Tôhoku Math. Journ. 26 (1974), 363-370.

DENSITIES WITHOUT EVANS SOLUTIONS

MITSURU NAKAI

(Received May 29, 1973)

Consider a 2-form P(z)dxdy on an open Riemann surface R such that the coefficients P(z) are nonnegative locally Hölder continuous functions of local parameters z = x + iy on R. Such a 2-form P(z)dxdy which is not identically zero will be referred to as a *density* on R. If the integral $\int_{R} P(z)dxdy$ is finite, then the density P(z)dxdy is said to be finite. An *Evans solution* u(z) of the elliptic equation

(1)
$$\Delta u(z) = P(z)u(z) \quad (i.e., d*du(z) = u(z)P(z)dxdy)$$

on R is a function u(z) of class C^2 satisfying (1) on R such that

$$\lim_{z \to a_{\infty}} u(z) = \infty$$

where a_{∞} is the Alexandroff ideal boundary point of R, i.e., $\inf_{R-K} u$ tend to infinity as compact subsets K exhaust R. It has been a conjecture that for any density P on R, or at least for finite density P on R, the existence of an Evans solution of (1) on R is equivalent to $(R, P) \in O_B$, i.e., the only bounded solution of (1) on R is the constant zero. The purpose of this paper is to show that this conjecture is false by proving the following

THEOREM. There always exists a finite density P(z)dxdy on an arbitrarily given open Riemann surface R such that every nonnegative solution of (1) on R has the zero infimum.

Actually we will prove a bit more: Let R be an open Riemann surface, $\{z_n\}$ a sequence of distinct points in R not accumulating in R, N an open subset of R containing $\{z_n\}$, $\{\alpha_n\}$ a sequence of positive numbers converging to zero, and γ a positive number. For an arbitrary such system $(R, \{z_n\}, N; \{\alpha_n\}, \gamma)$ there exists a density P(z)dxdy of class C^{∞} with the following properties: The support of P(z)dxdy is contained in N, i.e., $P(z)dxdy \equiv 0$ on R - N; $\int_{R} P(z)dxdy \leq \gamma$; $\{u(z_n)\} \ll \{\alpha_n\}$ for any nonnegative solution u of (1) on R, i.e., $u(z_n) < \alpha_n$ for every large n, and in particular $\inf_R u = 0$. The existence proof of such a P will be given in nos. 1-2. That the last of the above properties is also valid if u is replaced by any nonnegative solution of (1) on R outside a compact set is shown in no. 3. The relation to the existence question of Evans solutions will be discussed in no. 4.

1. Let Ω be a regular subregion of an open Riemann surface Rand P(z)dxdy be a density on R. We denote by P_f^a for an $f \in C(\partial \Omega)$ the continuous function on $\overline{\Omega}$ such that $P_f^a \mid \partial \Omega = f$ and P_f^a is a solution of (1) on Ω . We also use the standard notation H_f^a for P_f^a with $P \equiv 0$ on $\overline{\Omega}$. Fix an arbitrary point p in R and an arbitrary parametric disk U: |z| < 1about p so that p is identified with z = 0 in U.

LEMMA. For any pair (ε, η) of positive numbers and any concentric parametric disk V: $|z| < \rho$ in U with $0 < \rho \leq e^{-4\pi/\eta}$ there exists a density P(z)dxdy on R whose support is contained in V such that

$$(\ 3\) \qquad \qquad | \, P^v_{\scriptscriptstyle f}(p) \, | \leq arepsilon \cdot \, \left| rac{1}{2\pi} \int_{\scriptscriptstyle 0}^{\scriptscriptstyle 2\pi} f(
ho e^{i heta}) d heta \,
ight|$$

for every f in $C(\partial V)$ and

(4)
$$\int_{\mathbb{R}} P(z) dx dy \leq \eta .$$

PROOF. Since $\rho \in (0, e^{-4\pi/\eta}]$, $\rho \in (0, 1)$ and $4\pi/\log \sigma \leq \eta$ with $\sigma = 1/\rho$. Take a positive number *a* so small that $a \log \sigma < \varepsilon/2$. Consider a continuous function $\varphi(\tau)$ on $[-\rho, \rho]$ given by

$$arphi(au) = egin{cases} 2/(au\log| au|)^2(1-a\log| au|) & (au
eq 0)\,; \ \infty & (au=0) \end{cases}$$

which is positive and symmetric on $[-\rho, \rho]$. Choose an increasing sequence $\{\varphi_n(\tau)\}$ of nonnegative symmetric C^{∞} functions φ_n on $[-\rho, \rho]$ with compact support in $(-\rho, \rho)$ such that $\lim_n \varphi_n(\tau) = \varphi(\tau)$ on $(-\rho, \rho)$. Let $P_n(z)dxdy$ be the density on R such that $P_n(z)dxdy \equiv 0$ on R - Vand $P_n(z) = \varphi_n(|z|)$ on V, which is then of class C^{∞} . Set $u_n(z) = (P_n)_1^V(z)$. By the Green formula we see that u_n satisfies the integral equation

