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DENSITIES WITHOUT EVANS SOLUTIONS

MITSURU NAKAI

(Received May 29, 1973)

Consider a 2-form P(z)dxdy on an open Riemann surface R such
that the coefficients P(z) are nonnegative locally Holder continuous
functions of local parameters z = x + iy on R. Such a 2-form P(z)dxdy
which is not identically zero will be referred to as a density on R. If

the integral I P(z)dxdy is finite, then the density P(z)dxdy is said to be
JR

finite. An Evans solution u{z) of the elliptic equation

(1) Δu{z) = P(z)u(z) (i.e., d*du(z) = u(z)P(z)dxdy)

on R is a function u(z) of class C2 satisfying (1) on R such that

(2) lim w(z) = oo
where αM is the Alexandroff ideal boundary point of R, i.e., inf^^w
tend to infinity as compact subsets K exhaust R. It has been a con-
jecture that for any density P on R, or at least for finite density
P on i?, the existence of an Evans solution of (1) on R is equivalent
to (R, P)e OB, i.e., the only bounded solution of (1) on R is the constant
zero. The purpose of this paper is to show that this conjecture is false
by proving the following

THEOREM. There always exists a finite density P(z)dxdy on an
arbitrarily given open Riemann surface R such that every nonnegative
solution of (1) on R has the zero infimum.

Actually we will prove a bit more: Let R be an open Riemann
surface, {zn} a sequence of distinct points in R not accumulating in R,
N an open subset of R containing {zn}, {an} a sequence of positive
numbers converging to zero, and rj a positive number. For an arbitrary
such system (R, {zn}, N) {an}, rj) there exists a density P(z)dxdy of class
C°° with the following properties: The support of P(z)dxdy is contained

in N, i.e., P(z)dxdy = 0 on R — N; \ P(z)dxdy ^ η) {u(zn)} < {an} for any
JR

nonnegative solution u of (1) on R, i.e., u(zn) < an for every large n,
and in particular infR u = 0. The existence proof of such a P will be
given in nos. 1-2. That the last of the above properties is also valid if
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u is replaced by any nonnegative solution of (1) on R outside a compact
set is shown in no. 3. The relation to the existence question of Evans
solutions will be discussed in no. 4.

1. Let Ω be a regular subregion of an open Riemann surface R
and P(z)dxdy be a density on R. We denote by PΩ

f for an fe C(dΩ) the
continuous function on Ω such that P/ \dΩ = f and P° is a solution of (1)
on Ω. We also use the standard notation HΩ

f for PΩ

f with P = 0 o n β . Fix
an arbitrary point p in R and an arbitrary parametric disk £7: | z | < 1
about p so that p is identified with z = 0 in U.

LEMMA. For any pair (ε, ΎJ) of positive numbers and any concentric
parametric disk V: \ z | < p in U with 0 < p ^ e~iπ/η there exists a density
P(z)dxdy on R whose support is contained in V such that

(3) \1

for every f in C(dV) and

(4)

PROOF. Since p e (0, e~iπ/v], p e (0, 1) and 47r/log σ <; η with a = 1/ρ.
Take a positive number a so small that a log σ < ε/2. Consider a con-
tinuous function φ{τ) on [ — p, p] given by

2/(τ log |τ | ) 2 ( l -αlog | r | ) (τ Φ 0)

(r = 0)

which is positive and symmetric on [ — p, p]. Choose an increasing
sequence {φjj)} of nonnegative symmetric C°° functions φn on [ — p, p]
with compact support in ( — p, p) such that \imnφn(τ) — φ{τ) on ( — p, p).
Let Pn(z)dxdy be the density on R such that Pn(z)dxdy = 0 on R — V
and Pn(z) = <^(| z |) on F, which is then of class C~. Set un{z) = (PJf(z).
By the Green formula we see that un satisfies the integral equation

( 5 ) un(z) = 1 - - L ( G(z, Qun{QPn{Qdξdη (ζ = ξ + ΐ?)

where G(z, ζ) is the harmonic Green's function log(||θ2 — ζz\/p \z — ζ|)
on F. Since P%(z) ^ PΛ+1(«), the comparison principle implies that un(z) ;>
un+1(z) on F. Therefore

u(z) = lim u%(z)

exists on F. Observe that
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un(QPn(Q £ (I ζ I log I ζ l)-2 ( — I log I ζ | ) "

and the function on the right is integrable on V. Hence the Lebesgue
dominated convergence theorem applied to (5) as n —> oo yields

(6) tt(2) = l _ _ M G(z,Qu(ζ)φ(\ζ\)dζdV.

