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1. Introduction. In this paper we discuss the multipliers on a gen-
eral Banach algebra A with an approximate identity. We are embedding
a Banach algebra A into the second conjugate space A** and introduce
the Arens multiplication in 4 for which the second conjugate space A**
becomes a Banach algebra and then characterize the multiplier algebra
of Banach algebra in its second conjugate algebra as an idealizer. If
the algebra A is a C*-algebra, it was known that A has an approximate
identity and the multiplication in A is Arens regular, and the multipliers
were investigated by Akemann, Pedersen and Tomiyama [1], Busby [2],
Tomiuk and Wong [10], [11] and [12] etc.. Our purpose is to investigate
the multipliers dealing with a general Banach algebra with bounded
approximate identity and the multiplication of non Arens regular will
be discussed.

For convenience we begin in section 2 by establishing the definitions
and some notations, and the multipliers of a Banach algebra can be
extended to be a multiplier of its second conjugate algebra which is
also included. In section 3 we characterize the multiplier algebra as an
idealizer in the second conjugate algebra. Section 4 is to extend the
multipliers of a subalgebra of a Banach algebra to the multipliers of the
Banach algebra by using the idealizer, and shows that the multipliers
of subalgebra can be embedded in the Banach algebra with identity as
an idealizer. The essential applications of idealizers are sections 5 and
6. In section 5 we study the homomorphism extension of Banach alge-
bras to their multiplier algebras. Applying Theorem 5.3, we obtain some
extension theorems of representations of algebra as linear operators in
a Hilbert space in which the results of Johnson [5; Theorems 21 and
23] are included. Finally, by applying Theorem 5.2, we determine the
multipliers of the vector-valued functions vanishing at infinity as a
bounded continuous multiplier-valued functions which is a generalization
of Theorem 3.3 and Corollary 3.4 of [1].
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2. Preliminaries and notations. Let A be a Banach algebra. De-
note by A* and A** the first and second conjugate spaces of A. We
denote the elements of 4 by a, b, ---; the elements of A* by @, +, «--;
the elements of A** by F, G, ---. Arens introduced a multiplication in
the second conjugate space A** as follows (cf. Civin and Yood [4]):

If pe A*, ae A, define pxac A* by (P*a)b = P(ab) for all be A.

If Fe A**, e A*, define Fxpc A* by (Fx®)b = F(pxb) for all be A.

If F,Ge A**, define F'xGe A** by (FxG)p = F(Gx®) for all pc A*.
This multiplication in A** which makes A** to be a Banach algebra.
Throughout we denote by 7 the cannonical embedding of A into A**.
For some purpose, Arens considered also the following definition of
multiplication in A**:

If pe A*, ac A, define poac A* by (Peca)b = ®(ba) for all be A.

If pe A*, Fe A**, define Fope A* by (Fo®)b = F(p-b) for all be A.

If F,Ge A**, define FoGe A** by (FoG)p = F(Gop) for all pc A*.
Again the multiplication FoG in A** as a product makes A** to be a
Banach algebra. If F+«G = GoF in A** the multiplication in A is called
regular. It is known that the multiplication F*G is continuous with
respect to g(A**, A*) topology in F for fixed Ge A** and 7(a)+G is
o(A**, A*) continuous in G for fixed a€ A. If the multiplication in 4
is regular, then FxG is also d(4**, A*) continuous in G for fixed F' (cf.
Civin and Yood [4]). Note that the algebra A** obtained by the Arens
product needs not be commutative and not be semisimple even if the
original algebra A is commutative and semisimple, and that 7(4) is only
a subalgebra of 4** but is not an ideal in A** in general (cf. Civin [3]).
Keeping these phenomenon in mind, we start to investigate the multi-
plier algebra of A in A**.

For convenience, throughout this paper we assume that the Banach
algebra A has a (bounded) approximate identity {e,} (without loss of
generality, we may assume that ||e¢,|| <1). We say that a bounded
linear operator T on a Banach algebra A is a left (right) multiplier of
A if T(ab) = Ta-b (T(ab) = a-Tb) for all a, bec A. The two-sided (=
double) multiplier of A is an ordered pair (T, T,) = T of operators on
A such that

a-Tb=T.a-b for all a,becA.

We denote by M,(A) (M.(A), M(A)) the space of all left (right, double)
multiplier operators on A. For any ac A, we define
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D, = (L,, R,) where L,(x) = ax, and R.(x) = za for all xc A .

Since A has an approximate identity, it is not hard to show that for
T=(T, T, in M(4), Tie M(A4), T,e M,(A) and || T|| = || T, || = || T || (cf.
Johnson [5] and Busby [2]). Now we identify

a — L, (resp. a — R,,a — D,),

then A is a dense left (right, two-sided) ideal in M,(A4) (M,(A4), M(A))
with respect to the strict topology B. That is the topology generated
by seminorms of the form

ITll. =N TallI(T, THl. =1l Tiall + || Ta ||

for double multipliers T = (T, T,)e M(A)). Some elementary properties
and definitions for double multipliers, we refer to Johnson [5] and Busby [2].

Now we show that a multiplier T'e M,(A) (or M,(A)) can be extended
to a left (right) multiplier in A** and hence for the two-sided multipliers
in A**,

ProrosITION 2.1. Let Te M(A). Then
(i) p*xTa = T'pxa, (i) T'(G*p) = GxT'p, (i) T"(F*G) = T"F+G
for any ac A, e A*, F, Ge A** where T' and T" are defined by
?(Ta) = (T'P)a and (T"F)p = F(T'p) .
Proor. (i) For any Te M,(A) and 9 A*, ac A, we have
(PxTa)r = P(Ta x) = P(T(ax)) = (T'P(ax)) = (T'P*a)x
for all xe A. This implies T'P*a = @*Ta.
(ii) For any Ge A**, pe A*, we have
G+ T'P)x = G(T'p*x) = G(PxTx) (by (1)
= T'(G*P)x
for all ¢ A, then T'(Gx@) = GxT'p.
(iii) For any F, Ge A**, we have
T"(F+G)p = (F«G)(T'p) = F(G+T'p) = F(T'(G+p))  (by (ii))
= (T"F*G)p
for all pe A*. Then T"(F+G) = T"FxG. q.e.d.
COROLLARY 2.2. If Te M.(A), then for ac A, Ge A** we have
() T'(pxa) = T'pxa, (i) T"Fxp = FxT'p, (iii) T"(F*G) = FxT"G.

