T8hoku Math. Journ.
26 (1974), 363-370.

DENSITIES WITHOUT EVANS SOLUTIONS

MiTsurRU NAKAI

(Received May 29, 1973)

Consider a 2-form P(2)dxdy on an open Riemann surface R such
that the coefficients P(z) are nonnegative locally Holder continuous
functions of local parameters z = ¢ + ¢y on R. Such a 2-form P(z)dxdy
which is not identically zero will be referred to as a density on R. If
the integral S P(z)dxdy is finite, then the density P(z)dxdy is said to be

R

finite. An Ewvans solution u(z) of the elliptic equation

(1) du(z) = P(z)u(z) (i.e., dxdu(z) = u(2)P(z)dzdy)
on R is a function u(z) of class C*? satisfying (1) on R such that
(2) lim u(z) =

20

where a. is the Alexandroff ideal boundary point of R, i.e., inf, %
tend to infinity as compact subsets K exhaust RB. It has been a con-
jecture that for any density P on R, or at least for finite density
P on R, the existence of an Evans solution of (1) on R is equivalent
to (R, P)€ Oy, i.e., the only bounded solution of (1) on R is the constant
zero. The purpose of this paper is to show that this conjecture is false
by proving the following

THEOREM. There always exists a finite density P(z)dxdy on an
arbitrarily given open Riemann surface R such that every monmegative
solution of (1) on R has the zero infimum.

Actually we will prove a bit more: Let R be an open Riemann
surface, {z,} a sequence of distinct points in R not accumulating in R,
N an open subset of R containing {z,}, {a,}] a sequence of positive
numbers converging to zero, and 7 a positive number. For an arbitrary
such system (R, {z,}, N; {a.}, 7) there exists a density P(z)dxdy of class
C= with the following properties: The support of P(z)dxdy is contained

in N, i.e., P(z)dzdy =0 on R — N; S PRR)dzdy < ; {u(2,)} € {a,} for any
R
nonnegative solution % of (1) on R, i.e., u(z,) < a, for every large n,

and in particular infp w = 0. The existence proof of such a P will be
given in nos. 1-2. That the last of the above properties is also valid if
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u is replaced by any nonnegative solution of (1) on R outside a compact
set is shown in no. 3. The relation to the existence question of Evans
solutions will be discussed in no. 4.

1. Let 2 be a regular subregion of an open Riemann surface R
and P(z)dxdy be a density on BR. We denote by P? for an fe C(0%2) the
continuous function on 2 such that P/ |92 = f and P} is a solution of (1)
on 2. We also use the standard notation H? for P with P=0 on 2. Fix
an arbitrary point p in R and an arbitrary parametric disk U:|z| <1
about p so that p is identified with z =0 in U.

LEMMA. For any pair (¢, ) of positive numbers and any concentric
parametric disk V:|z| < p in U with 0 < o < e™*77 there exists a density
P(z)dxzdy on R whose support is contained in V such that

(3) | Pi(@)| < & | o= | tpe)as
for every f im C(OV) and
(4) |, P@dady < 7.

Proor. Since pe (0, e*7], pe(0,1) and 4n/logo < 7 with ¢ = 1/p.
Take a positive number a so small that alogo < ¢/2. Consider a con-
tinuous function ®(7) on [—p, p] given by

2/(tlog | 7))A — alog | T]) (t # 0);
P(7) = {Oo (z = 0)

which is positive and symmetric on [—p, p]. Choose an increasing
sequence {®,(r)} of nonnegative symmetric C~ functions @, on [—p, o]
with compact support in (—p, p) such that lim, ¢,(7) = ¥(7) on (—p, o).
Let P,(z)dxdy be the density on R such that P,(z)dxdy =0 on R—V
and P,(z) = #,(/#]) on V, which is then of class C=. Set u,(z) = (P,)7(?).
By the Green formula we see that u, satisfies the integral equation

(5)  w@=1--L] 66 OuoPOy € =&+ i7)

where G(z, {) is the harmonic Green’s function log (| 0* — Cz|/p |z — )
on V. Since P,(2) < P,.,(2), the comparison principle implies that u,(z) =
Un:+1(2) on V. Therefore

u(z) = li_’m U, (2)

exists on V. Observe that
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w(OPUO = (€1 log [ —Llog | ])

and the function on the right is integrable on V. Hence the Lebesgue
dominated convergence theorem applied to (5) as n — o yields

