) onto Mt(A). The kernel θτ\O) = J7~ι of θt is
the polar of the space spanned by {π(a)*φ; ae A, φe A*} and ^\ is a
left ideal in A**.

PROOF. For any FeM[{A) and aeA, F*π(a)eπ(A). Hence there
is an operator T on A determined by F*π(a) = π(Ta). This T is a left
multiplier in M^A). Indeed, for a, be A,

F*π(a)*π(b) = F*π(ab) = π(T(ab))

and

*π(6) = 7r(Γα)*7r(δ) = π(Ta b)
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implies T(ab) = Ta-b and TeM^A). Hence it is easy to show that

θι: F-+T defined by F*π(a) = π(Ta)

is an algebra homomorphism of M[(A) into Mt(A). We have only to
show θι is an onto mapping. Let TeM^A) and let {aa} be an approxi-
mate identity of A. Then {π(Taa)} is a bounded net in A**. By Alaoglu's
theorem there is a weakMimit point F in A** and then has a subnet
{π(Taβ)} of {π(Taa)} such that limβπ(Taβ) = F in σ(A**, A*) topology and

(F*π(x))φ = F{π(x)*φ) = \imπ(Taβ)(π(x)*φ)
β

= lim T'φ(aβx) = π(Tx)φ
β

for any a eA and any ^ e i * . Hence F*7r(α;) = π(Tx) for all #e A, this
shows that θx is an onto homomorphism. The last part of theorem is
trivial. q.e.d.

COROLLARY 3.2. Let A be a Banach algebra. Then there is an
algebra homomorphism θr of Mf

r{A) onto Mr(A). The kernel 6^(0) =
of θr is the polar of the space spanned by {φ*a \ a e A, φ e A*} and
is a two-sided ideal of A**.

PROOF. The first part of this corollary follows from Theorem 3.1
by the same argument. For the second part, it follows from

F(φ*a) = (π(a)*F)φ for all ae A and φe A*

that F e ^ r if and only if F is in the polar of the space spanned by

{φ*a\ae A, φe A*} .

Evidently J7~r is a right ideal in A**. We need only to show that
is also a left ideal. Since for

F*φ(a) = F{φ*a) = 0 implies F*φ = 0 for all

thus for Fe^~r, Gei** we have

π(a)*(G*F)φ = (π(a)*G)(F*φ) = 0 implies

Hence ^7~r is a two-sided ideal in A**. q.e.d.

COROLLARY 3.3. There is an onto homomorphism θ of M'{A) to M(A).
The kernel θ~\ϋ) = ^~ is the polar of {φ*a or π(a)*φ \ a e A, φ e A*} and

is a two-sided ideal of A**.

PROOF. For the element Fe M'(A), we identify that F*-> DF. Then

π(x)*LF(π(y)) = RF(π(x))*π(y) e π(A)
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or

π(x)*(F*π(y)) = (π(x)*F)*π(y) for all xf ye A .

Since A has approximate identity, there is Tx e MX(A), Tr e Mr(A) such
that

F*π(y) = π(Txy) , π{x)*F = π(Trx)

and hence π(x-Txy) = π(Trx y) or x-Txy = Trx y. This shows that T =
(Th Tr) e M(A) and the mapping defined by

Θ:F~>Θ{F) = Θ{DF) = T = (Γ,, Tr)

is evidently a homomorphism under the multiplication given by

TιoT* = (IY, Tl)o(Tl, Tξ) = (ThTf, T2

roTϊ) .

Conversely, if T = (Tlf Tr) e M(A) and {aa} is an approximate identity
of A, then there is a subnet {aβ} such that

π(Tιaβ)-+F and π(Traβ)-+F' in tf(A**, A*) topology .

Thus π(x Txaβ) = π(Trx-aβ)-+π(x)*F = π(Γra;) in σ(il**, A*) topology for
any x e A implies

π(aβ)*F*π(y) = π(Traβ)*π(y) = π(aβ-Txy)

-^ F*π(y) = F'*π(y) = 7r(Γ,i/) € π (A) in σ(A**, A*)-topology. Hence F = Ff

and jFeΛf'(A). This shows that'0 is an onto homomorphism. The re-
mains of theorem is immediately. q.e.d.

Next we consider the coset space A**/_^7 with Arens product and
the natural mapping q: A** —> A**/^7 Then it can be shown that q is
an isometry of τr(A) into A**/^. Indeed, for any δe A,

= || 6 || = sup \π(b)φ\ .

We want to show that

sup I π(b)φ I = sup | π(b)(π(a)*φ) \ .

Let {aa} be an approximate identity with | | α α | | ^ 1. Then

| | & | | |Ξ> II baa | | = sup | (π(b)*π(aa))φ \ ^ sup | π(b)(π(aa)*φ) \ .

The last supremum tends to sup,,^,,^ \π(b)φ\ = | |&||. Consequently

|| b || = sup I π(b)φ \ = sup | π(b)(π(a)*φ) \ .

This shows that q maps π{A) isometrically into A**/^7. The same ar-
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gument holds for the mapping of π(A) to A**/^~r (resp. A**/^). Hence-
forth we do not distinguish the elements between π(A) in A** and
q(π(A)) in A**/^ (resp. in A**/jT;, A**/^~) if there is no any confusion.