By above proposition and corollary, we see that every multiplier of
A can be extended as a multiplier of A**. Thus the question arises
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that whether we can characterize the algebra M;(A) (resp. M,.(4), M(A))
in A**, To this end we define

M/(A) = {F e A** | Fxn(a) e m(A) for all ac 4},
M[(A) = {Fe A**|n(a)«F en(A) for all ac A},
M'(A) = {Fe A** |n(a)+F and Fxzr(a)e n(A) for all aec A} .

Then M/(A), M)(A) are closed subalgebras in A**, they are the (left,
right) idealizers of A in A**. For any F'e M'(A), we identify

F — Dy = (Ly, Ry)
where Lg(7(a)) = Fxn(a) and Ry(7(a)) = n(a)*F for any a€ A, then M'(A)
is defined as the idealizer of A in A**. Under this identification, the

discussion of the double multiplier algebra M(A4) in A** is almost the
same as the discussion of M,(A) in A**. We use the following notations

for mappings
0;: M!(A) — M(A) (:=1r) and 6: M'(A)— M(4) .
The kernel of those mappings are denoted by 6;7'(0) = .75 (1 =1, r), 67'(0) =
7 = {F|zn(a)+F = Fxn(a) = 0 for all ae A}. Denote by ¢ the quotient
mapping of
A** > A** [ T (i =1, r) or A**— A**| T .

3. Characterization of multiplier algebras as the idealizers. Mate
[7] investigated the right multipliers of a Banach algebra A dealing with
conjugate algebra A**. In [7; Theorem 6], he showed that the M,(4)
is isometric isomorphic to a certain closed subalgebra of A**/. 7, with
Arens product. In this section we will do a systematic discussion con-
cerning the multiplier algebras in A**.

THEOREM 3.1. Let A be a Banach algebra. Then there is an algebra
homomorphism 6, of M/(A) onto My(A). The kernel 6;*(0) = 7, of 6, is
the polar of the space spanmed by {m(a)*®;ac A, pc A*} and 7, is a
left ideal im A**.

Proor. For any Fe M/(A) and ac A, Fxn(a)cw(A). Hence there
is an operator T on A determined by Fxm(a) = n(Ta). This T is a left
multiplier in M;(A). Indeed, for a, be A,

Fxr(a)*m(b) = Fxm(ab) = n(T(ab))
and
Fsr(a)+rn(b) = n(Ta)*mw(b) = n(Ta b)
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implies T(ab) = Ta-b and Te M,(A). Hence it is easy to show that
0,: F— T defined by Fxm(a) = n(Ta)

is an algebra homomorphism of M/(A) into M,(A). We have only to
show 6, is an onto mapping. Let Te M,(A) and let {a,} be an approxi-
mate identity of A. Then {7(Ta,)} is a bounded net in 4**. By Alaoglu’s
theorem there is a weak*-limit point F in A** and then has a subnet
{m(Tas)} of {n(Ta,)} such that lim;w(Ta;) = F in o(4**, A*) topology and

(Fxm(@))p = F(r(x)*p) = liﬁm 7(Tas)(m(x)*P)
= liﬁm m(Tasx)p = lig:n T'¢(asx) = n(Tx)P
for any x€ A and any @€ A*. Hence Fxx(x) = n(Tx) for all xe A, this

shows that 6, is an onto homomorphism. The last part of theorem is
trivial. q.e.d.

COROLLARY 3.2. Let A be a Banach algebra. Then there is amn
algebra homomorphism 0, of M,(A) onto M,(A). The kernel 6;'(0) = 7,
of 6, is the polar of the space spanned by {pxa|ac A, pe A*} and 7,
18 a two-sided ideal of A**.

Proor. The first part of this corollary follows from Theorem 3.1
by the same argument. For the second part, it follows from

F(pxa) = (r(a)xF)p for all ae A and pec A*
that Fe.7, if and only if F is in the polar of the space spanned by
{pra|ac A, pe A*} .

Evidently .7, is a right ideal in A**. We need only to show that .7,
is also a left ideal. Since for Fe . 7,,

Fxp(a) = F(p+a) = 0 implies Fxp = 0 for all pe A*,
thus for Fle 7,, Ge A** we have
T(a)x(GxF)p = (7(a)*G)(F+p) = 0 implies GxFe 7, .
Hence .7, is a two-sided ideal in A**. q.e.d.

COROLLARY 3.3. There is an onto homomorphism 6 of M'(A) to M(A).
The kermel 67(0) = 7~ 14s the polar of {Pxa or mw(a)*®P|ac A, pc A*} and
7 18 a two-sided ideal of A**.

Proor. For the element F'e M'(4), we identify that F'— D,. Then
n(@)*Lp(n(y)) = Bp(n(x))*n(y) € ©(4)
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or
w(x)*x(F*n(y)) = (7(x)«F)*m(y) for all w, ye_A .
Since A has approximate identity, there is T)e M,(A), T,e M.(4) such
that
Far(y) = n(Ty), w@)+F =n(Tx)
and hence 7(x-Tyy) = n(T,x-y) or - Ty = T,x-y. This shows that T =
(T, T,) e M(A) and the mapping defined by
0:F—6(F)=6(D;) =T= (T, T,)
is evidently a homomorphism under the multiplication given by
T'T® = (T}, THo(T? T?) = (T}oT¢, TiT)).