This identity shows that u(z) is a bounded solution of

on 0 < I z I < p with continuous boundary values 1 on | z | = p. On the
other hand, by a direct computation, we see that

v{z) = ((log j + cumogσ)"1 + α)

is a bounded solution of (7) on 0 < | z \ < p with continuous boundary
values 1 on \z\ = p. Observe that v(z) is continuously extendable to V
by setting v(0) = α/((log a)'1 + a). Therefore, u(z) — v(z) is a bounded
solution of (7) on 0 < | z | < p with continuous boundary values zero on
I z I = p, and thus u(z) — v(z) = 0 on 0 < | z | < p. This can be seen by
many ways. For example, observe that \u(z) — v(z)\ is subharmonic. Then
— m~ι log I z I — I u(z) — v(z) \ is a superharmonic function on 0 < | z \ < p
with nonnegative boundary values at | z | = 0 and p. Thus

\u(z) - v(z)\ < -—log | * |
m

on 0 < I z I < p for every m = 1, 2, , and we arrive at the desired
conclusion.

Since Pn(z) = Pw(| 2 |) on V and the boundary function 1 is also rotation
free, we have un(z) = un(\ z |) on V. The maximum principle yields that
un(τ) is an increasing function on [0, p] and the same is true of v(τ).
Since v(τ) = lim un(τ) on (0, p] decreasingly, the Dini theorem implies the
uniformness of the convergence on [p\ p] for every pf e (0, p). This
shows that v(0) = limun(0). Fix a & such that

(8) uk(0) ^ 'y(O) + — .

We now maintain that P(z)dxdy = Pk(z)dxdy is a required density. Let
K(z, ζ) be the Green's function of (1) with this particular P = Pk on V.
Again by P(z) = P(\z\) on V and the rotation invariantness of Vf we
see that K(0, ζ) - K(0, | ζ|) for every ζe V. Therefore,



366 M. NAKAI

p.\fκ(O,reiθ)\ =^Γi-JBΓ(Ofr)Ί
Ldr Jr=p Ldr -W

is a negative constant — 2πA (A > 0) on [0, 2π], and thus

*dK(0, peiθ) = -2πAdθ .

For any feC(dV) we then have

(9) P/(0) - - JL\ f(Q*dζK(09 ζ) - A-

In particular on putting / = 1 in (9) we have uk(0) = 2πA. By (8) and
by the choice of a we see that

A ^ -i-/v(0) + —) ̂  -Lfαlogσ + -£-) ̂  -J- .
27Γ\ 2/ 27Γ\ 2/ 2π

This with (9) yields (3). To show the validity of (4) we compute as
follows:

( P(z)dxdy = [ φk(\ z \)dxdy ^ [ φ{r)rdrdθ
JR JV JV

\ r d r Ύ ^ V .
Jo (r logr)2 logσ

2. Fix an arbitrary system (R, {zn}, N; {an}, rj) as described in the
introduction. Take a sequence {Un} of parametric disks on R such that
U«c:Nf UnΓ\ Um= 0 (n^ m), and the center of Un is zn (n = 1, 2, •).
Let {ηn} be a sequence of positive numbers such that

V = Σ Vn -

We denote by Vn t h e concentric parametr ic disk \z\ < pn = e~iπ/rίn of
Un (n = 1, 2, •••)• Take t h e harmonic Green ' s function G(z, ζ) on

S = R - U V% .

Observe that the inner normal derivative (d/dnζ)G(z, ζ) at any ζedVn is
strictly positive for any ze S and any n = 1, 2 , and

(10) *<^G(s, ζ) = - / - G ( ^ , ζ)pndθ
dnζ

for each ζ = pne
iθ e dVn (n = 1, 2, •)• Fix an arbitrary point 20 e S and

set

(11) mn = min pn.JL-G(zQ, ζ) > 0 , ε, = an-mn

Ce9F 3 ^
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for each n = 1, 2, . Fix a density Pn(z)dxdy on R given as in Lemma
in no. 1 determined by (en, ηn) and Vn: | z\ < ρn {n = 1, 2, •). Since
Pn(z)dxdy (n = lf2, •••) have disjoint compact supports in R, we can
define the density

(12) P(z)dxdy = Σ Pn{z)dxdy

on ϋ! which is of class C°° and by (4)

( P(z)dxdy = Σ S Pn(z)dxdy ^ΣVn = y .
JB n=l JB ?ι=l

Clearly we have
oo oo

supp. P(z)dxdy = U supp. Pn(z)dxdy (z\JVndN .