(6) o) =1 - = Gl QuQe( L dsdn.
T IV

This identity shows that w(z) is a bounded solution of
(7) 4u(2) = @(] 2 u(2)

on 0 < |z| < p with continuous boundary values 1 on [z| = p. On the
other hand, by a direct computation, we see that

1\ 1
v(z) = <<log |—z—|> + a) / (log o)™ + a)

is a bounded solution of (7) on 0 < |z| < o with continuous boundary
values 1 on |z| = p. Observe that v(z) is continuously extendable to V
by setting v(0) = a/((log 6)™* + a). Therefore, u(z) — v(z) is a bounded
solution of (7) on 0 < |[2| < p with continuous boundary values zero on
|2] = o, and thus #(z) — v(2) =0 on 0 < |z| < p. This can be seen by
many ways. For example, observe that |u(z)—wv(z)| is subharmonic. Then
—m™"log |z| — |u(z) — v(2)| is a superharmonic function on 0 < [z| < p
with nonnegative boundary values at [z| =0 and p. Thus

lu(2) — v(@) | < —Llog | 2]
m

on 0<|z|<p for every m =1,2 ---, and we arrive at the desired
conclusion.

Since P,(z) = P,(|z]) on V and the boundary function 1 is also rotation
free, we have u,(z) = u,(|z|) on V. The maximum principle yields that
#,(7) is an increasing function on [0, o] and the same is true of wv(7).
Since v(r) = lim u,(7) on (0, o] decreasingly, the Dini theorem implies the
uniformness of the convergence on [0, p] for every p'c(0, p). This
shows that »(0) = lim %,(0). Fix a k such that

(8) u(0) < v(0) + —?2—.

We now maintain that P(z)dady = P(2)dxdy is a required density. Let
K(z, {) be the Green’s function of (1) with this particular P = P, on V.
Again by P(z) = P(|z|) on V and the rotation invariantness of V, we
see that K(0, £) = K(0, |C]) for every {c V. Therefore,
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p-[iK(o, 're"’):' - p-[:—a—K(O, r)J
or r=p or r=p
is a negative constant —27A (4 > 0) on [0, 27], and thus
*dK(0, pe?’) = —2mAdf .
For any fe C(0V) we then have

(9) PIO) = = A0*KO, O = 4- |7 Floe)ao .

In particular on putting f=1 in (9) we have u,(0) = 2r4. By (8) and
by the choice of a we see that

A§—217r—(v(0)+%>§2—17r—(a10g0+—;—>§—2—67?.

This with (9) yields (3). To show the validity of (4) we compute as
follows:

SR P(z)dudy = SV ol 2 dwdy < SV P(r)rdrdd

i
o (r log r)? logo —

2. Fix an arbitrary system (R, {z.}, N;{a.}, 7) as described in the
introduction. Take a sequence {U,} of parametric disks on R such that
U,cN,U,NU,=@ (n+m), and the center of U, is 2, (n =1, 2, --+).
Let {7,} be a sequence of positive numbers such that

7]"—:;7]%'

We denote by V, the concentric parametric disk |z]| < p, = ¢™*" of
U, (n=1,2, ---). Take the harmonic Green’s function G(z, {) on

S=R-U V..
Observe that the inner normal derivative (0/0n.)G(z, {) at any (e€dV, is
strictly positive for any z¢ S and any #» =1, 2---, and
(10) *dG(z, 0) = —Glz, L)p.d0
on,

for each { = p,¢%€dV,(n =1,2, --+). Fix an arbitrary point z,€ S and
set

(11) m, = min 0, 2G(z, ) >0, &, = a,-m,
on,

Ceavy,
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for each n =1, 2, ---. Fix a density P,(z)dady on R given as in Lemma
in no. 1 determined by (s, 7,) and V,:|z|<p, (® =1,2 ---). Since
P,(2)dxdy (n =1,2, ---) have disjoint compact supports in R, we can
define the density

12) P()dady = 3, P.(2)dzdy
on R which is of class C* and by (4)

SR P)ndy = 3, SR P(a)dsdy < 57, =7.

Clearly we have
supp. P(z)dedy = U supp. P,(2)dzdy < U V,C N .