Since ^~r and &~ are two-sided ideals of A**, the space B = A**/^r

(resp. A**/^) is a Banach algebra. Hence the right (resp. two-sided)
multipliers of A can be embedded in B as an idealizer. Thus if set

Mr

B(A) = {Xe BI τr(α)*Xe π(A) for all α e i }

Mβ(A) = {XeB|Lz(;r(α)), Λx(τr(α)) in ττ(A) for all α e i } ,

then we have

COROLLARY 3.4. Mr

B(A) = q{M'r{A)) (resp. MB(A) = ?(M'(A))).

PROOF. By definition, it is clear that q(M'r{A)) c M?{A). We need
only to show that M?(A) c g(Mr'(A)). This fact is immediately, indeed
for any Xe M?(A), π(a)*Xe π(A) for any a e A, thus there is an operator
Γ on A such that ττ(α)*X = π(Ta). Evidently, Te Mr(A) and hence there
exists FeMr(A) such that

q(π(a))*X = q(π(Ta)) = q(π(a)*F) = q(π(a))*qF .

Hence JΓ = gFe g(Mr'(A)). The same argument holds for two-sided mul-
tipliers, q.e.d.

Note that if A is a subalgebra of a Banach algebra J5, then in
general,

M?(A) = {beB\baeA for all aeA}

is a subset of Mj(A), i.e., ikfi£(A) c Mj(A). By this reason, the charac-
terization of Mι(A) as an idealizer of A in an algebra B(ZD A) needs
some additional conditions between A and B. Whence we established
the Corollary 3.4.

The following theorem is essential in this section.

THEOREM 3.5. Under the quotient mapping q: A** —> A**/^7, we
have

q(Ml(A)) s Mι(A) .

PROOF. AS ^ 7 = {Fe M((A) \ F*π(a) = 0 for all αeA}, it follows
from Theorem 3.1 that the mapping θx\ q(M[(A)) —> Mj(A) is an onto al-
gebra isomorphism defined by the following identity

qF*π(ά) = π(Ta) .

It remains to show that | | ? ί Ί | = 11 Γ||. Since A** is a Banach algebra,
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| | Γ » | | = \\π(Tx)\\ = |kF*τr(αO II ̂  l k * Ί I I W * ) | | = \\gF\\\\x\\ .

This implies || T\\ ̂  \\qF\\. On the other hand, for Fe M{(A) and φe A*

| | F | | = sup I F(φ) I Ξ> sup | F(π(a)*φ) \ = \\qF\\ .
\\\\£l \\π(a)*φ\\£l

Let {aa} be an approximate identity of A with | | α β | | ^ 1. Then there
is a subnet {aβ} of {aa} such that (cf. the proof of Theorem 3.1)

I F(π(a)*φ) I = lim I π(Taβ)(π(a)*φ) \
β

and

\π(Taβ)(π(a)*φ)\£ | | Taβ\\\\π(a)*φ\\ £ \\ T\\\\π(a)*φ\\ .

Thus \\F\\^\\T\\ and \\qF\\ ^\\T\\, and hence \\T\\ = \\qF\\. q.e.d.

For the right (or double) multipliers of A, we have the following

COROLLARY 3.6. Let B = A**/^~r (resp. A**l^~) and M? =
{XeB\π{a)*X in π{A) for all aeA} (resp. MB = {Xe J5|ττ(α)*X and
X*π(a) in π(A) for a e A}). Then

q{M'r{A)) = M* ~ Mr(A)

(resp. q(M'(A)) = MB = M(A), where Xe MB is identified by Dx).

PROOF. The proof follows from Corollary 3.4 and Theorem 3.5.

THEOREM 3.7. Let A be a Banach algebra. If π(A) is a left (resp.
right, two-sided) ideal in A**, then J7~x is a two-sided ideal in A** and

Mι(A) s A**/jTI (resp. Mr(A) ~ A**/^, M(A) ~ A**/^) .

PROOF. It is known that ^~τ and ̂ ~ are two-sided ideals. In addi-
tion, we note that if π(A) is a left ideal in A**, then J7Ί is also a two-
sided ideal. In fact if FeA**, then for any aeA, there is an element
6 in A such that F*π(a) = π(b) and for G e ̂ Ί, we have G*π(a) = 0 for
any aeA. Therefore,

G*F*π(a) = G*π(b) = 0 implies G*FeK3r

l .

This shows that J7~x is a right ideal and hence it is a two-sided ideal.
The conclusion follows from Theorem 3.5 (Corollary 3.6). q.e.d.

We ask that whether the kernel J^I = θτ\ϋ) (jrr = tf^O), ̂  = ̂ (O))
is a zero ideal of A**. It is not hard to see that if {aa} is an approxi-
mate identity of A and if π(aa)*φ—>φ in A* or φ*aa-+φ in A* with
respect to the norm topology, then the space spanned by {π(a)*φ\φe A*,
a e A) or {φ*a \ a e A, φ e A*} is dense in A*. Thus ^ 7 and J7~r are zero
ideals in A**. Therefore we have
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COROLLARY 3.8. Let {aa} be an approximate identity of A. If
π(aa)*φ—*φ (or φ*aa—+φ) in A* with respect to the norm topology, then

M[(A) s Mι{A) (or M'r(A) ~ Mr(A\ M'(A) = M(A)) .

