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0. Introduction. A 4m-dimensional Riemannian manifold is called
a quaternion Kahler manifold if the holonomy group is contained in
Sp(m)-Sp(1)( = Sp(m) x Sp(1)/{£1}). Recently, Ishihara [6] has given
a definition equivalent to that above for quaternion Kahler manifolds
and obtained many interesting results (cf. [1], [3] and [7]). We shall
adopt the definition given by Ishihara [6] and study quaternionic analogue
to Kiahlerian pinching, which will be called quaternionic pinching.
Kraines [13], using some general results of Klingenberg [8], showed that
a compact quaternion Kahler manifold of dimension 4m (m = 2) with
quaternionic pinching greater than 9/16 has the same integral cohomology
ring as the quaternionic projective space. On the other hand, Kobayashi
[10], using sphere theorem of Berger and Klingenberg, constructed a
principal circle bundle over a complete Kahler manifold with K&hlerian
pinching greater than 4/7 such that the universal covering space of the
bundle space is homeomorphic to a sphere and showed that the Kahler
manifold has the same homotopy type as the complex projective space.
We shall apply the method developed by Kobayashi to quaternion Kahler
manifolds.

In §1, we give the definition of a quaternion Kahler manifold and
construct principal Sp(l)-bundle over it under certain topological con-
ditions which will be naturally satisfied if the quaternionic pinching
number is greater than 9/16. In § 2, we define a Riemannian metric in
the principal Sp(1)-boundle constructed above by a similar method as
that given in [10] and calculate its Riemannian curvature tensor. In
§3, using the structure equation obtained in §2, we determine the
quaternionic pinching number such that the bundle space of the Sp(1)-
bundle has Riemannian pinching greater than 1/4 and prove

THEOREM. Let M be a complete quaternion Kdahler manifold of
dimensiton 4m (m = 2) with quaternionic pinching greater than 10/13.
Then, (M) = n ,(HP™) for all q.

1. Definitions and construction of principal Sp(l)-bundle. Let H™
be the m-dimensional right module over quaternions H and {1, e, e, e;}



390 K. SAKAMOTO

be the usual base of H over B. The symplectic group Sp(m) is defined
as the set of all endomorphisms of H™ which preserve the symplectic
product (p, ) = 3\, p,7; where p = (p,, * -+, Pn) and ¢ = (g, **+, ¢n) € H™.
In particular, Sp(1) is the set of unit quaternions. Hence it is diffeomor-
phic to a 3-dimensional sphere S* and its Lie algebra 8p(1l) is the set of
pure quaternions. It is well-known that there exists a homomorphism
f of Sp(1) onto SO(3) whose kernel is {#1} and the induced Lie algebra
isomorphism is given by

. 0 — s e
(1.1) =2, 0 —p
—H M 0

for = e + e, + thes€ 3p(1).

Next, we shall define a quaternion Kahler manifold. Let F,, G, and
H, be linear transformations represented by the right actions on H™ =
R'™ by e, ¢, and e, respectively and V, be the linear subspace of linear
transformations of R*" spanned by F, G, and H,. Then SO(3) acts
effectively on V, in such a way that

’ r r Id 3
1.2) s(uF, + p.G, + pH) = 1 Fy + (.G, + [t,H, ;> Yo = ﬂ§=]1 Saptls

where s = (s,5) € SO(38). Let M be a connected 4m-dimensional Riemannian
manifold with metric g. M is called a quaternion Kahler manifold if there
is a subbundle V of the tensor bundle of type (1, 1) over M with standard
fiber V, and structure group SO(3) such that the following conditions
(a) and (b) are satisfied (see [6]):

(a) In any coordinate neighborhood U of M, there is a local base
{F, G, H} of the bundle V, where F, G and H are tensor fields of type
(1,1) in U such that each of F, G and H forms an almost Hermitian
structure together with g and they satisfy

F*=G*=H*= -1, FG= —-GF =H,
GH=-HG=F, HF=-FH=G,
I being the identity tensor field of type (1, 1) in M.