(5)
$$u_n(z) = 1 - \frac{1}{2\pi} \int_V G(z, \zeta) u_n(\zeta) P_n(\zeta) d\xi d\eta \qquad (\zeta = \xi + i\eta)$$

where $G(z, \zeta)$ is the harmonic Green's function $\log (|\rho^2 - \overline{\zeta}z|/\rho |z - \zeta|)$ on V. Since $P_n(z) \leq P_{n+1}(z)$, the comparison principle implies that $u_n(z) \geq u_{n+1}(z)$ on \overline{V} . Therefore

$$u(z) = \lim_{n\to\infty} u_n(z)$$

exists on \overline{V} . Observe that

DENSITIES WITHOUT EVANS SOLUTIONS

$$u_n(\zeta)P_n(\zeta) \leq (|\zeta|\log|\zeta|)^{-2} \cdot \left(-rac{a}{2}\log|\zeta|
ight)^{-1}$$

and the function on the right is integrable on V. Hence the Lebesgue dominated convergence theorem applied to (5) as $n \to \infty$ yields

(6)
$$u(z) = 1 - \frac{1}{2\pi} \int_{V} G(z, \zeta) u(\zeta) \varphi(|\zeta|) d\xi d\eta.$$

This identity shows that u(z) is a bounded solution of

$$(7) \qquad \qquad \Delta u(z) = \varphi(|z|)u(z)$$

on $0 < |z| < \rho$ with continuous boundary values 1 on $|z| = \rho$. On the other hand, by a direct computation, we see that

$$v(z) = \Bigl(\Bigl(\log rac{1}{\mid z \mid}\Bigr)^{-1} + a\Bigr) ig/(\log \sigma)^{-1} + a\Bigr)$$

is a bounded solution of (7) on $0 < |z| < \rho$ with continuous boundary values 1 on $|z| = \rho$. Observe that v(z) is continuously extendable to V by setting $v(0) = a/((\log \sigma)^{-1} + a)$. Therefore, u(z) - v(z) is a bounded solution of (7) on $0 < |z| < \rho$ with continuous boundary values zero on $|z| = \rho$, and thus $u(z) - v(z) \equiv 0$ on $0 < |z| < \rho$. This can be seen by many ways. For example, observe that |u(z) - v(z)| is subharmonic. Then $-m^{-1}\log|z| - |u(z) - v(z)|$ is a superharmonic function on $0 < |z| < \rho$ with nonnegative boundary values at |z| = 0 and ρ . Thus

$$|u(z) - v(z)| < -\frac{1}{m} \log |z|$$

on $0 < |z| < \rho$ for every $m = 1, 2, \cdots$, and we arrive at the desired conclusion.

Since $P_n(z) = P_n(|z|)$ on V and the boundary function 1 is also rotation free, we have $u_n(z) = u_n(|z|)$ on V. The maximum principle yields that $u_n(\tau)$ is an increasing function on $[0, \rho]$ and the same is true of $v(\tau)$. Since $v(\tau) = \lim u_n(\tau)$ on $(0, \rho]$ decreasingly, the Dini theorem implies the uniformness of the convergence on $[\rho', \rho]$ for every $\rho' \in (0, \rho)$. This shows that $v(0) = \lim u_n(0)$. Fix a k such that

(8)
$$u_k(0) \leq v(0) + \frac{\varepsilon}{2}$$
.

We now maintain that $P(z)dxdy = P_k(z)dxdy$ is a required density. Let $K(z, \zeta)$ be the Green's function of (1) with this particular $P = P_k$ on V. Again by P(z) = P(|z|) on V and the rotation invariantness of V, we see that $K(0, \zeta) = K(0, |\zeta|)$ for every $\zeta \in \overline{V}$. Therefore,

M. NAKAI

$$ho \cdot \left[rac{\partial}{\partial r}K(0, re^{i heta})
ight]_{r=
ho} =
ho \cdot \left[rac{\partial}{\partial r}K(0, r)
ight]_{r=
ho}$$

is a negative constant $-2\pi A$ (A>0) on $[0, 2\pi]$, and thus $^{*}dK(0, \rho e^{i\theta}) = -2\pi Ad heta$.