If the multiplication in A is Arens regular, then JF*G = G<>F for
any F, G in A** and hence the product F*G is continuous in G for
fixed F and in F for fixed G. It can be shown then that ^ 7 = ^ =
^~τ — (0), and we have

THEOREM 3.9. Let Abe a Banach algebra. If the multiplication in
A is Arens regular, then

Ml(A) ~ Mι(A), M'r(A) ~ Mr(A) and M'(A) = M(A) .

PROOF. Let {aa} be an approximate identity of A with | | α β | | ^ 1.
Then {π(aa)} is bounded in A** and so there is a subnet {π(aβ)} con-
vergent to Ie A** in σ(A**, A*) topology. Thus for Fe A**, π(aβ)*F =
Foπ(aβ) —* I*F = F<>I = F in σ(A**, A*) topology. The same result holds:

π(aβ)oF = F*π(aβ) -> /oj^ = F*I = F in σ(A**, A*) topology .

Hence
I*F = F*I = F = IoF = Fol.

Now for FeM'r(A) (or Ml(A)), we have

(πία^)*^7)^ = π(aβ)(F*φ) — /(JP*?>) = F(^)

and

(F*π(aβ))φ = (π(aβ)oF)φ = π(aβ)(Fo<p) -> I(Foφ) = F(φ) .

Therefore

7r(α^)*F = 0 if and only if I*F = F = 0

and

F*π(aβ) = 0 if and only if JoF = F*I = F = 0 .

Then it follows from Theorem 3.5 and Corollary 3.6 that the theorem
is proved. q.e.d.

By a consequence of Theorem 3.7 and the above theorem, we obtain
the following

COROLLARY 3.10. Suppose that π(A) is a two-sided ideal in A**
and that the multiplication in A is Arens regular. Then

Mι(A) s Mr(A) s M(A) s A** .

REMARK 3.1. In the proofs of above theorems, sometime we need
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only the existence of the weak left (or right) approximate identity in
A, that is there is a net {aa} in A such that φ(aax) —> φ(x) (or φ(xaa) —*
φ{x)) for φeA*. But this is not essential for the arguments in our
purpose. Hence throughout we assume that the Banach algebra A has
an approximate identity for simply.

REMARK 3.2. From Tomiuk and Wong [10; Theorem 5.1] and Wong
[11; Theorem 3.2] to Wong [12; Theorem 2.2] proved the fact that for
a 2?*-algebra A, π(A) is a closed two-sided ideal of A** if and only if
A is a dual algebra and A is a dual algebra if and only if M(A) = A**.
It is known that every i?*-algebra A has an approximate identity (see
Rickart [8; Theorem 4.8.14]), and the multiplication in A is Arens regular
(see Civin and Yood [4; Theorem 7.1]). Hence the result M(A) = A**
of Wong and Tomiuk is a special case of Corollary 3.10.

The following paragraph contains some applications of section 3.

4. Extension of multiplier algebras.

THEOREM 4.1. Let B be a Banach algebra with approximate identity
which is contained in its Banach subalgebra A. Then

Mι(A) c Mι{B), Mr(A) c Mr(B) and M(A) c M(B) .

PROOF. Since A is a Banach subalgebra of B , 4 * * c B * * with Arens
multiplication. By Theorem 3.5 (and Corollary 3.6), we have

q{M[{A)) s Mι(A) , q(M{(B)) = Mι{B) .

It is sufficient to show

q{Ml{A))aq{Ml{B)).

Since AcB and ^I(A) = {Fe Ml(A) \ F*π(a) = 0, a e A}, ^](B) =
{Fe Mί(B) I F*π(b) = 0,be B), we have

S\{β) c JTtiA) and A**/^I(A) c B**/^(B) .

For TeMι(A) there is a unique F e q(M[(A)) such that

F*π(a) = π(Ta) for any ae A .

Let {aa} be an approximate identity of B and it is contained in A. Then
for any b e B,

ττ(αα)*7r(&) = π(aab) —• π(b) uniformly (in B-norm) .

Since i?** is a Banach algebra, it follows that

F*π(b) = F*lim (π(aa)*π(b)) =
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with respect to the uniform topology in 1?**. Since F*π(aa) in π{A),
F*π(aa)*π(b) e π(B). As π{B) is a closed subalgebra of £**, F*π(b) e π(B).
This shows that Feq(M[(B)), and hence there exists T in Mt(B) such
that

F*π(b) = 7r(Γ'6) for all δe B .

Evidently, the restriction T' U = T. Hence M,(A) c Mt(B). Similarly
Mr(A) c ikfr(£) and M(A) c M(£). q.e.d.