Conversely, if T = (T, T.)e M(A) and {a.} is an approximate identity

of A, then there is a subnet {a;} such that
n(T,az) — F and n(T,a;) — F' in o(A**, A*) topology .
Thus 7n(z: Tia,) = n(T,x-a;) — w(@)«F = ©(T,x) in o(A**, A*) topology for
any x€ A implies
m(ap)*Fxn(y) = n(T,ap)*n(y) = m(as Tiy)

— Fxr(y) = F'sn(y) = n(Ty) € ©(4) in g(A**, A*)-topology. Hence F' = F’
and Fe M'(A). This shows that 6 is an onto homomorphism. The re-
mains of theorem is immediately. q.e.d.

Next we consider the coset space A**/.7; with Arens product and
the natural mapping ¢: A** — 4**/.7;. Then it can be shown that q is
an isometry of m(A4) into A**/.7,;. Indeed, for any be 4,

=@ [ =l1b]] = “s;ﬂgllfr(b)w .
We want to show that
sup |[7(d)p| = sup |#(d)(w(a)*P)| .
llellst llz(a)xp]|S1

Let {a.} be an approximate identity with [|a.|| <1. Then
1811 2 l1ba. || = sup | @E)w@P| 2 sup_|7O)(@)e)] -

T(ag)*¢llS1

The last supremum tends to sup,,; s |7(d)®| = ||b]|]. Consequently

1ol = sup |z(d)p| = sup |w(b)(m(a)*P)] .

llz(a)sp|IS1

This shows that ¢ maps 7(A4) isometrically into A**/7;. The same ar-
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gument holds for the mapping of 7(A4) to A**/. 7, (resp. A**/.77). Hence-
forth we do not distinguish the elements between 7(4) in A** and
q(w(A4)) in A**/ .77 (vesp. in A**/ 7,, A**/.77) if there is no any confusion.
Since .7, and .7~ are two-sided ideals of A**, the space B = A**/ 7,
(resp. A**/77) is a Banach algebra. Hence the right (resp. two-sided)
multipliers of A can be embedded in B as an idealizer. Thus if set

MZ(A) = {Xe B|n(a)«Xen(A) for all ae A}
M5(A) = {X e B| Ly(n(a)), Rx(7(a)) in w(A) for all ac A},
then we have
COROLLARY 3.4. MZ(A) = q(M](A)) (resp. M5(A) = q(M'(4))).

ProOF. By definition, it is clear that q(M/(4))c M?(A). We need
only to show that M?(A)c q(M])(A)). This fact is immediately, indeed
for any Xe MZ(A), n(a)xX e n(A) for any a € A, thus there is an operator
T on A such that 7(a)*X = n(Ta). Evidently, Te M,(A) and hence there
exists F'e M/(A) such that

9(w(a))*X = q(n(Ta)) = q(w(a)+F) = q(m(a))qF .

Hence X = qF € q(M](A)). The same argument holds for two-sided mul-
tipliers. q.e.d.

Note that if A is a subalgebra of a Banach algebra B, then in
general,

P(A) = {be Blbac A for all ac A4}

is a subset of M,(A), i.e., M:*(A) < M,(A). By this reason, the charac-
terization of M;(A) as an idealizer of A in an algebra B(D A) needs
some additional conditions between A and B. Whence we established
the Corollary 3.4.

The following theorem is essential in this section.

THEOREM 3.5. Under the quotient mapping q: A** — A**[ 77, we
have

o(Mi(4)) = M(4) .

ProOF. As 7, ={Fe M/(A)|Fxn(a) =0 for all ae A}, it follows
from Theorem 3.1 that the mapping 6,: ¢(M;(A)) — M,(A) is an onto al-
gebra isomorphism defined by the following identity

gFx«m(a) = n(Ta) .
It remains to show that ||¢F'|| = || T||. Since A** is a Banach algebra,
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[Tzl = [|a(T2) || = ||gF+n(@) || < [lgF |[|z(@) || = [¢F || [|=]] .
This implies || T'|| < ||qF'||. On the other hand, for F'e M/(A) and p € A*,
|F|l = sup | F(P)| =z sup |F(x(a)?)|=I[l¢F]l.

lIz(a)*p||=1

Let {a.} be an approximate identity of A with ||a,|| £1. Then there
is a subnet {a;} of {a.} such that (cf. the proof of Theorem 3.1)

| F(m(@)+@) | = lim | 7(Tas)(m(a)+¢) |

and
| 7(Tas)(m(a)+p) | < || Tap ||| w(a)*@ || = || Tl [ w(a)+@ || .
Thus || F'|| < || T|| and [[¢F|| < || T|l, and hence || T|| = |[[¢F|l.  q.e.d.
For the right (or double) multipliers of A, we have the following

COROLLARY 38.6. Let B = A**/7, (resp. A**/9) and ME =
{(Xe B|m(a)*X in w(A) for all ac A} (resp. M? ={Xec B|n(a)+xX and
Xxm(a) in w(A) for ac A}). Then

q(M:(4)) = M? = M,(4)

(resp. q(M'(A)) = M*® = M(A), where Xe M?® is identified by Dy).
Proor. The proof follows from Corollary 3.4 and Theorem 3.5.

THEOREM 3.7. Let A be a Banach algebra. If n(A) is a left (resp.
right, two-sided) ideal in A**, them 77 is a two-sided ideal in A** and

M(A) = A**| 7, (resp. M, (A) = A**|.7,, M(A) = A**|.97) .

Proor. It is known that .7, and .7~ are two-sided ideals. In addi-
tion, we note that if w(A) is a left ideal in A**, then .77 is also a two-
sided ideal. In fact if F'e A**, then for any ac A, there is an element
b in A such that Fxm(a) = n(b) and for Ge .7, we have Gxm(a) = 0 for
any a€ A. Therefore,

G+Fxmt(a) = Gxm(b) = 0 implies GxF'e .7, .

This shows that .7; is a right ideal and hence it is a two-sided ideal.
The conclusion follows from Theorem 3.5 (Corollary 3.6). q.e.d.