For any $f \in C(\partial V)$ we then have

(9)
$$P_f^{\nu}(0) = -\frac{1}{2\pi} \int_{\partial \nu} f(\zeta)^* d_{\zeta} K(0, \zeta) = A \cdot \int_0^{2\pi} f(\rho e^{i\theta}) d\theta .$$

In particular on putting $f \equiv 1$ in (9) we have $u_k(0) = 2\pi A$. By (8) and by the choice of a we see that

$$A \leq rac{1}{2\pi} \Big(v(0) + rac{arepsilon}{2} \Big) \leq rac{1}{2\pi} \Big(a \log \sigma + rac{arepsilon}{2} \Big) \leq rac{arepsilon}{2\pi} \; .$$

This with (9) yields (3). To show the validity of (4) we compute as follows:

$$egin{aligned} &\int_{\mathbb{R}} P(z) dx dy = \int_{\mathbb{V}} arphi_k(\mid z \mid) dx dy \leq \int_{\mathbb{V}} arphi(r) r dr d heta \ &\leq 2\pi \int_{0}^{
ho} rac{2}{(r\log r)^2} r dr = rac{4\pi}{\log \sigma} \leq \eta \;. \end{aligned}$$

2. Fix an arbitrary system $(R, \{z_n\}, N; \{\alpha_n\}, \eta)$ as described in the introduction. Take a sequence $\{U_n\}$ of parametric disks on R such that $\overline{U}_n \subset N, \ \overline{U}_n \cap \overline{U}_m = \emptyset \ (n \neq m)$, and the center of U_n is $z_n \ (n = 1, 2, \cdots)$. Let $\{\eta_n\}$ be a sequence of positive numbers such that

$$\eta = \sum_{n=1}^{\infty} \eta_n$$
 .

We denote by V_n the concentric parametric disk $|z| < \rho_n = e^{-4\pi/\eta_n}$ of U_n $(n = 1, 2, \dots)$. Take the harmonic Green's function $G(z, \zeta)$ on

$$S=R-\bigcup_{n=1}^{\infty}\bar{V}_n$$
.

Observe that the inner normal derivative $(\partial/\partial n_{\zeta})G(z, \zeta)$ at any $\zeta \in \partial V_n$ is strictly positive for any $z \in S$ and any $n = 1, 2 \cdots$, and

(10)
$$^*d_{\zeta}G(z,\,\zeta) = -\frac{\partial}{\partial n_{\zeta}}G(z,\,\zeta)\rho_n d\theta$$

for each $\zeta = \rho_n e^{i\theta} \in \partial V_n$ $(n = 1, 2, \dots)$. Fix an arbitrary point $z_0 \in S$ and set

(11)
$$m_n = \min_{\zeta \in \partial V_n} \rho_n \cdot \frac{\partial}{\partial n_\zeta} G(z_0, \zeta) > 0 , \qquad \varepsilon_n = \alpha_n \cdot m_n$$

for each $n = 1, 2, \cdots$. Fix a density $P_n(z)dxdy$ on R given as in Lemma in no. 1 determined by (ε_n, η_n) and $V_n: |z| < \rho_n$ $(n = 1, 2, \cdots)$. Since $P_n(z)dxdy$ $(n = 1, 2, \cdots)$ have disjoint compact supports in R, we can define the density

(12)
$$P(z)dxdy = \sum_{n=1}^{\infty} P_n(z)dxdy$$

on R which is of class C^{∞} and by (4)

$$\int_{R} P(z) dx dy = \sum_{n=1}^{\infty} \int_{R} P_n(z) dx dy \leq \sum_{n=1}^{\infty} \eta_n = \eta$$
.

