INFINITESIMAL AFFINE TRANSFORMATIONS OF THE TANGENT BUNDLES WITH SASAKI METRIC

Kōjirō Satō

(Received July 17, 1973)

Introduction. Let (M, g) be a Riemannian manifold with positive definite metric tensor g. Let $T(M)$ be its tangent bundle with the natural projection $\pi: T(M) \rightarrow M . \quad T(M)$ admits a natural Riemannian metric g^{8} called the Sasaki metric. S. Sasaki proved in [2] that the extension \bar{X} (or complete lift X^{c}) of an infinitesimal isometry X on (M, g) is an infinitesimal isometry on ($T(M), g^{s}$) and the vertical lift Y^{v} of a parallel vector field Y on (M, g) is an infinitesimal isometry on $(T(M)$, g^{*}). In [5] S. Tanno determined the forms of all infinitesimal isometries on ($T(M), g^{s}$). In this paper we determine the forms of all infinitesimal affine transformations on $\left(T(M), g^{s}\right)$. The author wishes to express his sincere gratitude to Professor Tanno who suggested this topic and helpful advices.

1. Notations and basic formulas. Let (M, g) be a Riemannian manifold with positive definite metric tensor g. Let $T(M)$ be the tangent bundle of M with the natural projection $\pi: T(M) \rightarrow M$. For a local coordinate neighborhood $U\left(x^{i}\right)$ in M, let $\left(\pi^{-1} U\right)\left(x^{i}, y^{i}\right)$ be the natural coordinate neighborhood, where indices i, j, k etc. run from 1 to $m=$ $\operatorname{dim} M$.

Let $X=\left(X^{i}\right)$ be a vector field on M. Then the complete lift X^{c} (in Yano-Kobayashi [3], the extension \bar{X} in Sasaki [2]) and the vertical lift X^{v} are defined by

$$
\begin{gather*}
X^{c}=\left(X^{i}, y^{r} \partial_{r} X^{i}\right), \tag{1.1}\\
X^{v}=\left(0, X^{i}\right), \tag{1.2}
\end{gather*}
$$

respectively, where $\partial_{r} X^{i}$ denotes $\partial X^{i} / \partial x^{r}$.
For (1, 1)-tensor field $C=\left(C_{j}^{i}\right)$ on M, a vector field ιC on $T(M)$ is defined by

$$
\begin{equation*}
\iota C=\left(0, C_{r}^{i} y^{r}\right) \tag{1.3}
\end{equation*}
$$

For a (1,3)-tensor field $T=\left(T_{i j k}{ }^{h}\right)$ on M, a (1, 2)-tensor field $\iota T=$ $\left((c T)_{\beta \gamma}^{\alpha}\right)$ on $T(M)$ is defined by

$$
\left\{\begin{array}{l}
(\iota T)_{\bar{j} k}^{i}=(\iota T)_{\bar{j} k}^{\bar{i}}=(\iota T)_{j k}^{\bar{i}}=(\iota T)_{j}^{\bar{i}}=(\iota T)_{\bar{j} k}^{i}=(\iota T)_{j k}^{i}=(\iota T)_{j k}^{i}=0, \tag{1.4}\\
(\iota T)_{j k}^{\bar{i}}=\left(T_{r j k}^{i}-T_{j r k}^{i}+T_{j k r}{ }^{i}\right) y^{r},
\end{array}\right.
$$

where the unbarred indices refer to x^{1}, \cdots, x^{m} and the barred indices refer to y^{1}, \cdots, y^{m}.

By ∇ and $R=\left(R_{i j k}{ }^{h}\right)$ we denote the Riemannian connection and the Riemannian curvature tensor of g. By $\Gamma_{j k}^{i}$ we denote the coefficients of the connection ∇ of M.