We ask that whether the kernel .7; = 6;:%(0) (.7, = 6;(0), &~ = 671(0))
is a zero ideal of A**. It is not hard to see that if {a,} is an approxi-
mate identity of 4 and if 7(a,)*® —® in A* or @*xa,—® in A* with
respect to the norm topology, then the space spanned by {7(a)+p | @ e A*,
ac A} or {pxa|aec A, e A*} is dense in A*. Thus 7, and 7, are zero
ideals in A**. Therefore we have
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COROLLARY 3.8. Let {a.} be an approwimate identity of A. If
(a)*@ — @ (or Pxa,— @) im A* with respect to the morm topology, then

Mi(4) = My(4) (or M(A) = M.(A), M'(4) = M(4)) .
If the multiplication in A is Arens regular, then FxG = GoF for
any F, G in A** and hence the product F+G is continuous in G for

fixed F and in F for fixed G. It can be shown then that 7, =9 =
7, = (0), and we have

THEOREM 3.9. Let A be a Banach algebra. If the multiplication in
A s Arens regular, then

Mi(A) = M(A), M](A) = M. (A) and M'(A) = M(A).

ProOF. Let {a,} be an approximate identity of A with |la.|| < 1.
Then {n(a,)} is bounded in A** and so there is a subnet {7(a;)} con-
vergent to Ie A** in o(A**, A*) topology. Thus for Fe A**, w(ay)*F =
Fon(ap) — I+F = Fol = F in 0(A**, A*) topology. The same result holds:

m(as)oF = Fem(a;) — IoF = F+I = F in g(A**, A*) topology .

Hence
IxF = FxI = F = IoF = FoI.

Now for F'e M/(A) (or M/(A)), we have

(w(ap)*F)p = m(ap)(F*p) — I(F+p) = F(P)
and

(Fxm(ap)p = (w(ap)oF)p = m(apg)(Fop) — I(Fop) = F(p) .

Therefore

w(ap)xF =0 if and only if IxF =F =0
and

Fsm(ap) = 0 if and only if IcF = FxI=F =0.

Then it follows from Theorem 8.5 and Corollary 3.6 that the theorem
is proved. q.e.d.

By a consequence of Theorem 3.7 and the above theorem, we obtain
the following

COROLLARY 3.10. Suppose that w(A) is a two-sided ideal in A**
and that the multiplication in A is Arens regular. Then

M(A) = M,(A) = M(A) = A** .

REMARK 3.1. In the proofs of above theorems, sometime we need
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only the existence of the weak left (or right) approximate identity in
A, that is there is a net {a,} in A such that ®(a.r) — o(x) (or P(za.) —
®(x)) for pe A*. But this is not essential for the arguments in our
purpose. Hence throughout we assume that the Banach algebra A has
an approximate identity for simply.

REMARK 3.2. From Tomiuk and Wong [10; Theorem 5.1] and Wong
[11; Theorem 3.2] to Wong [12; Theorem 2.2] proved the fact that for
a B*-algebra A, m(A) is a closed two-sided ideal of A** if and only if
A is a dual algebra and A is a dual algebra if and only if M(A4) = A**.
It is known that every B*-algebra A has an approximate identity (see
Rickart [8; Theorem 4.8.14]), and the multiplication in A is Arens regular
(see Civin and Yood [4; Theorem 7.1]). Hence the result M(A4) = A**
of Wong and Tomiuk is a special case of Corollary 3.10.

The following paragraph contains some applications of section 3.

4. Extension of multiplier algebras.

THEOREM 4.1. Let B be a Banach algebra with approximate identity
which s contained in its Banach subalgebra A. Then

M(A) c M(B), M(A) = M(B) and M(A)c M(B) .

ProoF. Since A is a Banach subalgebra of B, A** ¢ B** with Arens
multiplication. By Theorem 3.5 (and Corollary 3.6), we have

qMi(A) = M(A), q(M/(B)) = M(B).
It is sufficient to show
q(M;(4)) C o(M/(B)) .

Since Ac B and Zy(4) = (Fe M/(A)|Fsr(a) = 0,ac A}, TiB) =
{(Fe M/(B)| Fsn(b) = 0, be B}, we have

JUB)C 7(A) and A**|7(A)c B**|.7(B) .
For Te M,(A) there is a unique F' € q(M;(A4)) such that
Fxn(a) = n(Ta) for any ac A .

Let {a.} be an approximate identity of B and it is contained in A. Then
for any be B,

(a,)*m(b) = mw(ab) — w(d) uniformly (in B-norm) .
Since B** is a Banach algebra, it follows that
Fxn(b) = Fxlim (7(a,)*m (b)) = lim Fxm(a,)*m(b)
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with respect to the uniform topology in B**. Since Fxz(a,) in 7(A4),
Fxn(a,)*n(b) e n(B). As mn(B) is a closed subalgebra of B**, Fxx(b) € n(B).
This shows that F'e q(M/(B)), and hence there exists 7" in M,(B) such
that

Fxm(b) = n(T'd) for all be B .

Evidently, the restriction 7’|, = T. Hence M,(A)c M,(B). Similarly
M. (A)c M,(B) and M(A)c M(B). q.e.d.

Let B be a Banach algebra with identity. Then the left regular
representation a — L, of B to M(B) is an isometric isomorphism. That
is B = M(B). By the same reason after Corollary 3.4, we will establish
the following

THEOREM 4.2. Let B be a Banach algebra with identity e and A a
Banach subalgebra of B with approximate identity {a.}. Suppose that
for any be B, bA =0 implies b = 0, and that a,— e in B with respect
to the strict topology. Then

F(A) = M(4),
where MP(A) = {be B|bac A for all ac A}.

Proor. Evidently MP(A)c M(A) = q(M](A)) (cf. Theorem 3.4), thus
there is an isometric embedding 7 of MP(4) into A**/.7,. Hence
A(MP(A)) c q(M](A)). We want to show

T(MF(4)) o o(Mi(4)) .