(b) If ¢ is a local cross-section of the bundle V, then /¢ is also

a local cross-section of V for any vector field X in M, where 7 denotes

the Riemannian connection of M.
Let 4 and 4, be the tensor fields of type (2, 2) in M and R*" defined

by
A=FQRQF+GRaG + HQH, A0=F0®F0+G0®G0+HO®I'IO

(1.3)
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respectively. Then the condition (a) implies that 4 is globally defined
on M and (b) is equivalent to V4 = 0 (cf. [6]).

The holonomy group of a 4m-dimensional quaternion Kghler manifold
M is contained in Sp(m)-Sp(l) and hence the structure group O(4m) of
the orthogonal frame bundle over M can be reduced to Sp(m)-Sp(l)
(cf. [3] and [6]). The bundle space of the reduced bundle §F with
structure group Sp(m)-Sp(l) consists of orthogonal frames with respect
to which the components of 4 coincide with that of 4, with respect to
the natural basis of R*‘". It is easily verified that &/Sp(m) is a principal
bundle over M with structure group SO(3) and that the vector bundle
V stated in the definition of quaternion Kdhler manifold is the associated
vector bundle of F/Sp(m) with standard fiber V..

Let M be a quaternion Kahler manifold of dimension 4m and P =
B/Sp(m) be the associated principal bundle of V with structure group
SO(3). By means of the condition (b), the Riemannian connection V
leaves the bundle V invariant. So, 7 induces naturally a connection
in V and hence induces a connection I" in P. We now prove (cf. [5]).

ProposiTioN 1.1. If Z,-cohomology groups H'(M, Z,) and H*(M, Z,)
vanish, then there exists a primcipal bundle M over M with structure
group Sp(l) such that P = M/{+1}.

ProOOF. The exact sequence of groups

1— 7,— Sp) 5 803) 1

induces an exact sequence of the cohomology sets of M with coefficients
in the corresponding sheaves of germs of differentiable mappings

HY(M, Z) — H'(M, Sp(1) - H'(M, S0(3)) — H'(M, Z,) .

By our assumption, we have H'(M, Sp(1)) ~ H'(M, SO(3)). On the
other hand, H'(M, Sp(1)) and H'(M, SO(3)) can be considered as sets of
principal bundles over M with structure groups Sp(1) and SO(3) respec-
tively. Thus there is a principal bundle M over M with structure group
Sp(l) such that P = f(M) = M/{*1}. q.e.d.

If '@ denotes the connection form of I" in P, then we obtain

PROPOSITION 1.2. Let M be the principal Sp(l)-bundle such that
M/{£1} = P. Then there ewists a connection I' in M such that the con-
nection form o of I’ is given by f*® = f-®, where f in the left hand
side is the bundle map f: M— P and f in the right hand side is the
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Lie algebra isomorphism f: 8p(1) — 30(3).

ProoOF. Define w by w = f~'(f*®). Noting that f is an isomorphism
of 8p(1) onto 20(3) and f~'ad (f(A™")) =ad (A7")f* for any xeSp(l), we
see that w is a connection form in M such that f*¢ = f-w (for detail,
see [11] vol I, p. 82). q.e.d.

Let S(o) be the sectional curvature of a quaternion Kihler manifold
M corresponding to a plane section ¢. Taking a local base {F', G, H} of
V, we can set

(1.4) cos’a(o) = g(FX, Y)' + 9(GX, Y)* + 9(HX, Yy, 0=al0) = —725

for each plane section o, where X and Y are orthonormal vectors span-
ning ¢. We can easily show that a(c) is independent of the choice of
orthonormal vectors X and Y spanning ¢ and the choice of a local base
{F, G, H} of V. Thus we say that the quaternionic pinching of M is
greater than (0 > 0) if there is a positive number K such that

(1.5) 0K < 4S(0)/(1 + 3 cos* a(0)) < K

for any plane section ¢. By normalizing metric, we may set K =1 in
(1.5). Here we note that S(¢) = (1 + 3 cos’ @(0))/4 for any o if M is of
constant @-sectional curvature 1 (see [6]). If the quaternionic pinching
of M is greater than 0, then the Riemannian pinching of M is greater
than 06/4.

2. Structure equations of the fibering 7: M — M. In this section,
we shall make use of the following convention on the range of indices:

15a,B 753, 4=<1,5,kl<4m + 3.