We then have the following

LEMMA. For any nonnegative solution u of (1) on R with P given
by (12) the following inequality

(13) u(z,) < a,

18 valid for every large n and in particular

(14) ‘ lim w(z,) =0, inf w(z) = 0.
n—o0 ZER

Proor. Let {R,}: be an exhaustion of R with regular subregions
such that 2,e R, R,DU}-. V;,and R — R, D U7, V;, and let u,,, (n < k)
be the boundary function for the region S, = R, — %, V; such that

% on 0 oV;
WUn, e = = &
0 on (aRk) U U aVJ .

j=n+1
Since P(z)dxdy = 0 on S,, w(z) is harmonic on S,. Therefore, the maxi-
mum principle yields
(15) Hif @=suz ®=1,2-k=n+1n+2 - -)

Yn,k

for every z¢ S, and in particular for z = 2,. Let G.(z, {) be the har-
monic Green’s function on S,. Then

Hit, () = =5 || s O4dsilz, O

_ "21_28 w(Q)dGulz, ©) .
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Therefore by (15)
(16) ~3 | w©edGita, O = 2rutz) -

Since {G4(2y, 0)}ionss converges increasingly to G(z, {) for every {e S, on
letting k¥ — o in (16) we deduce

~$ (w046 O < 2rulz)
and again by letting » — « we obtain
an ~S | w046, O < 2rute) -

On the other hand, since w({) = 0 and the line element ds; = p;df on
0V;, we deduce by (10) and (11) that

—Savj w(E)*d:G (2, C) = San u(c)ai,ngG(zo; Ods,

) S" u(pjew)[gf@_gG(z“ C)l:pjewpfd” = m; Sz u(p;e)do .

Therefore if we set

a; =m; S:K u(p;e%)dg > 0,

then by (17) we have
S a; < 2mulz)

and in particular

(18) lima; =0.

Observe that P(z) = P;(z) on V; and hence u(z;) = (P;),i(z;). By (3),
(19) we) = & | uloe)ds = emia; = aja; .
Thus by (18) we see the validity of (13) for sufficiently large .

3. We remark that the lemma in no. 2 is also valid for any non-
negative solution v(z) of (1) on R — X where X is a compact subset of

R. Let {R,}; be an exhaustion of R with regular subregions such that
R,>X. For any fe C(0R,) set

(20) v (Lf)(2) = lim Pfis=o(z)
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on R — R, where f* = f on 0R, and f* =0 on AR,. The existence of

the limit in (20) is clear for f =0, and the general case follows from
this. The equation

(21) Lu, —v) =u, — v

on R — R, always possesses a solution u, which is a soultion of (1) on
R ([6, p. 403]). Since (1) has a positive solution on R by Myrberg’s
theorem [2], we can find a positive solution %, of (1) on R such that
U, > v — %, on 0R,. Then by the maximum principle and (20) we see
that w,> L(v — %) =v — 4, on R — R,. Therefore, v = %, + u, > v on
R — R, and by (13)
v(z,) < u(z,) < «,
for every sufficiently large =, for u is a positive solution of (1) on R.

4. We denote by O, the class of every pair (R, P) of a Riemann
surface B and a density P on R such that the equation (1) does not
admit any bounded solution on R except for the constant zero. We also
denote by O, the class of pairs (R, P) such that R is parabolic, i.e., R

has the harmonic null boundary. The Brelot [1]-Ozawa [4]-Royden [5]
theorem asserts that

(22) Oy < O (strict imclusion)
and

r

where 7 = {(R, P);\ P(z)dwdy < oo}. We denote by & the class of
JR
pairs (R, P) such that (1) has an Evans solution on E. We have

(24) £cC0p, NF CONF =0,NF.

In fact, let (B, P)e & and u be an Evans solution of (1) on R. Let v
be any bounded soultion of (1) on R. Then for any m =1,2, ---

lim (—Lu(z) =+ v(z)) = oo
and the maximum principle yields (1/m)u(z)=v(z) > 0 on R, i.e.,

19(2) | < Lu(z)
m

on R for every m. Thus v =0 and (R, P)€ O;.
It has been suspected that the inclusions in (24) are improper (see
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[3, p. 92]). However, our theorem stated in the introduction negates this
conjecture. Let R be any parabolic Riemann surface. For example let
R be a compact surface less a point. Take a density P(z)dxdy on R as
described in the theorem. Since (R, P)eO,N &, (R, P e O, N <. If
there existed an Evans solution %(?) of (1) on R, then u(z) >0 on R
and inf, %4 = 0, a contradiction. Thus

(25) &K <05, ENF <0:NF =0;N F.
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