Clearly we have

$$ext{supp. } P(z)dxdy = igcup_{n=1}^{\infty} ext{supp. } P_n(z)dxdy \subset igcup_{n=1}^{\infty} V_n \subset N \;.$$

We then have the following

LEMMA. For any nonnegative solution u of (1) on R with P given by (12) the following inequality

$$(13) u(z_n) < \alpha_n$$

is valid for every large n and in particular

(14)
$$\lim_{n\to\infty} u(z_n) = 0 , \quad \inf_{z\in R} u(z) = 0 .$$

PROOF. Let $\{R_n\}_1^\infty$ be an exhaustion of R with regular subregions such that $z_0 \in R_1$, $R_n \supset \bigcup_{j=1}^n \overline{V}_j$, and $R - \overline{R}_n \supset \bigcup_{j=n+1}^\infty V_j$, and let $u_{n,k}$ (n < k)be the boundary function for the region $S_k = R_k - \bigcup_{j=1}^k \overline{V}_j$ such that

$$u_{n,k} = egin{cases} u & ext{on} & igcup_{j=1}^n \partial V_j \ ; \ 0 & ext{on} & (\partial R_k) \cup igcup_{j=n+1}^k \partial V_j \ . \end{cases}$$

Since P(z)dxdy = 0 on S_k , u(z) is harmonic on S_k . Therefore, the maximum principle yields

(15)
$$H_{u_{n,k}}^{s_k}(z) \leq u(z)$$
 $(n = 1, 2, \dots; k = n + 1, n + 2, \dots)$

for every $z \in S_k$ and in particular for $z = z_0$. Let $G_k(z, \zeta)$ be the harmonic Green's function on S_k . Then

$$egin{aligned} H^{S_k}_{u_{n,k}}\left(z
ight)&=\ -rac{1}{2\pi}\int_{\partial S_k}u_{n,k}(\zeta)*d_\zeta G_k(z,\,\zeta)\ &=\ -rac{1}{2\pi}\sum_{j=1}^n\int_{\partial V_j}u(\zeta)*d_\zeta G_k(z,\,\zeta)\ . \end{aligned}$$

Therefore by (15)

(16)
$$-\sum_{j=1}^{n}\int_{\partial V_{j}}u(\zeta)*d_{\zeta}G_{k}(z_{0},\zeta)\leq 2\pi u(z_{0}).$$

Since $\{G_k(z_0, \zeta)\}_{k=n+1}^{\infty}$ converges increasingly to $G(z_0, \zeta)$ for every $\zeta \in \overline{S}$, on letting $k \to \infty$ in (16) we deduce

$$-\sum\limits_{j=1}^n \int_{\mathfrak{d} r_j} u(\zeta) * d_\zeta G(z_{\scriptscriptstyle 0},\,\zeta) \leq 2\pi u(z_{\scriptscriptstyle 0})$$

and again by letting $n \to \infty$ we obtain

(17)
$$-\sum_{j=1}^{\infty}\int_{\partial V_j}u(\zeta)*d_{\zeta}G(z_0,\zeta)\leq 2\pi u(z_0).$$

On the other hand, since $u(\zeta) \ge 0$ and the line element $ds_{\zeta} = \rho_j d\theta$ on ∂V_j , we deduce by (10) and (11) that

$$egin{aligned} &-\int_{\partial V_j}u(\zeta)*d_\zeta G(z_0,\,\zeta)=\int_{\partial V_j}u(\zeta)rac{\partial}{\partial n_\zeta}G(z_0,\,\zeta)ds_\zeta\ &=\int_0^{2\pi}u(
ho_je^{i heta})iggl[rac{\partial}{\partial n_\zeta}G(z_0,\,\zeta)iggr]_{\zeta=
ho_je^{i heta}}
ho_jd heta&\geq m_j\int_0^{2\pi}u(
ho_je^{i heta})d heta\ . \end{aligned}$$

Therefore if we set

$$a_j=m_j\int_{_0}^{^{2\pi}}u(
ho_je^{i heta})d heta>0$$
 ,

then by (17) we have

$$\sum\limits_{j=1}^{\infty}a_{j}\leq2\pi u(z_{\scriptscriptstyle 0})$$

and in particular

$$\lim_{j\to\infty}a_j=0$$

Observe that $P(z) = P_j(z)$ on V_j and hence $u(z_j) = (P_j)_u^{V_j}(z_j)$. By (3),

(19)
$$u(z_j) \leq \varepsilon_j \int_0^{2\pi} u(\rho_j e^{i\theta}) d\theta = \varepsilon_j m_j^{-1} a_j = a_j \alpha_j .$$

Thus by (18) we see the validity of (13) for sufficiently large n.