Let M be a 4m-dimensional quaternion K#hler manifold and suppose
that there exists the principal Sp(1)-bundle § over M with projection
7 considered in the preceding section. Since the connection form @ and
the curvature form 2 of the connection I° in I take values in the Lie
algebra 3p(1), they can be written as

(2.1) @ = Z @y,
(2.2) 2= 2 ‘Qaen y

where ®, and 2, are l-forms and 2-forms on M respectively. The
structure equation of the connection /° is given by

(2.3) 2 =dw, + 2w, A\ w0, 2, = dw, + 20; A\ @, 2, = dw, + 20, \ ®, .
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Now, we define a Riemannian metric § on M by
(2.4) (X, V) = 9GX, zY) + o 3, 0 X))

for any tangent vectors X and Y of M, where o and b are non-zero
real numbers which will be fixed in a moment. Then § is a Riemannian
metric tensor on . We shall denote by  the Riemannian connection
defined by the metric tensor § and denote by (X, Y) (resp (X, Y)) the
inner product §(X, ¥) (resp. 9(X, Y)) of vectors X and Y of I (resp.
X and Y of M).

Well, we shall give some properties of fundamental vector fields
and basic vector fields. The basic vector field X corresponding to a
vector field X in the base manifold M is the unique horizontal vector
field such that 7X = X. Let h and v denote the projections of the
tangent spaces of M onto the horizontal and vertical subspaces respec-
tively. The following lemma is easily verified (see [14]).

LEMMA 2.1. If X (resp. Y) is the basic vector field corresponding
to a vector field X (resp. Y) of M and p* (resp. v*) is the fundamental
vector field corresponding to an element p (resp. v) of 8p(1), then the
Sfollowing properties hold:

(1) <X’ Y> = <Xy Y>'7t1

(2) h[X, Y] is the basic vector field corresponding to [X, Y],

(8) hp3:Y is the basic vector field corresponding to V.Y,

(4) [X w1=0,

(5) [#¢*, v*] is the fundamental vector field corresponding to [#, V].

To calculate the Riemannian curvature tensor R of § at any fixed
point Ze M, we shall take a special orthonormal frame field on a
neighborhood of #. Let X* be the fundamental vector field correspond-

ing to e,/ab for each a. Clearly, they are orthonormal vector fields
satisfying

(2.5) [XZ X#] = 3 Cus X7,

where C,;/ = —C,,/ and

(2.6) C2 = Cyx = Cy2 = 2/abd, C,s/ = 0 otherwise .

Let X, -++, X,n:s be orthonormal vector fields in a neighborhood of

% = n(%) such that V', X; =0 at o for any ¢ and j. The basic vector
fields X, corresponding to X, are orthonormal vector fields such that
17}in is vertical on the fiber passing through % for any ¢ and j. There-
fore, we have local orthonormal frame field {X*, X X X, «+«, Ximso)
around %.
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First, we shall study the Riemannian connection /7

LEMMA 2.2. The components of the conmnection [ with respect to
the orthonormal frame field taken above are given by

(1) X X7 = 12[XZ, Xi], X7, Pr XF, X> =0,

(2) <VX‘ -Xﬁ*> _O <VX‘X1) > - _1/2<X:’ [XivX]>r

(3) <VX1X:7 >—0 <VXX:’X>_‘_1/2<X:7[XHX]>’

(4) <I7.1’ XJ; X*> - 1/2<Xa*, [‘Xu X])! <VX,X.” Xk> = <VX Xh Xk> T
i a neighborhood of X.

Proor. Using the standard formula

2KpxY, Zy = Y, 2y + YZ, Xy - ZKX, V)
— (XY, 2D+ <Y, (12 XD +<Z X Y]

for any vector fields X, ¥ and Z, we shall prove this lemma. If we
note the Definition (2.4) of § and (5) given in Lemma 2.1, then we can
verify the first assertion by using the above formula for X = X}, Y = X}

and Z = X*. The assertions (2), (3) and (4) follow similarly from the
above standard formula and Lemma 2.1. q.e.d.

REMARK. By (1) given in Lemma 2.2, we see that each fiber is
totally geodesic in the bundle space I7.