We then have the following

LEMMA. For any nonnegative solution u of (1) on R with P given
by (12) the following inequality

(13) u(zn) < an

is valid for every large n and in particular

(14) lim u(zn) = 0 , inf u(z) = 0 .
e Rze R

PROOF. Let {Rn}T be an exhaustion of JB with regular subregions
such that zQ e Ru Rn =) Ui=i Vίf and R - Rni) UΓ=«+i Vjf and let unΛ (n < k)
be the boundary function for the region Sk = Rk — JJjU Vj such that

u on U ,

0 on (3Λt)u U y
j=n+l

Since P(z)dxdy — 0 on £*, 6̂(2;) is harmonic on Sk. Therefore, the maxi-
mum principle yields

(15) H*lιk (z) ^ u(z) {n = 1, 2, •; k = n + 1, n + 2, •)

for every ze Sk and in particular for z = z0. Let Gk{z, ζ) be the har-
monic Green's function on Sk. Then

(z)=--L\ un,k(O*dζGk(z, Q
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Therefore by (15)

(16) - Σ ί u(ζ)*dζGk(zQ, ζ) £ 2πu(zQ) .
i=l JdVj

Since {Gk(z0, ζ)}T=n+i converges increasingly to G(zQ, ζ) for every ζ e S, on
letting k —• oo in (16) we deduce

- Σ ( uiQ*d&(z» 0 ^ 2τr^ 0)

and again by letting n —* °° we obtain

(17) - Σ ί w(ζ)*^G(2o, ζ) £ 2πu(z0) .Σ
3 = 1 j

On the other hand, since u(Q ^ 0 and the line element dsζ = ^d^ on
dVjf we deduce by (10) and (11) that

\
JO

Therefore if we set

ί u(ζ)*dζG(z0, ζ) - ( u(ζ)^-G(zOf Qdsζ
hvj Jdvj dnζ

-^-G(zOf ζ)Ί Pjdθ :> m

S 27Γ

u{ρόe
iθ)dθ

0

then by (17) we have

Σ ^ 2πu(z0)

and in particular

(18) lim aό = 0 .
i-»oo

Observe that P(z) = P ^ ) on V, and hence % ( ^ ) = (P
3
)Z*(z

3
). By (3),

(19) u(Zj) ^ 6y \ u{pjeiθ)dθ = βj-mj1^ = a^a^ .
JO

Thus by (18) we see the validity of (13) for sufficiently large n.

3. We remark that the lemma in no. 2 is also valid for any non-
negative solution v{z) of (1) on R — X where X is a compact subset of
R. Let {Rn}T be an exhaustion of R with regular subregions such that
Ro =) X. For any fe C(dR0) set

(20) (Lf)(z) = lim Pji*-*°(z)
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on R — RQ, where / * = / o n dR0 and /* = 0 on dRn. The existence of
the limit in (20) is clear for / ^ 0, and the general case follows from
this. The equation

(21) L{ux — v) = uγ — v

on R — RQ always possesses a solution uγ which is a soultion of (1) on
R ([6, p. 403]). Since (1) has a positive solution on R by Myrberg's
theorem [2], we can find a positive solution u2 of (1) on R such that
u2> v — uγ on dR0. Then by the maximum principle and (20) we see
that u2 > L(v — uj = v — ux on R — Ro. Therefore, u = uγ + u2 > v on
R - RQ and by (13)

v(zn) < u(zn) < an

for every sufficiently large n, for u is a positive solution of (1) on R.

4. We denote by OB the class of every pair {R, P) of a Riemann
surface R and a density P on R such that the equation (1) does not
admit any bounded solution on R except for the constant zero. We also
denote by OG the class of pairs {R, P) such that R is parabolic, i.e., R
has the harmonic null boundary. The Brelot [l]-0zawa [4]-Royden [5]
theorem asserts that

(22) OG < OB {strict inclusion)

and

(23) oG n J^~ = oB n ^

where ^ = \(R, P);\ P(z)dxdy < °o 1 We denote by g7 the class of
I jR J

pairs (R, P) such that (1) has an Evans solution on R. We have

(24) g f c i o * , gf

In fact, let (R, P) e g7 and u be an Evans solution of (1) on R. Let v
be any bounded soultion of (1) on R. Then for any m = 1, 2,

/I \
lim (—u(z) + v(ίs)) = °°

and the maximum principle yields (l/m)u(z)±v(z) > 0 on R, i.e.,

I φ ) I ̂  — u(z)
m

on i2 for every m. Thus T; = 0 and (R, P) e OB.
It has been suspected that the inclusions in (24) are improper (see
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[3, p. 92]). However, our theorem stated in the introduction negates this
conjecture. Let R be any parabolic Riemann surface. For example let
R be a compact surface less a point. Take a density P(z)dxdy on R as
described in the theorem. Since (R, P)eOGf)Jr, (R, P)eOBΠ^ If
there existed an Evans solution u(z) of (1) on R, then u(z) > 0 on R
and inf̂  u = 0, a contradiction. Thus

(25) & < oB, g?
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