For any F e q(M](A)), there is a unique T'e M,(A) such that Fxn(a) =
w(Ta). By Theorem 4.1, we see that Tc M,(B). It follows that there
is an element b in B such that T = L, and

Fin(a) = n(Ta) = n(La) = n(ba) = #(b)+(a)

for all ae A. By assumption, the cancellation law holds, and so F =
7(b), shows q(M/(A)) C T(ME(A)). Consequently q(M/(A)) = T(MP(A)). The
isometry between M,(A) and M?(A) follows from Theorem 3.5. Therefore

M(A) = M(A) . q.e.d.

In above theorem, if A is a left ideal of B, then M?(A) = B and
hence the following corollary holds.

COROLLARY 4.3. Under the assumption of Theorem 4.2, if we assume
Sfurther that A is a left ideal of B, then B = M,(A). The same conclu-
ston holds for right and two-sided multipliers.
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5. Homomorphism extension of Banach algebras. In this section
the main task is to study the homomorphism extension of Banach alge-
bras. Akemann, Pedersen and Tomiyama [1; Theorem 4.2] proved that
there is a surjective homomorphism extension from a separable C*-al-
gebra to the multiplier algebra. For the isomorphism extension, one
can refer to Johnson [5; Theorem 20] and Rudin [9; Theorem 4.6.4]. In
[9] it was proved that the isomorphism extension is surjective for the
case of group algebra. We will prove in Theorem 5.2 later by applying
the idealizer to discuss the homomorphism extension in general Banach

algebras.
The following lemma is immediately.

LEMMA 5.1. Supposethat p is a continuous surjective homomorphism

of a Banach algebra A to a Banach algebra B. If A has an approxi-
mate identity then B has an approximate identity.

THEOREM 5.2. Let A and B be two Banach algebras and A has an
approximate identity. Suppose that there is a continuous surjective homo-
morphism 0 of A to B. Then o can be extended to a homomorphism p
of My(A) into M(B). This D is continuous with respect to the strict
topologies of M,(A) and M(B). The same conclusion holds for right and

two-sided multiplier algebras.

Proor. We denote by 7,, 7, the cannonical embeddings of A and
B into A** and B** respectively. It follows from Civin and Yood [4;
Theorem 6.1] that the continuous homomorphism p of A to B can be
extended to be a homomorphism g of A** into B**. By Lemma 5.1, as
A has an approximate identity, so does B. Then the restriction 0|y,
of 0 is a homomorphism of M/(A) into B**. It is not hard to show that
A(M(4)) © MI(B).

We have to show that 0 deduces to a homomorphism p’ of A**/.7,(A)
into B**/.7(B) and then the restriction 0|,/ is a homomorphism of
q(M](A)) into q(M;(B)). To this end it sufficies to show 0(.77(4)) c 7«B).
For any Fe 7,(A), we have Fxm(a) =0 for any ac A. Thus for any
be B there is a€ 4, b = p(a) such that

pFsm,(b) = pFsmy(oa) = f(F+m (a) = 0.
Hence 0F € .7 (B) shows 0(7(4)) € .Z(B). Therefore, 0 induces a homo-
morphism o’ of A**/.7(4) into B**/.7(B). It follows immediately that
0"(q(M](A))) c q(M/(B)). Since q(M/(A)) = M,(A) by Theorem 8.5, it fol-
lows that there is a homomorphism © which extends o to M(A4) into
M,(B) such that
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o(Ta) = p(T)o(a) for Te M(A) and ac A .

Finally we show the continuity of o with respect to strict topology.
If {T,} is a net in M,(4) and T,— T strictly, then T.o — Ta uniformly

in A for any a€ A, and hence o(T,a) — o(Ta) uniformly in B since p is
continuous. Therefore

Il o(Tea) — o(Ta) || = || A(Topa — B(TYpall— 0.

This shows that p(T,) — p(T') strictly in M,(B) and hence p is continuous
with respect to the strict topologies in M,(A) and M,(B). q.e.d.

We note that the continuous homomorphism of A onto B can not
be extended in general to be a surjective homomorphism of M;(A4) to
M,(B). For a counter example one can refer to the fact below the
proof of Theorem 4.2 in Akemann, Pedersen and Tomiyama [1]. In [1]
they proved the surjective extension of homomorphism in the case of
separable C*-algebra (see [1; Theorem 4.2]). We remark here that if
the homomorphism p is an isomorphism, then the above theorem is
proved directly by Johnson [5; Theorem 20]. Furthermore, if the sur-
jective isomorphism of A to B is bicontinuous then one can extend it
to a surjective isomorphism of M;(4) to M;(B). In Rudin [9; Theorem
4.6.4] if A = L(G,), B = L'(G,) are group algebras and M,(4) = M(G),
M(B) = M(G,) the bounded regular Borel measure algebras on locally
compact abelian groups G,z = 1, 2), then the isomorphism of 4 onto B
has a unique surjective isomorphism extension to M;(A) onto My(B).
Note that L'(G;) are semisimple commutative Banach algebras and hence
the onto isomorphism is bicontinuous.

The following theorems are important for the representations of
Banach algebra as bounded linear operators in Hilbert space.

THEOREM 5.3. Let A and B be Banach algebras with approximate
identities. Let E be a Banach space such that the dual E* of E 1is
isometrically isomorphic to the Banach algebra B. If pis a continuous
homomorphism of A into B, themn p can be extended to a homomorphism
0 of M,(A) into B. This p is continuous strongly in B with respect to
the strict topology in M,(A).

For the proof of this theorem we need the following lemma.