LEMMA 2.3. If we set 2.; = 24X, X,), then we have

(1) Pu Xy = 1/2[Xa*, X,

(2) VX"X‘—‘VX abEQaNXar

(3) vVX —1/2’0[X“X] - _abZQaNXa’
m a nezghborhood of &.

PrOOF. The first assertion follows immediately from (1) of Lemma
2.2. To prove (2) and (3), we use the structure equation (2.3). By (2),
(3) and (4) of Lemma 2.2, it suffices to show

abQu; = (X2, (X, KD,
which follows from

.Q,x”’ = dwa(Xiy XJ)

I

—Lod®, B = —5<X2, (K, KD
q.e.d.
Next, we shall obtain the covariant derivative of 2,.
LEMMA 2.4. If we set [.02; = (17,1,;.(),)()?“ X)), then we obtain
2.7 Val2pii = —ab 3 (Luulp; — 2p0Pus) + X Cod’ Pris -
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ProoF. Exterior differentiating (2.3), we have
1
2
-;_dga = dw, A 0, — o, A do,,

d2, = dw, \ w; — w, N\ dw,, —;—d@:dwa/\wl—wa/\dwl,

and using (2.3) once more, we obtain

%drzl:fzmwa—wzws, %d92=93Aw1—w3A91,

—;"d93=~91/\w2_w1/\92-

We shall compare the values of the left hand side wiEh those of the
right hand side of equations above for vectors X}, X, and X;. For
example, the left hand side of the first equation is given by

%dQI(X:, X, %)=1xrZX, X)

(=2}

o~ ok

{(ﬁngl)()?i, Xa) + 91(71{’&)?1, Xa) + Ql(Xi’ 17X3X:i)}

(FPafii; + ab > (200 — 20:082u5)} »

where we have used (2) of Lemma 2.3. On the other hand, the right
hand side of the first equation is given by

(@2, A\ 0, — 0, A 2)( X2, X, X))

= %{wS(X:()‘Q2(Xi7 XJ) - wZ(Xa*)Qa(Xi’ X,)} = % Z Calr‘QTij .

Thus we have

17a91ij = —ab Z (Qazzgm‘ - ‘Qlilgalj) + E Calr'QTiJ' .
q.e.d.

We shall express the components of the curvature tensor R with
respect to the orthonormal frame {X*, X, X, X,, --+, Xints} In terms
of 2, and the curvature tensor R of the base manifold M.

PROPOSITION 2.1. The components of the curvature tensor R with
respect to {XF, X, X, X, -, Xinis) are given at T by

(1) Rupre = (1/a®0*)(0uc0pr — 0pc00r)s

(2) R =0,

(8) Rups = —a* 3, (QuiRp; — 2pufla;) + ab 3 Cog 2y
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(4) Rupi = a’0* 3 2,120 + (a/2) 3 Cog 2,5

(5) }Eaijk = —abf i Raj1s

(6l Rw'kl ;:“ Rz‘jkl — a’b’ Z ('Qailgaik - ‘QaikQaﬂ - 2Qaijgakl)r
where Rqp.= (R(XF, X)X, XX, +, Riju=<{R(X,, X;) X, Xo) and J.2..=
(17;i9a)(fj, X,). Formulas (1), - -+, (6) determine all components of R.

Proor. By (1) of Lemma 2.3, we have
R(Xr, X)X
= ﬁxgﬁx;ng* - 17X7917X3Xr* - 17[11':,,):";9])(;e
1 * * * 1 * * * * *
= X2, 12X, X0 - X5, (X2, X0 - X2, X7, X7