Let B be a Banach algebra with identity. Then the left regular
representation a—*La of B to Jlf(B) is an isometric isomorphism. That
is B ~ Mι(B). By the same reason after Corollary 3.4, we will establish
the following

THEOREM 4.2. Let B be a Banach algebra with identity e and A a
Banach subalgebra of B with approximate identity {aa}. Suppose that
for any be Bf bA = 0 implies 6 = 0, and that aa—+e in B with respect
to the strict topology. Then

Mt

B(A) s Mι(A) ,

where MιB(A) = {be B\bae A for all ae A}.

PROOF. Evidently Mt

B(A) c M^A) = q(MftA)) (cf. Theorem 3.4), thus
there is an isometric embedding π of M*{A) into A**/^7. Hence
π{M?(A)) c q(Ml(A)). We want to show

For any Fe q(M[{A)), there is a unique Te Mι(A) such that F*π(a) =
π(Ta). By Theorem 4.1, we see that TeMt{B). It follows that there
is an element b in B such that T = Lb and

F*π(a) = π(Ta) = π(Lba) = π(6α) = π(b)*π(a)

for all α e A. By assumption, the cancellation law holds, and so F =
π(δ), shows ?(Jlf/(A)) c π(M?(A)). Consequently ?(lf/(il)) - π{M?(A)). The
isometry between M^A) and M*(A) follows from Theorem 3.5. Therefore

Mι{A) ~ M?{A) . q.e.d.

In above theorem, if A is a left ideal of B, then M*(A) = B and
hence the following corollary holds.

COROLLARY 4.3. Under the assumption of Theorem 4.2, if we assume
further that A is a left ideal of B, then B ~ Mι(A). The same conclu-
sion holds for right and two-sided multipliers.
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5. Homomorphism extension of Banach algebras. In this section
the main task is to study the homomorphism extension of Banach alge-
bras. Akemann, Pedersen and Tomiyama [1; Theorem 4.2] proved that
there is a surjective homomorphism extension from a separable C*-al-
gebra to the multiplier algebra. For the isomorphism extension, one
can refer to Johnson [5; Theorem 20] and Rudin [9; Theorem 4.6.4]. In
[9] it was proved that the isomorphism extension is surjective for the
case of group algebra. We will prove in Theorem 5.2 later by applying
the idealizer to discuss the homomorphism extension in general Banach
algebras.

The following lemma is immediately.

LEMMA 5.1. Suppose that p is a continuous surjective homomorphism
of a Banach algebra A to a Banach algebra B. If A has an approxi-
mate identity then B has an approximate identity.

THEOREM 5.2. Let A and B be two Banach algebras and A has an
approximate identity. Suppose that there is a continuous surjective homo-
morphism p of A to B. Then p can be extended to a homomorphism p
of Mι{A) into Mι(B). This p is continuous with respect to the strict
topologies of Mι(A) and Mt(B). The same conclusion holds for right and
two-sided multiplier algebras.

PROOF. We denote by πA, πB the cannonical embeddings of A and
B into A** and i?** respectively. It follows from Civin and Yood [4;
Theorem 6.1] that the continuous homomorphism p of A to B can be
extended to be a homomorphism p of A** into 2?**. By Lemma 5.1, as
A has an approximate identity, so does B. Then the restriction p\M'ι{A)

of p is a homomorphism of M[(A) into 2?**. It is not hard to show that
p{M[(A))czMl{B).

We have to show that p deduces to a homomorphism p' of A**/^7(A)
into J5**/^7(.B) and then the restriction pf\q{M[u)) is a homomorphism of
q(M[(A)) into q{M[{B)). To this end it sufflcies to show ρ(^l{A)) c J^7(5).
For any FeJ^(A), we have F*π(a) = 0 for any aeA. Thus for any
be B there is ae A, b = p(a) such that

pF*πB(b) = ρF*πB(pa) = p(F*πA(a)) = 0 .

Hence pFe J^iB) shows ρ{^Ί{A)) c ^Ί(B). Therefore, p induces a homo-
morphism p' of A**/^Ί(A) into β**/^7(JS). It follows immediately that
p\q(Ml(A))) c q{M[{B)). Since q(Ml(A)) = Mι(A) by Theorem 3.5, it fol-
lows that there is a homomorphism p which extends p to Mι(A) into
Mt(B) such that
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ρ(Ta) = ρ(T)p(a) for Te Mt{A) and ae A .

Finally we show the continuity of p with respect to strict topology.
If {Ta} is a net in M^A) and T«->T strictly, then Taa-*Ta uniformly
in A for any α e i , and hence p(Taa)—> p(Ta) uniformly in B since p is
continuous. Therefore

|| p(Taa) - p(Ta) || = || p(Ta)pa - p(T)pa || -> 0 .

This shows that p(Ta) —* p(T) strictly in Mt(B) and hence p is continuous
with respect to the strict topologies in M^A) and M^B). q.e.d.