LEMMA 5.4. Suppose that a is an embedding of E into E**(= B*)
and that E° is the polar of E (i.e., a(F) in B*) in B**. Then

B* =n(B) E" .
ProoOF. The proof is immediately. For any @e B**(D E°), set b =
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@ |z, the restriction of @ on E, we see that be B. It follows that
T=0—r0b)ecE or O=nub)+¥
for n(b)e n(B) and ¥ e E°. This expression is unique. In fact, if
O =xnb)+7 =ub)+7,,

then 7(b, — b,) =¥, — ¥, e E°. This implies that b, — b, =0 or =(b) =
7(b,) and ¥, = ¥, and n(B) N E° = {0}. Therefore
B* =n(B)@ E". q.e.d.
PRroOOF OF THEOREM 5.3. For a, be B and xz € E, it is naturally to take
ab(x) = a(bx) .
Let a be the embedding of E into E** = B*. Then the transposed
mapping «' of « is a bounded linear transformation of B** onto B. If
E° is the polar of E in B**, then for any G ¢ E° in B**, there exists
an element b in B such that the restriction G| =b and G — w(b)e E°
by Lemma 5.4. - Evidently if fe E° then f|; = 0. That is Ker (a?) = E".
It can be shown that E° is a two-sided ideal in B**. Indeed if G e B**,
fe E° then for any x2¢€ E, we have
(Gxf)a(@)) = a(G+f)(x) = a'G(a’fa) =0
= Gxfe E°
and
(f+G)(a(@) = a'f(a'G-x) = 0
= f+xGe K.
Therefore the quotient algebra B**/E° is isomorphic to B.

If 0 is the extension homomorphism of o to A** into B**, then the
restriction ﬁlMi( 4 18 a homomorphism into M;(B). Indeed for Fe M/(4),
there is a Te M,(A) such that Fxm(a) = n(Ta) for any ac A. This im-
plies 0Fxpn(a) = pFxn(pa)e n(B). Hence 0F e M/(B). We have to show
0(7(4) c E".

For Fe 7,(A), we have Fsz(a) = 0 for all ac A, and pFxn(pa) = 0.
But

(OF*7(pa))(a(x)) = OF(n(oa)+a(x)) = a'(0F )(0a )
= pF(a(pa-5)) = 0
for any xe€ £ and ac A. This shows that 0F e (0o(A)E). If p(A)E is
dense in E, then pFe E°. Otherwise, we can put that the extension
OF vanishes outside 0(4)E in E (o(A)E C E), and then 0F e E°. There-
fore, there is a homomorphism p’ which maps
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A**| 7 (A) into (B**/(o(A)E) C)B**/E°=B.

The restriction p’ locarjay Which maps g(M/(A)) = M,(A) into B and hence
there exists a homomorphism g which extends p to M(A4) into B. It
can be identified by

o(Ta) = p(T)p(a) for Te M,(A) and ac A .

Finally, we show the continuity of p.

If {T.} is a net in M(A) and T,— 0 in strict topology, then T,a —
0 uniformly in A for ac 4, and p(T.a)—0 in B-norm since p is con-
tinuous. Therefore, o(T.a) = p(T.)o(a) converges to 0 in B, hence p(T,) —
0 strongly in B. q.e.d.

In this theorem we have assumed that B is a dual of a Banach space
E, if such B is also a B*-algebra, then it is called a W*-algebra. We
now turn to study the homomorphism of involutive algebra. A homo-
morphism is said to be a *-homomorphism if it commutes with involu-
tion *. If A is a B*-algebra, the Arens multiplication in 4 is regular,
it follows that the involution in A can be extended to an involution in
A** (see Civin and Yood [4; p. 868]), and hence the *-homomorphism of
A to another B*-algebra B can be extended to a *-homomorphism of
A** into B**. In *-algebra A, we are dealing only with the multiplier
algebra M(A) in which the involution in M(A) is defined to be (T, T,)* =
T* = (T}, T¥) with T*(x) = (Ty(x*))* for each Te M(A4) and x€ A. Note
that if Te M,(A), then T* e M,(A) and vice versa.

As a corollary of Theorem 5.3, we have

COROLLARY 5.5. Let A be a B*-algebra and B a W*-algebra. Then
a *-homomorphism o of A into B has an extension to a *-homomorphism
0 of M(A) into B, where p(D,) = p(a) for any ac A.

Applying the consequence of above theorems, we will turn to discuss
the representation of algebra as linear operators in a Hilbert space, and
we will remark that the relationship between the representations of an
algebra as linear operators in Hilbert space and corresponding repre-
sentations of the multiplier algebra. We mention firstly some termino-
logy which is used in describing representations of algebras as operators
on Hilbert space (see [8]). Let H be a Hilbert space and p be a con-
tinuous algebraic homomorphism of an algebra A into <#(H), the bo-
unded linear operators in H, then p is called a representation. If A
has an involution * and * commutes with o then the representation
is called a *-representation. If the linear subspace generated by
{o(a)é|ac A, Ec H} is dense in H, then the representation is essential.
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Since “#(H) is a dual of Banach space, thus in Theorem 5.3 by
setting B = <Z(H), we see that p is a representation, and Johnson [5;
Theorem 21] can be proved by Theorem 5.3. We restate it as follows:

Let A be a Banach algebra with approximate identity. Then the
representation p of A has an extension to a representation p of M,(A).
If o is essential, then the extension P is unmique and essential.

To prove this fact, we have only to show that p is continuous with
respect to the operator norms of M,(4) and <#(H). Let ||T,||—0 in
M,(A). Then T,a — 0 in A uniformly with respect to @. For any &€ H,

o(Tea)é = p(T)o(a)f = p(To)E — 0

in H uniformly with respect to a. If &€ p(A)H with ||¢'|] =1, then
No(T)]|—0. If &e(o(A)H)*, we then define 9(7,) =0. Hence p is
continuous with respect to the operator norms of M,(4) and < (H).

If o is essential, then p(A)H is dense in H, and for a € A, T e M,(4A),

{p(T)[ée HY D {o(a)i | e H} ,

is an essential representation.
Since <#(H) is a W*-algebra, thus if B = < (H) in Corollary 5.5,
we have:

Let A be a B*-algebra and p be a *-representation of A. Then p
has an extemsion to a *-representation O of M(A), where p(D,) = o(a)
for any ac A. If o is essential, them the extension p is unique and
essential.