Using Jacobi’s identity, we obtain

B(X*, X)X* = —%[[X:, X1, X1,

from which we have

> 1 * * * *
Rupry = (X2, XEL X2, XD = —2Budyr = S

i.e., the formula (1). Similarly, we obtain (2) by using the above result.
We have, from (2) of Lemma 2.3,
ProfryXs = ab 3 (Fels)Xs + @' 3, Qe X,
and, from (2.5),
V.-[X:r’ X;]Xi = ab 2 C,,ﬁ’.QmX, .
Therefore, B, is given by
Ropii = ab(7afpi; — FrRuis) + 0°0* X, (Ruis2p; — 2puPu;) — ab X, Cod? 2y
Substituting (2.7) in this equation, we obtain (3). The equation (4)
follows similarly from (2) of Lemma 2.3 and the fact that [X}, X;] = o.
R,.;. is given by
Eaiik = (7,1';17}.-)?:' - 17},-17;:;,)?:', XD .
We (ionsider the right hand side at ¥ where 7}‘)@ is vertical. Since
{F3,Xi, Xiy is constant on the fiber passing through %, we have
Frefz X Xy = X232, X, X — <P3.%5, P Xy =0
Thus we obtain
Raijk = —<ﬁ};V~X2Xj’ Xk> = _abﬁi'gm‘k at 7 ’

which proves the equation (5).
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Using (3) of Lemma 2.1 and (3) of Lemma 2.3, we have
<7}‘7}jxk) Xl> = <VX,'VXJ'Xk) Xl>'7t - a2b2 ZI ‘Qajkgail ’
and taking account of (1), (2) and (8) of Lemma 2.1 and (3) of Lemma
2.3, we obtain
<I7[};,}j]Xk, Xz> = —2a’0* >, 244 + <V[X‘-,X_,~]Xk, X .
These equations imply (6). q.e.d.
Finally, we shall rewrite the equations obtained in Proposition 2.1
in terms of a local ~base of V, what are called the structure equations
of the fibering mw: M — M. Let = be a local cross-section of I defined
on a neighborhood U of « such that 7(x) =% and the differential map
of 7 maps the tangent space of M at x onto the horizontal space at Z%.
For each point y of U, (fer)(y)e P can be considered as a linear map

from V, to the fiber over y of V where f is the bundle map f: /1 — P.
If we set

T@) = (FD@NEY » Jlw) = (FD)@)G) »
T) = (for)w)H,) ,

then {J, J,, J;} is a local base of V defined on U satisfying the condition
(a) stated in §1. Taking account of (1.1) and (1.2), we see that the
covariant derivatives of J, are given by, for any X,

Vud, = 204(X)J, — 20(X)J,
(2.8) Vydy = —204X)d, + 20,(X)J,
Vxds = 20(X)J, — 20,(X)J, ’

where 6, = t*w, (@ = 1, 2, 3). If we set 0, =t*2, for a =1, 2, 3, then
we have from (2.3)

29 6,=d0,+20,\N0;, 0,=4d0,+ 20, \0,, O;=db;+ 20, \ 6,

(in detail, see [12]). By Berger [2], we know that a quaternion Kahler
manifold is an Eistein manifold. Thus we have

) 40X, V)= —" KLX Y f h «a,
(2.10) (X, Y) T +2)< > for each «

where r is the scalar curvature of M (see [6]).

LEMMA 2.5. If we set 1/b = r/(16m(m + 2)) and J,; = {J.X;, Xi)»
then we have

(2.11) Quin =—TlJ,,,-,, on U
and 2. =0 at T.
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ProoF. Noting that hz,X; = X; on U for each j, we obtain
XK, X = 2ulT2X;, TuXi)etwy = (T*2)(X;, Xo)y
= 6.(X;, Xp), = —4uXsy KDy
for any point ¥ of U. Thus we have

F1.2)%, B) = X-04%;, ) = —%Xi-aax,-, X,

Il

- %((VX;JH)X:‘I'y Xk> at 2 y

because /. X; = 0 at #. Since we have, for example,
Vo = 20(X0)J, — 20(X,)Js = 2(t* W) (X)), — 2(T* @) (Xi)s
= 20X, — 20,(X)J, =0 at =,

we obtain 7,2, =0 at Z. g.e.d.

In the sequel, we shall set 1/b = r/(16m(m + 2)). By Lemma 2.5,
we can rewrite the equations in Proposition 2.1 in terms of J,;.