We note that the continuous homomorphism of A onto B can not
be extended in general to be a surjective homomorphism of Mt(A) to
Mι(B). For a counter example one can refer to the fact below the
proof of Theorem 4.2 in Akemann, Pedersen and Tomiyama [1]. In [1]
they proved the surjective extension of homomorphism in the case of
separable C*-algebra (see [1; Theorem 4.2]). We remark here that if
the homomorphism p is an isomorphism, then the above theorem is
proved directly by Johnson [5; Theorem 20]. Furthermore, if the sur-
jective isomorphism of A to B is bicontinuous then one can extend it
to a surjective isomorphism of Mι(A) to Mχ{B). In Rudin [9; Theorem
4.6.4] if A = L\Gύ, B = L\G2) are group algebras and Mι(A) = M{GX),
Mι{B) = M(G2) the bounded regular Borel measure algebras on locally
compact abelian groups Gt(i = 1, 2), then the isomorphism of A onto B
has a unique surjective isomorphism extension to Mχ(A) onto Mt{B).
Note that U(G%) are semisimple commutative Banach algebras and hence
the onto isomorphism is bicontinuous.

The following theorems are important for the representations of
Banach algebra as bounded linear operators in Hubert space.

THEOREM 5.3. Let A and B be Banach algebras with approximate
identities. Let E be a Banach space such that the dual E* of E is
isometrically isomorphic to the Banach algebra B. If p is a continuous
homomorphism of A into B, then p can be extended to a homomorphism
p of Mι(A) into B. This p is continuous strongly in B with respect to
the strict topology in Mι(A).

For the proof of this theorem we need the following lemma.

LEMMA 5.4. Suppose that a is an embedding of E into E**(= B*)
and that E° is the polar of E (i.e., a(E) in B*) in £**. Then

£** = π(B) 0 E° .

PROOF. The proof is immediately. For any ΦeB**(z>E°), set b =
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Φ \E, the restriction of Φ on E, we see that be B. It follows that

Ψ = Φ - π(b) eE° or Φ = π(b) + Ψ

for π(b)eπ(B) and ΨeE\ This expression is unique. In fact, if

φ = π{b,) + ¥, = π(b2) + Ψ2,

then π(b, - b2) = Ψ2-Ψ1e E\ This implies that b, - b2 = 0 or
τr(62) and ?F2 - W19 and ττ(£) n ί ° = {0}. Therefore

j?** ^ T Γ ^ ) © ^ 0 . q.e.d.

PROOF OF THEOREM 5.3. For a, be B and xe E, it is naturally to take

ab(x) = a(bx) .

Let a be the embedding of E into i?** = 5 * . Then the transposed
mapping a1 of a is a bounded linear transformation of 5** onto JB. If
E° is the polar of E in 5**, then for any G<£E° in 5**, there exists
an element b in B such that the restriction G \E = b and G — π(b) e E°
by Lemma 5.4. Evidently if fe E\ then /U = 0. That is Ker (α4) = E°.
It can be shown that E° is a two-sided ideal in B**. Indeed if G e δ * * ,
feE° then for any xeE, we have

(G*/)(α(αO) - αf(G*/)(αj) - a*G(ctfx) = 0

=> G*/e #°

and

(f*G)(φ)) = a'Ra'G-x) = 0

=*f*GeE°.

Therefore the quotient algebra B**/E° is isomorphic to 5 .
If p is the extension homomorphism of /? to A** into 5**, then the

restriction /θ |^ U ) is a homomorphism into M[(B). Indeed for FeM!(A),
there is a Γeikί^A) such that F*π(a) = π(Ta) for any α e i , This im-
plies ρF*pπ(a) = ρF*π(pa)eπ(B). Hence pFe M[{B). We have to show

For .Pe^KA), we have F*π(a) = 0 for all α e i , and ρF*π(pa) = 0.
But

(pF*π(ρa))(a(x)) = ρF(π(ρa)*a(x)) = af(βF)(ρa x)

= ρF(a(ρa-x)) = 0

for any α e ΐ ; and α e l This shows that ρFe(ρ(A)E)°. If ^(A)£r is
dense in £7, then pFeE0. Otherwise, we can put that the extension
/δF vanishes outside ρ(A)E in E (p(A)EczE), and then pFeE0. There-
fore, there is a homomorphism pf which maps
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into {B**l{p{A)E)«c:)B**IE«^B .

The restriction ρf \q{M>ιU)) which maps q(M[(A)) s Mι{A) into B and hence
there exists a homomorphism p which extends p to Mι(A) into I?. It
can be identified by

p{Ta) = p(T)p(a) for Γe Λfi(A) a n d α e A .

Finally, we show the continuity of p.
If {Ta} is a net in M(A) and Tβ—>0 in strict topology, then

0 uniformly in A for α e i , and p(Taa)—• () in .B-norm since |0 is con-
tinuous. Therefore, ρ(Taa) = ρ(Ta)p(a) converges to 0 in B, hence ρ(Ta)-+
0 strongly in B. q.e.d.

In this theorem we have assumed that B is a dual of a Banach space
E, if such 5 is also a j?*-algebra, then it is called a TΓ*-algebra. We
now turn to study the homomorphism of involutive algebra. A homo-
morphism is said to be a *-homomorphism if it commutes with involu-
tion *. If A is a J5*-algebra, the Arens multiplication in A is regular,
it follows that the involution in A can be extended to an involution in
A** (see Civin and Yood [4; p. 868]), and hence the *-homomorphism of
A to another J5*-algebra B can be extended to a *-homomorphism of
A** into JB**. In *-algebra A, we are dealing only with the multiplier
algebra M(A) in which the involution in M(A) is defined to be (Tz, Γr)* =
Γ* = (T*, T, ) with Tt*(x) = (Γ,(s*))* for each Te M(A) and xeA. Note
that if TeM^A), then T* e Mr(A) and vice versa.