This statement is proved in Johnson [5; Theorem 23] for 4 as any
Banach *-algebra with approximate identity. In our case, we need that
an involution in A is extended to an involution in A**, therefore in
the context we assumed that A is a B*-algebra. Actually it can be
assumed that A is a Banach *-algebra with approximate identity and
the multiplication in A is regular, then the above statement is also valid.

6. Determination of multiplier algebras. This section contains an
application of Theorem 5.2. Let X be a locally compact Hausdorff space.
For each te X, A(t) denotes a Banach algebra. Let {X, A(t)} be a fibred
space X. Assume that there is a family .# of cross sections of {X, A(t)}
such that it forms an algebra under pointwise operations and satisfies
the following conditions:

(0) There exists a net {a,}..; in F# such that for any be . # and
any ¢ > 0, there is B8,¢ I such that
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sup || as(t)b(t) — b(t) || <& whenever B> 3,.

(i) The set #(t) = {a(t)|ac &} is dense in A(t) for each ¢.

(ii) The function ¢ — || a(t)|| belongs to C,(X) for all ¢ in .

A cross section z of {X, A(t)} is said to be continuous at t,€ X with
respect to & if for any e > 0 there exists a neighborhood N(¢,) and a
in & such that

||2(t) — a(t) || < ¢ whenever te N(t,) .

Denote by C.(X, A(t)) the set of all continuous cross sections of
{X, A(t)} vanishing at infinity. Then it will form a Banach algebra with
approximate identity under the supremum norm. An interesting special
case arises when all fibres A(t) are isomorphic to the same Banach al-
gebra A, in which the family & is taken to be all norm continuous
A-valued functions on X vanishing at infinity and we have a trivial
fibred space C/(X, A).

Now consider the fibred space {X, <& (A(t))}, where <& (A(t)) denotes
the bounded operators of A(t). A cross section f in the fibred space
(X, &Z(A(t))} is said to be strictly continuous at ¢, with respect to #
if for every ¢ > 0 and each a in & there is an element b in % and
a neighborhood N(t,) such that

1 (f @) — bt))a(t)]] < ¢ whenever te N(t,) .

Denote by B.(X, < (A(t))) the set of all bounded strictly continuous
cross sections in {X, <% (A(t))} with respect to .#.

By these preparation, we will characterize the multiplier algebra
M(C (X, A(t))) as a space of bounded strictly continuous cross sections
in {X, M,(A(t))}. The case in C*-algebra is discussed by Akemann,
Pedersen and Tomiyama [1; Theorem 3.3 and Corollary 3.4]. Our result
is a generalization of [1] from C*-algebra to any general Banach algebra
with approximate identity for which Theorem 5.2 is available. We need
three lemmas.

LEMMA 6.1. C. (X, A(t)) is a Banach algebra with approxvimate iden-
tity under supremum morm and pointwise operations.

Proor. For any @, y in C(X, A(t)), it is not hard to show that
2y belongs to C.(X, A(t)) and ||zy|l. =< |lz|l.|l¥|l.. The completeness
of C(X, A(t)) is immediate. Indeed if {x,} is a Cauchy sequence in
C.(X, A(t)), then {z,(t)} converges to x(¢t) in A(t) for any ¢. Thus for
any ¢ > 0 there exists n, such that

|| 2.(t) — 2(t) || < ¢/2 whenever n = n, .
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On the other hand, for any ¢,¢ X and for the given ¢ > 0, there exists
a neighborhood N(¢,) and corresponds a cross section a,, in & such that
[|#.,(8) — a., () || <e/2 for teN(t).

Then || 2(t) — a,(t)|| < ¢ for te N(t). This shows that the cross section
x is continuous. Since [|z(t) || € Cy(X), {x.} converges to x in C.- (X, A(Z)).

Finally we show C.(X, A(t)) has an approximate identity. Let a be
any element in C.(X, A(t)) and ¢ any positive number. Then for any
t,€ X there is a neighborhood N(¢,) and exists b in # such that

[la(t) — b(t) || < /8 whenever te N(t,) .
Since {N(t,)}:,cx is an open covering of X, thus if K is a compact subset
of X such that
lla(t)|] < ¢/4 when te X — K,

then there is a finite subcovering {N(t), - -+, N(¢,)} such that Uy, N(¢,)>
K. Now for any te K, there is N(¢,)ot for some 7 and b, € & such
that

la(®) — b.) | < &/8.
By condition (0), for any b, in .#, there is B; such that
[l as(t)b(t) — bi(t) || < /4 whenever B8 > B,
and assuming that ||a.(f)|] £ 1 for all ac I, then for B8 > g,,
[las()a(t) — a(®) || < [l as)b(t) — b.2) || + [l aa()(bi(t) — a(?)) ]
+ 118.2) — a@®) |
<e/d+ ¢/8+¢/8
=¢€/2.
Consequently, for any te X and 8> B, Bz ***, Ba»
sup [ as(t)a(t) — a(®) || = sup | ax(®)a(®) — a@®) [l + sup [laxt)a(t) — a()l
<¢/2+2 sup [la(t) ]l
<eg2+4+¢e2=c¢. q.e.d.

LEMMA 6.2. B (X, M,(A(t)) is a Banach algebra under pointwise
operations and supremum norm.

Proor. For any F, G in B.(X, M,(A(t))), we want to show that
FG belongs to B.(X, M,(A(¢))). To this end, we show first that B.- is
a space of linear mappings of C. into C,, and hence it follows that
B, will be characterized as a left multiplier algebra of C, in next
lemma.
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For any Fe B.(X, M|(A(t)) and acC.(X, A(t)) such that for any
€ >0, t,e X, there is a neighborhood N(¢) and be & such that

| Fa(¢) — ba(@) [| = || (F'(¢) — b(@))a®) || < &/2

for te N(t,). Since ba e C.(X, A(t)) and a vanishing at infinity, we ob-
tain Fae C(X, A(t)).