PROPOSITION 2.2. The components of the curvature temsor R are
expressed by R, and J.; at T as follows:

(1) gaﬁn = (}/a'zbz)(gaeaﬁr - 5#53a7)7

(2) Ruﬁn’ = Rai:ik =0,

(8) Rups = —0* 3 eaTits — Jpadars) — @ 3 Ca iz

( 4 ) @aiﬁj =a’ Z Ja.‘ilJﬁli - a/2 Z CaﬁTJrii’
(5) Riju= Ry — a® >, (Jairdwir — Jairdais — 2J wiid art)-

3. Main theorem. As in the preceding section, we now assume that
M is a quaternion Kihler manifold of dimension 4m (m = 2) and that
there exists the principal Sp(1l)-bundle /7 explained in §1. By using
Proposition 2.2, we shall study the Riemannian pinching of the bundle
space M with metric §.

For arbitrary fixed point % of M, by taking local orthonormal frame
field {X#, X, X*, X, - -+, X\nss} around % as in § 2, we can identify the
tangent space of M at % with the Euclidean space R‘"** with usual
inner product {,>. Let R, be a set of real numbers satisfying the
same algebraic conditions as the Riemannian curvature tensor. We
assume that indices A, B, C and D run over the range {1, ---, 4m + 8}
and let R,,,, be a set of real numbers subject to the same algebraic
conditions as the Riemannian curvature tensor and satisfy (1) ~ (5) of
Proposition 2.2 where we put J, = F, J,=G and J,= H. For each 2-dimen-
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sional sgbspace & of ?"'“, we define S(&) by S(©@) = 3R 0n XA Y2YCX?
where X = (X*) and Y = (Y%) form an orthonormal basis of &. Clearly,
S(#) is independent of the choice of X and Y. Then S(4) is given by

8@) = 3 R X Y?Y' Xt + 3, B XY V* X

+ X Bin XYY Xt + 3R X YiYEX:

+ D EBp XYY X + 3 B XY YEX

+ SRy XYYV X + S R X Y YHXE .
If we set X=(X*) and Y = (Y*) (resp. £ = (X% and 7 = (Y*)), then
they are elements of R‘" (resp. R?) with usual inner product which
will be also denoted by {,>. We now have
1
a*b®

S B X YPYEXE = 2(% - a2>L :

S B XYY X = (eIl = <& 7Y,

ZRM”X‘Z Y'Y X' = —a2<§7 77><Xy Y> =+ (% - (l2>L ]

Z‘ RaikeXanYsz = a2 [E ‘2 | le )
S BnX V'YX = ot || XT,
Zﬁiﬁkin Yﬁ YkXe = —az2<‘sf 77><Xy Y> + (-2_ - a2>L ’
2 Eiirin Y'Y X = 2(%' - a2>L ’
> ﬁi"“X‘. YY*X' = 3\ R;;un XY Y*X!
— 3a*{(FX, Yy + (GX, Y)* + <HX, V)%,

where |X|=<KX, X)", |Y|=(Y,Y)" [&] =LY, [nl=L, "
and L = (87 — &)HX, Y) + &0 — &P)FX, Y) + (0 — §7)GX, V).
Therefore we have

PROPOSITION 3.1. If X and Y are orthonormal vectors which span
a 2-dimensional subspace & of R'"" and X and Y (¢ and 7)) are R*"(R?)-
components of X and Y, then S(@) is given by

S@) = L€ InE = &) + @& FIYE + Inp | XP
(3.1) — 2E, X, V) + 6(—11)- - a2>L + S RuX VY X

— 30'((FX, Y + (GX, Y)* + <HX, Y .
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Let o be a 2-dimensional subspace of R‘" and let Z = (Z%) and
W = (W?) form an orthonormal basis for ¢. Define S(¢) and a(c) by

S(0) = X RjuZ'WiW*Z" ,
cos’ a(o) = (F'Z, WY + (GZ, Wy + CHZ, W)*, 0= a(o) = _’25 .

Then both of S(¢) and a(c) are independent of the choice of Z and W.

LEMMA 3.1. Let X and Y be elements of R™. If X and Y are
linearly independent and span a 2-dimensional subspace o of R*™, then

we have
(8.2) (FX,Y)+<(GX, Y))+<HX,Y)=(X[*|Y )= (X, Y)* cos* a(o) .
PrOOF. Set
Z=XIX|, W=(XIY - (X DX)(XI(XFIY] - X, Y))"7}.
Then Z and W form an orthonormal basis for ¢ and we have
(FX, Y)' =<FZ, WX | X' |Y]" — <X, Y},
(GX, Y)' =<GZ, WY(| X["|Y|" — (X, Y)),
CHX, Y)' =<HZ, WY(| X'|Y]' — <X, Y)?).
Therefore we obtain (3.2). q.e.d.