As a corollary of Theorem 5.3, we have

COROLLARY 5.5. Let A be a B*-algebra and B a W*-algebra. Then
a *-homomorphism p of A into B has an extension to a * -homomorphism
p of M(A) into B, where p(Da) = p(a) for any ae A.

Applying the consequence of above theorems, we will turn to discuss
the representation of algebra as linear operators in a Hubert space, and
we will remark that the relationship between the representations of an
algebra as linear operators in Hubert space and corresponding repre-
sentations of the multiplier algebra. We mention firstly some termino-
logy which is used in describing representations of algebras as operators
on Hubert space (see [8]). Let H be a Hubert space and p be a con-
tinuous algebraic homomorphism of an algebra A into &(H), the bo-
unded linear operators in if, then p is called a representation. If A
has an involution * and * commutes with p then the representation
is called a ""-representation. If the linear subspace generated by
{p(a)ξ I a e A, ζ e H) is dense in H, then the representation is essential.
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Since &(H) is a dual of Banach space, thus in Theorem 5.3 by
setting B = &{H), we see that p is a representation, and Johnson [5;
Theorem 21] can be proved by Theorem 5.3. We restate it as follows:

Let A be a Banach algebra with approximate identity. Then the
representation p of A has an extension to a representation p of Mι(A).
If p is essential, then the extension p is unique and essential.

To prove this fact, we have only to show that p is continuous with
respect to the operator norms of Mt(A) and &(H). Let ||Γβ | |—>0 in
Mι(A). Then Tαα—•() in A uniformly with respect to a. For any ζeH,

p(Taa)ξ = p{Ta)p(a)ξ = p(Ta)ξ'-+0

in H uniformly with respect to c. If ζ'e p(A)H with | | £ ' | | ^ 1 , then
\\p(Ta)\\->0. If ξ'e{p(A)Hy, we then define p(Ta) = 0. Hence p is
continuous with respect to the operator norms of Mι(A) and έ%(H).

If p is essential, then p(A)H is dense in H, and for α e i , Te Mι(A),

{p(T)ζ\ζeH}zD{p(a)ζ\ζeH}f

is an essential representation.
Since &(H) is a TF*-algebra, thus if B = &(H) in Corollary 5.5,

we have:

Let A be a B*-algebra and p be a *-representation of A. Then p
has an extension to a *-representation p of M(A), where ρ(Da) = p(a)
for any as A. If p is essential, then the extension p is unique and
essential.

This statement is proved in Johnson [5; Theorem 23] for A as any
Banach *-algebra with approximate identity. In our case, we need that
an involution in A is extended to an involution in A**, therefore in
the context we assumed that A is a i?*-algebra. Actually it can be
assumed that A is a Banach *-algebra with approximate identity and
the multiplication in A is regular, then the above statement is also valid.

6. Determination of multiplier algebras. This section contains an
application of Theorem 5.2. Let X be a locally compact Hausdorff space.
For each teX, A(t) denotes a Banach algebra. Let {X, A(t)} be a fibred
space X. Assume that there is a family &" of cross sections of {X, A(t)}
such that it forms an algebra under pointwise operations and satisfies
the following conditions:

(0) There exists a net {aa}aeI in ^ such that for any 6 e ^ " and
any e > 0, there is βQeI such that
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sup || aβ(t)b(t) — b(t) || < ε whenever β > β0 .
teX

(i) The set ^~{t) = {a(t)\ae^'} is dense in A(t) for each t.
(ii) The function ί-H|α(ί)ll belongs to CQ(X) for all α i n ^
A cross section x of {X, A(t)} is said to be continuous at tQ e X with

respect to J?~ if for any ε > 0 there exists a neighborhood N(t0) and α
in ^ ~ such that

|| #(£) — α(ί) || < ε whenever t e iV(£0) .

Denote by C^(X, A(ί)) the set of all continuous cross sections of
{X, A(t)} vanishing at infinity. Then it will form a Banach algebra with
approximate identity under the supremum norm. An interesting special
case arises when all fibres A(t) are isomorphic to the same Banach al-
gebra A, in which the family J^~ is taken to be all norm continuous
A-valued functions on X vanishing at infinity and we have a trivial
fibred space C0(X, A).

Now consider the fibred space {X, &(A(t))}, where &(A(t)) denotes
the bounded operators of A(t). A cross section / in the fibred space
{X, .^(A(t))} is said to be strictly continuous at t0 with respect to J^~
if for every ε > 0 and each a in ^ there is an element b in ^~ and
a neighborhood N(tQ) such that

|| (/(ί) - b(t))a(t) || < ε whenever t e N(t0) .