Next as G e B(X, M,(A(t))), thus for ¢t,€ X, ¢ > 0 and ac ., there
is ce C(X, A(t)) and a neighborhood N(t,) such that

1 (G@E) — c@t))a@) || < ¢/|| F||l. whenever te N(t,) .
Then

[| (FG(t) — F(t)e(t))a(t) || < ¢ whenever te N(¢,) .

Since we have shown that Fee C_., it follows that FiG € B (X, M,(A(%))).

The condition ||FG|. =< || F|l./|G|l. is immediately, and the com-
pleteness of B (X, M,(A(t))) follows from the completeness of M(A(t))
for any ¢t. Hence B.(X, M,(A(¢))) is a Banach algebra with respect to
the supremun norm topology. q.e.d.

LEMMA 6.3. The algebra B.(X, M(A(t))) can be isometrically em-
bedded in M(C.(X, A(2))).

Proor. For F in B (X, M)(A(t))) and aeC.(X, A(t)), it has been
shown in Lemma 6.2 that Fae C(X, A(t)). We identify F' as an element
Ty in M(C~(X, A(?))) by

T:y = Fy for all yeC.(X, A(t)).

Then (Ty)(t) = F(t)y(t) for all te X. It is immediate that || F||. = || T¢||.
Indeed,

[| Tell = sup || Try || = sup sup|| Try()||
12173 IYlleoS1 te X
=sup || F(t) [l = 1 Fl. . q.e.d.
THEOREM 6.4. M,(C(X, A(t)) = B.(X, M,(A(t))).
PrROOF. Observe that Lemma 6.3, we have only to prove
M(C-(X, A(t))) € B(X, M(A))) .

For any T in M,(C.(X, A(t)) and ¥y in C.(X, A(t)), we have Ty in
C.(X, A(t)). We will show that the identity

(Ty)(t) = F(t)y(t) for any y in C(X, A(¢)) and te X,

is well defined and then F, defines a bounded strict continuous cross
section in {X, M;(A(t))}. To this end, for each ¢ in X, consider a homo-
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morphism p, of C.(X, A(t)) onto A(t) given by
oy = y(t) for te X and ye C.(X, A(?)) .

By Theorem 5.2, we know that p, has a homomorphism extension to
their multiplier algebra such that
0(Ty) = p(T)o.y) .

Define p(T) = Fy(t). Then Fy(t)e M,(A(t)) and F; is a bounded function
on X. Furthermore || T|| = || Fr||l.- It remains to show that F'; is strictly
continuous on X. Since F, is bounded, we may assume that || F(¢) | <
1forallte X. For zin C.-(X, A(t)), t,c€ X, €¢>0 we have Frxe C(X, A(t))
and there is y in .# and exists a neighborhood N(t,) such that

| Fra(t) — y(@t)]]l < e for te N(t).

On the other hand, the factorization property holds in a Banach algebra
with a (bounded) approximate identity, thus for =, ¥ in & (C. (X, A(t)))
there is a in # (C(X, A(t))) such that y = ax. Therefore for ¢ e N(¢,),

| Fra(t) — y(@) = || (F2(t) — a@®)x@) || < €.

Hence F, is a bounded strictly continuous with respect to & in X.
q.e.d.

Now we turn to the case that as all A(¢) are isomorphic to the same
Banach algebra A with approximate identity, we can specify & as the
family of cross sections {af|a€ A4, fe C(X)}. Then C(X, A(t)) coincides
with C(X, A).

Indeed for any t¢,€ X, there is a function fe C(X) such that f(¢) =
1 in some neighborhood N(t) of ¢, and 0 < f<1 on X since X is a
locally compact Hausdorff space. Then for any ae A, the mapping
St —af(t) of X into A defines a continuous A-valued function on X
vanishing at infinity, ie., f,eC(X, A(t)) c C(X, A). Conversely, for
a€Cy(X, A), we see that a is continuous at any point #,€ X, thus for
¢ > 0, there is a neighborhood N(¢,) such that

lla®) — at) || < & for te N(t).

Choose g€ Cy(X) such that g =1 on N(t,) and 0 < g <1 on X, then we
have
a(t)g e #, and || (a(t)9)(t) — a(t)|] < ¢ whenever te N(t,) .

Hence a € C.(X, A(t)). Therefore under our specification of &,
Co(X, A@?)) = C(X, 4) .

This algebra Cy(X, A) is isometric isomorphic to the tensor product
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Cy(X) @; A with respect to the smallest cross norm .

It is immediate that the approximate identity of C,(X, A) satisfies
the condition (0) provided A has a bounded approximate identity. Hence
if we given a Banach algebra A with bounded approximate identity and
let B(X, M,(A)) denote the set of all bounded strictly continuous M,(4)-
valued functions on X, then we have the following

COROLLARY 6.5. M,(C(X, A)) = B(X, M,(A)).

Proor. Let Fe B(X, M(4)) and a € C(X, A). It is not hard to show
that Fa is continuous on X and vanishing at infinity, and so Fa € C(X, A).
By definition, F' defines a multiplier 7' in M(C(X, A)) and || T|| = || F||«-

Conversely, for Te M,(C(X, A)) and for any fixed a in A, one can
choose ge C(X) such that age Cy(X, A), and hence T(ag) € C(X, 4). By
using Theorem 5.2, the following identity

T(ag)(t) = Fr(t)ag(?)

is well defined where F, is a bounded M,(4)-valued function on X. By
the same argument of the proof in theorem, it is immediate that F is
strictly continuous and || F;|l. = || T||, i.e., Fre B(X, M,(A)). q.e.d.

Note that the same conclusion holds for the right and two-sided
multiplier algebras. The special case of Corollary 6.5 is that M(Cy(X)) =
C¥X) for the commutative Banach algebra C(X) of scalar-valued con-
tinuous function vanishing at infinity, where C*(X) denotes the bounded
continuous functions on X.
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