Let X and ¥ be orthonormal vectors Wllich span & and let Xand Y
(resp. & and 7) be R*‘™(resp. R%-parts of X and Y respectively. Then

we have

B3) [XP+I[EF=1, [YP+Inl=1, KX, Y)+ =0,
from which,

B4 [XFIYE =KX, V' =1—[eF = 7P+ [EF 7] — <& 7.

The following proposition follows immediately from (3.1), (3.2), (3.3) and
(3.4):
ProrosiTiON 3.2. (1) If X and Y are linearly dependent, then
5) — 1 2 2 2 __ 2 2
(35) 8@ = (S — @)1£F 7P = <& 1) +
(2) If X and Y are linearly independent and span a 2-dimensional
subspace o of R'™, then
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(3 6) S ~\ — ( 1 2 2 2 2 2 2 2
: (0) = (e — 20 (& P12 = <&, 1) + @& + |71

+6(3 — @)L+ (XFIYF = <X, Y))S()

— 3a? cos® a(0)) .

Let a be a positive number not greater than 1/2 and assume that
S(o) satisfies the inequality

3.7 40’ < 4S(0)/(1 + 3 cos*a(o)) = 1

for any 2-dimensional subspace o of R*™.
LEMMA 3.2. The bound of 1/b is given by
1 1
3.8 P - < =
(3-8) Y= =7
where 1/b = r/(16m(m + 2)) and r = 3;,; Riji:.
Proor. Let {Z)} be an orthonormal basis of R‘™ such that Z,,, =
FZ, Zpi, =GZ, and Z,,,, = HZ, for ¢ =1, --+, m. Then ris given by
r = 3.4 S(0;;) where ¢,; are 2-dimensional subspaces spanned by Z, and

Z; (t # j). A straightforward computation shows (3.8). g.e.d.
Lemma 3.3. The bound of L is given by
(3.9) =& I XY=L é]Inl | X]Y].

Proor. By Cauchy-Schwarz’s inequality, we have
L* = {7 — &) + (&7 — &) + & — &p)YHKFX, Y¥)*
+<GX, Y)' + CHX, Y} = (£ 0] — & IKFX, Y)*
+<{GX, Y+ (HX, Y)Y .
Using (8.2), we obtain

LR=(EFImEF = &I XPIY ] — (X, Y)?) cos’ a(o)
S1EPInPIXPIYE. q.e.d.
Using Proposition 3.2, Lemmas 3.2 and 3.3, we can show

PROPOSITION 3.3. Let a be any real number such that 1/12 < o® < 1/4
and suppose that (3.7) holds for any 2-dimensional subspace of R*™.
Let X and Y be R‘™parts of orthonormal vectors X and ¥ which span
a 2-dimensional subspace & of R'™2. If X and Y are linearly dependent,
then
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If X and Y span a 2-dimensional subspace ¢ of R'™, then

5, 3 ~ 2
! — =< S 0)<1— 3a y
3 g = @) =
where the following inequalities hold:
1 5 3
1—38a'>——, >—at— .
Wt Y2373

Proor. We use the following inequalities:
1Z[EFIP =K' =20, 1Z|XPIYP-<KX Y)=0,

L >0 (Lemma 3.2), |&]|7]1X||Y|=L.
a’b® 4

If X and Y are linearly dependent, then, from (3.5) and Lemma 3.2,
we have

a* < S(@) = <_2]:l)7_a>('5|2|7/|2 &P +at s }bz—liila

If X and Y span a 2-dimensional subspace ¢ of R*‘", then we have
S(o) — 3a’cos’ a(o) = a*,
S(0) — 3a* cos* a(0) < %{1 + 3(1 — 4a%) cost a(o)) < 1 — 3a* .