3. We remark that the lemma in no. 2 is also valid for any nonnegative solution v(z) of (1) on R - X where X is a compact subset of R. Let $\{R_n\}_0^\infty$ be an exhaustion of R with regular subregions such that $R_0 \supset X$. For any $f \in C(\partial R_0)$ set

(20)
$$(Lf)(z) = \lim_{n \to \infty} P_{f^*}^{R_n - \overline{R}_0}(z)$$

on $R - \bar{R}_0$, where $f^* = f$ on ∂R_0 and $f^* = 0$ on ∂R_n . The existence of the limit in (20) is clear for $f \ge 0$, and the general case follows from this. The equation

(21)
$$L(u_1 - v) = u_1 - v$$

on $R - \bar{R}_0$ always possesses a solution u_1 which is a soultion of (1) on R ([6, p. 403]). Since (1) has a positive solution on R by Myrberg's theorem [2], we can find a positive solution u_2 of (1) on R such that $u_2 > v - u_1$ on ∂R_0 . Then by the maximum principle and (20) we see that $u_2 > L(v - u_1) = v - u_1$ on $R - R_0$. Therefore, $u \equiv u_1 + u_2 > v$ on $R - R_0$ and by (13)

$$v(z_n) < u(z_n) < lpha_n$$

for every sufficiently large n, for u is a positive solution of (1) on R.

4. We denote by O_B the class of every pair (R, P) of a Riemann surface R and a density P on R such that the equation (1) does not admit any bounded solution on R except for the constant zero. We also denote by O_G the class of pairs (R, P) such that R is parabolic, i.e., Rhas the harmonic null boundary. The Brelot [1]-Ozawa [4]-Royden [5] theorem asserts that

(22)
$$O_G < O_B$$
 (strict inclusion)

and

$$(23) O_{g} \cap \mathscr{F} = O_{B} \cap \mathscr{F}$$

where $\mathscr{F} = \{(R, P); \int_{R} P(z) dx dy < \infty\}$. We denote by \mathscr{C} the class of pairs (R, P) such that (1) has an Evans solution on R. We have

$$(24) \qquad \qquad \mathscr{E} \subset O_{\scriptscriptstyle B}\,, \ \ \mathscr{E} \cap \mathscr{F} \subset O_{\scriptscriptstyle G} \cap \mathscr{F} = O_{\scriptscriptstyle B} \cap \mathscr{F}.$$

In fact, let $(R, P) \in \mathscr{C}$ and u be an Evans solution of (1) on R. Let v be any bounded solution of (1) on R. Then for any $m = 1, 2, \cdots$

$$\lim_{z \to a_{\infty}} \left(\frac{1}{m} u(z) \pm v(z) \right) = \infty$$

and the maximum principle yields $(1/m)u(z)\pm v(z) > 0$ on R, i.e.,

$$|v(z)| \leq \frac{1}{m}u(z)$$

on R for every m. Thus $v \equiv 0$ and $(R, P) \in O_B$.

It has been suspected that the inclusions in (24) are improper (see

[3, p. 92]). However, our theorem stated in the introduction negates this conjecture. Let R be any parabolic Riemann surface. For example let R be a compact surface less a point. Take a density P(z)dxdy on R as described in the theorem. Since $(R, P) \in O_G \cap \mathscr{F}, (R, P) \in O_B \cap \mathscr{F}$. If there existed an Evans solution u(z) of (1) on R, then u(z) > 0 on R and $\inf_R u = 0$, a contradiction. Thus

(25)
$$\mathscr{E} < O_{\scriptscriptstyle B}, \ \mathscr{E} \cap \mathscr{F} < O_{\scriptscriptstyle G} \cap \mathscr{F} = O_{\scriptscriptstyle B} \cap \mathscr{F}.$$

References

- [1] M. BRELOT, Sur un théorème de non-existence relatif à l'equation $\Delta u = c(M)u(M)$ ($c \ge 0$), Bull. Sci. Math., 56 (1932), 389-395.
- [2] L. MYRBERG, Über die Existenz der Greenschen Function der Gleichung $\Delta u = c(P)u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., Ser. A. I. 170 (1954), 1-8.
- [3] M. NAKAI, On Evans' solution of the equation $\Delta u = Pu$ on Riemann surfaces, Kôdai Math. Sem. Rep., 15 (1963), 79-93.
- [4] M. OZAWA, Classification of Riemann surfaces, Kôdai Math. Sem. Rep., 4 (1952), 63-76.
- [5] H. ROYDEN, The equation $\Delta u = Pu$ and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., Ser. A. I. 271 (1959), 27 pp.
- [6] L. SARIO AND M. NAKAI, Classification Theory of Riemann Surfaces, Springer, 1970.

MATHEMATICAL INSTITUTE FACULTY OF SCIENCE NAGOYA UNIVERSITY CHIKUSA, NAGOYA, JAPAN