Denote by Bjr(X, &(A(t))) the set of all bounded strictly continuous
cross sections in {X, &(A(t))} with respect to ^ 7

By these preparation, we will characterize the multiplier algebra
Mι{C^(X, A(t))) as a space of bounded strictly continuous cross sections
in {X, Mι(A(t))}. The case in C*-algebra is discussed by Akemann,
Pedersen and Tomiyama [1; Theorem 3.3 and Corollary 3.4]. Our result
is a generalization of [1] from C*-algebra to any general Banach algebra
with approximate identity for which Theorem 5.2 is available. We need
three lemmas.

LEMMA 6.1. Cjr(X, A(t)) is a Banach algebra with approximate iden-
tity under supremum norm and pointwise operations.

PROOF. For any x, y in C^(Xf A(t)), it is not hard to show that
xy belongs to C^(Xf A(t)) and \\xy IL S I M L \\v IL The completeness
of Cjr(X, A(t)) is immediate. Indeed if {xn} is a Cauchy sequence in
Cjr(X, A(t)), then {xn(t)} converges to x(t) in A(t) for any t. Thus for
any ε > 0 there exists n0 such that

|| xn(t) — x(t) || < ε/2 whenever n^>n0.
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On the other hand, for any toeX and for the given ε > 0, there exists
a neighborhood N(tQ) and corresponds a cross section anQ in &~ such that

\\xno(t)-ano(t)\\<ε/2 for teN(t0).

Then \\x(t) - ano(t)\\ < ε for teN(t0). This shows that the cross section
x is continuous. Since || x(t) \\ e CQ(X), {xa} converges to x in C^(X, A(t)).

Finally we show C^(X, A{t)) has an approximate identity. Let a be
any element in C^(Xf A(t)) and ε any positive number. Then for any
toe X there is a neighborhood N(t0) and exists b in a?~ such that

|| a(t) - b(t) || < ε/8 whenever t e N(tQ) .

Since {N(to)}tQBX is an open covering of X, thus if K is a compact subset
of X such that

|| a(t) || < β/4 when teX- K ,

then there is a finite subcovering {NitJ, , iV(£w)} such that \Jΐ=1 N(ti) z>
if. Now for any t e K, there is N(tt) B t for some i and 6X e ^ " such
that

By condition (0), for any 6i in ^ there is ^ such that

II aβ(t)bt(t) - 64(ί) || < ε/4 whenever β > βi ,

and assuming that ||αβ(ί) || ^ 1 for all ae I, then for β > βi9

|| aβ(t)a(t) - a(t) \\ £ \\ aβ(t)Ut) - bt(t) \\ + || α,(ί)(Wί) - α(ί)) ||

+ \\bi(t)-a(t)\\

< ε/4 + ε/8 + ε/8

= β/2 .

Consequently, for any ί e l and β > βu β2, , βn,

sup || α^(ί)α(ί) - α(ί) || ^ sup || α^)α(ί) - α(ί) || + sup || aβ(t)a(t) - α(ί) ||
tex teK te X—K

<ε/2 + 2 sup ||α(t)||
ίeX—if

<ε/2 + ε2 = ε. q.e.d.

LEMMA 6.2. Bjr(X, Mι(A(t))) is a Banach algebra under pointwise
operations and supremum norm.

PROOF. For any F, G in B^(Xt Jlίi(A(ί))), we want to show that
FG belongs to Bjr(X, Mt(A(t))). To this end, we show first that B^ is
a space of linear mappings of C^ into Cjr, and hence it follows that
B^r will be characterized as a left multiplier algebra of Cjr in next
lemma.
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For any F e J5^(X, Mι(A(t))) and α e CΛ-X", A(t)) such that for any
ε > 0, t0 e X, there is a neighborhood N(t0) and 6 e &" such that

|| Fa(t) - 6α(ί) || = || (F(t) - &(ί))α(ί) || < ε/2

for £ e N(tQ). Since 6α e C^(Xf A(t)) and a vanishing at infinity, we ob-
tain Fa e CA%, A(t)).

Next as G e B^{X, Mι{A{t))), thus for t0 e X, ε > 0 and α e ^ there
is c e Cjr(X, A(t)) and a neighborhood iNΓ(έ0) such that

|| (G(t) - c(ί))α(ί) || < 6/|| F |U whenever teN(t0) .

Then

|| (FG(t) - F(t)c(t))a(t) \\ < ε whenever t e N(t0) .

Since we have shown that Fc e C^, it follows that FG e B^(X9 Λf,(A(ί))).
The condition \\FG |U ^ | | F | U | | G |U is immediately, and the com-

pleteness of Bjr(X, MΪ(A(£))) follows from the completeness of Mt{A(t))
for any t. Hence B^(X, Mι(A(t))) is a Banach algebra with respect to
the supremun norm topology. q.e.d.

LEMMA 6.3. The algebra B^(Xf Mι(A(t))) can be isometrically em-
bedded in Mι(CAX, Λ(t))).

PROOF. For F in B^(X, MZ(A(£))) and a e CAX, A(t)), it has been
shown in Lemma 6.2 that Fa e C^(X, A(t)). We identify F as an element
TF in MtiCAX, A(t))) by

TFy = ify for all y e C -̂(X, Λ(t)) .