Using (3.6), we shall find a lower bound for S(¢). From Lemmas 3.2
and 3.3, we have

S@ = (—ar — 2)(FIDF = <& ) + @& + 171 + 6( - o*)L
F @ EF = [7F +1EFI7F = & 7)S() — 3a° cos’ al0))
2 (2 —2)1EFI7F = & 1) + a(EF + 17 — (3 - @)

+ A= [EF =9+ [EFI7F — <& e’
(1 2\ (122 n_ 3(1 .
= (- a)ierinr - ) - (2 - o) +a

o33
3.

lIV

v

> B4
2 8

Next, we shall find an upper bound for S(¢). By Lemmas 3.2 and 3.3,
we have
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S@) = (= = 20 )(EFI7F = <& ) + X + |71

+ 6(% — &)L + (XF|YF — (X, YY)(S(0) — 3¢* cos’ a(o))
= (ﬁ - 2“2)(15l2!77|* — &MY+ (6 + 7P

+6<%—a2)|5|lv)||X||Yl + @ —[EP—InP+|EFInP

~ (& 7Y — 3aY)
= (k= = @)IEr I = & D) — A — 4aEP + 9P

a*b’

— &P IDP + <& 1) + 6(3 — @)IE1 7] 1 X1 17| +1 - 30
< (o —@)IEPInr — @ — 4a)EF + 7 — [£FI71)

+6( = @) €117 = [§PL = 71" + 1= 3a.

If we set

—a}—bz-—az, c;=1— 4a*, cs=%——a2,

=11, s =7k,
then we have

0t 0s<1, ¢ =0, =0, c; =0,
¢c,—¢, £0.

¢ =

The last inequality follows from 1 — 3a® = 1/16a*. By simple calculus,
we see that the function

h(t, 8) = eits — ¢t + s — ts) + 6es{ts(1 — t)(L — s)}2

attains the maximum value 0 at (0, 0) in the square {(¢,s)e R% 0<¢, s < 1}.
Therefore we obtain

S@) =1-3a*. q.e.d.

We must prove the following theorem to state our main Theorem
3.2.

THEOREM 3.1. Let M be a complete quaternion Kahler manifold of
dimension 4m (m = 2) with quaternionic pinching greater than o. If



404 K. SAKAMOTO

0 = 9/16, then there exists a principal Sp(l)-bundle M over M and a
Riemannian metric on M with Riemannian pinching greater than (56 —3)/
(8—60).

Proor. By Kraines [13], we see that M has the same integral cohomo-
logy ring as the quaternion projective space HP™. Since H'(HP™, Z) = 0,
HYHP™ Z) = 0 and H¥HP™ Z) = 0, the exact cohomology sequence

H'(M, Z) — H'(M, Z,) — H(M, Z) — H*(M, Z)— H*(M, Z,) — H*(M, Z)

implies HY(M, Z,) = H*M, Z,) = 0. Thus, by Proposition 1.1, we see that
there exists a principal Sp(1)-bundle M over M such that M/{+1} = P.
Setting 4a®* = 6 in Proposition 3.3, we have

5 3 ~ 3
=0—-—=<8@)£1—-=9. .ed.
g’ g ~f@=1-7 -

THEOREM 3.2. Let M be a complete quaternion Kahler manifold of
dimenston 4m (m = 2) with quatermionic pinching greater than 10/13.
Then n (M) = n (HP™) for all q.

PrROOF. Theorem 3.1 implies that there exists a principal Sp(1)-bundle
M over M and a Riemannian metric on 7 with Riemannian pinching
greater than 1/4. M is simply connected by a theorem of Synge [16].
Using the exact homotopy sequence of the fibering S®— I — M, we see
that M is also simply connected. Thus, by sphere theorem of Berger
and Klingenberg (cf. [4]), M is homeomorphic with a sphere S**3, Since
the fiber 7n~'(x) ~ S° is contractible in /7 to the point # € n~'(x) leaving %
fixed, we have (cf. [15])

T (M) ~ 7, _,(S?) + 7 (S*™) @=2).
We have also, from Hopf fibering S®— S*»+*— HP™,
T (HP™) ~ m,_,(S°) + 7 ,(S*"*) ¢=1).
These complete the proof. q.e.d.
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