Then (TFy)(t) = F(t)y(t) for all teX. It is immediate that || F|U = || TF ||.
Indeed,

|| TFII = sup || TFy \\ = sup sup || TFy(t) \\
llylloo^i llylloo^i tex

= sup | |F( ΐ ) l l = l | i ί T IU. q.e.d.

THEOREM 6.4. ikΓ,(C (̂X, A(ί)» = β^(X, Mι(A(t))).

PROOF. Observe that Lemma 6.3, we have only to prove

Mt(CAX, A(t)))dBAXf Mι(A(t))) .

For any T in Mt(CAX, A(t))) and y in C^(X, A(t)), we have Γ?/ in
CA%, A(t)). We will show that the identity

(Ty)(t) = Fτ(t)y(t) for any y in C^(X, A(ί)) and ί e X ,

is well defined and then Fτ defines a bounded strict continuous cross
section in {X, Mι{A{t))}. To this end, for each t in X, consider a homo-
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morphism ρt of Cjr(X, A{t)) onto A(t) given by

pty = y(t) for t e X and y e 0^{X, A(t)) .

By Theorem 5.2, we know that pt has a homomorphism extension to
their multiplier algebra such that

Pt(Ty) = ρt(T)Pt(y) .

Define pt(T) = Fτ(t). Then ^ ( ί ) e Λf,(A(ί)) and F Γ is a bounded function
on X. Furthermore || T\\ = || Fτ \\^. It remains to show that Fτ is strictly
continuous on X. Since Fτ is bounded, we may assume that ||ίV(ί)ll =
1 for all t e X. For x in C^(X, A(t)), t0 e X, ε > 0 we have Fτx e (^-(X, A(ί))
and there is y in ^ " and exists a neighborhood iV(ί0) such that

II Fτx{t) - y(t) | | < ε for t e N(t0) .

On the other hand, the factorization property holds in a Banach algebra
with a (bounded) approximate identity, thus for x, y in ^(C^(Xf A(t)))
there is a in ^(C^(Xf A(t))) such that y = ax. Therefore for t e N(t0),

II Fτx{t) ~ y{t)\\ = || (Fτ(t) - a(t))x(t) \\<e.

Hence Fτ is a bounded strictly continuous with respect to J^~ in X.
q.e.d.

Now we turn to the case that as all A(t) are isomorphic to the same
Banach algebra A with approximate identity, we can specify ^~ as the
family of cross sections {af\ a e A, fe C0(X)}. Then G^{X, A(t)) coincides
with C0(X, A).

Indeed for any toeX, there is a function feC0(X) such that f(t) =
1 in some neighborhood N(tQ) of ί0 and 0 ^ / ^ 1 on X since X is a
locally compact Hausdorίf space. Then for any ae A, the mapping
fa:t—+ af(t) of X into A defines a continuous A-valued function on X
vanishing at infinity, i.e., / α e C ^ ( I , 4 ( ί ) ) c C 0 ( I , 4 ) . Conversely, for
a G C0(X, A), we see that a is continuous at any point ί0 e X, thus for
ε > 0, there is a neighborhood iV(ί0) such that

II α(ί) - α(t0) || < ε for t e #(ί0) .

Choose g e C0(X) such that # = 1 on N(t0) and 0 <; # <: 1 on X, then we
have

a(tQ)g e ^ 7 and || (a(to)g)(t) - α(ί) || < ε whenever ί e iNΓ(ί0) .

Hence a e C^{Xy A{t)). Therefore under our specification of ^

CAX, A(t)) = C0(X, A) .

This algebra C0(X, A) is isometric isomorphic to the tensor product
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C0(X) ®; A with respect to the smallest cross norm λ.
It is immediate that the approximate identity of C0(X, A) satisfies

the condition (0) provided A has a bounded approximate identity. Hence
if we given a Banach algebra A with bounded approximate identity and
let B(X, M^A)) denote the set of all bounded strictly continuous M^A)-
valued functions on X, then we have the following

COROLLARY 6.5. Af,(C0(X, A)) s B{Xy Mt(A)).

PROOF. Let Fe B(X, Mt{A)) and a e CQ(X, A). It is not hard to show
that Fa is continuous on X and vanishing at infinity, and so Fa e C0(X, A).
By definition, ^defines a multiplier T in MZ(CO(X, A)) and || T\\ = \\F\\...

Conversely, for TeMι(C0(X, A)) and for any fixed a in A, one can
choose geC0(X) such that ageC0(X, A), and hence T(ag)eC0(X, A). By
using Theorem 5.2, the following identity

T(ag)(t) = Fτ(t)ag(t)

is well defined where Fτ is a bounded ikfz(A)-valued function on X. By
the same argument of the proof in theorem, it is immediate that Fτ is
strictly continuous and H-FrlL = II T\\, i.e., FτeB(X, M^A)). q.e.d.

Note that the same conclusion holds for the right and two-sided
multiplier algebras. The special case of Corollary 6.5 is that M(CQ(X)) =
Cb(X) for the commutative Banach algebra C0(X) of scalar-valued con-
tinuous function vanishing at infinity, where Cb(X) denotes the bounded
continuous functions on X.
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