If we put

$$
\begin{aligned}
& \bar{R}_{j \bar{k}}^{\alpha}=0, \bar{R}_{\bar{j} k}^{i}=\bar{R}_{k{ }_{k j}^{i}}^{i}=R_{r j k}{ }^{i} y^{r}, \bar{R}_{\bar{j} k}^{\bar{i}}=\bar{R}_{k j}^{\bar{i}}=-\Gamma_{s h}^{i} R_{r j k}{ }^{h} y^{r} y^{s}, \\
& \bar{R}_{j k}^{i}=\left(R_{s h k}^{i} \Gamma_{r j}^{h}+R_{s h j}{ }^{i} \Gamma_{r k}^{h} y^{r} y^{s},\right. \\
& \bar{R}_{j k}^{\bar{i}}=\Gamma_{t h}^{i}\left(R_{l s k}{ }^{h} \Gamma_{r j}^{l}+R_{l s j}{ }^{h} \Gamma_{r k}^{l}\right) y^{r} y^{s} y^{t},
\end{aligned}
$$

then the $\bar{R}=\left(\bar{R}_{\beta r}^{\alpha}\right)$ is a (1,2)-tensor field on $T(M)$.
By ∇^{c} and ∇^{8} we denote the Riemannian connection defined by the complete metric g^{c} and the Sasaki metric g^{s} on $T(M)$ respectively. If we denote by $\bar{\Gamma}_{\beta \gamma}^{\alpha}$ the coefficients of the connection ∇^{c} (see [3], p. 205), then coefficients $\widetilde{\Gamma}_{\beta \gamma}^{\alpha}$ of the connection ∇^{s} (see [2], p. 352) are given by

$$
\begin{equation*}
\widetilde{\Gamma}_{\beta \gamma}^{\alpha}=\bar{\Gamma}_{\beta \gamma}^{\alpha}-(1 / 2)(\iota R)_{\beta \gamma}^{\alpha}+(1 / 2) \bar{R}_{\beta \gamma}^{\alpha} . \tag{1.5}
\end{equation*}
$$

If we denote by L_{X} the Lie derivation by X, then we have the following lemmas.

Lemma 1.1. Let X be a vector field on M. Then

$$
\begin{aligned}
& L_{X^{c}} \bar{\Gamma}_{j-\frac{\alpha}{k}}=0, L_{X^{c}} \bar{\Gamma}_{\bar{j} k}^{i}=0, L_{X c} \overline{\Gamma_{\bar{j} k}^{\bar{i}}}=L_{X} \Gamma_{j k}^{i}, \\
& L_{X^{c}} \bar{\Gamma}_{j k}^{i}=L_{X} \Gamma_{j k}^{i}, L_{X^{c}} \bar{\Gamma}_{j k}^{i}=y^{r} \partial_{r}\left(L_{X} \Gamma_{j k}^{i}\right) .
\end{aligned}
$$

Lemma 1.2. (Yano and Kobayashi [3])

$$
L_{X}(\iota R)=\iota\left(L_{X} R\right)
$$

Lemma 1.3. For $\bar{R}=\left(\bar{R}_{\beta \gamma}^{\alpha}\right)$ we have

$$
\begin{aligned}
& L_{X}{ }^{c} \bar{R}_{j \bar{j}}^{\alpha}=0, L_{X c} \bar{R}_{\bar{j} k}^{i}=y^{r} L_{X} R_{r j k}{ }^{i}, \\
& L_{X} \bar{R}_{\bar{j} k}^{\bar{i}}=-\left(\Gamma_{s h}{ }^{i} L_{X} c \bar{R}_{\bar{j} k}^{h}+\bar{R}_{\bar{j} k}^{i} L_{X} \Gamma_{s h}{ }^{i}\right) y^{s}, \\
& L_{X}{ }^{c} \bar{R}_{j k}^{i}=\left(\Gamma_{s j}^{h} L_{X c} \bar{R}_{\bar{h} k}^{i}+\bar{R}_{\bar{h} k}^{i} L_{X} \Gamma_{s j}^{h}\right. \\
& \left.+\Gamma_{s k}^{h} L_{x^{c}} \bar{R}_{\bar{h} j}^{i}+\bar{R}_{\bar{h} j}^{i} L_{X} \Gamma_{s k}{ }^{h}\right) y^{s}, \\
& L_{X} \overline{\mathcal{R}}_{j k}^{\bar{i}}=-\left(\Gamma_{t h}{ }^{i} L_{X}{ }^{c} \bar{R}_{j k}^{h}+\bar{R}_{j k}{ }^{h} L_{X} \Gamma_{t h}{ }^{i}\right) y^{t} .
\end{aligned}
$$

A vector field $Z=\left(Z^{i}, Z^{\bar{i}}\right)=\left(Z^{\alpha}\right)$ on $T(M)$ with affine connection ∇^{s} is an infinitesimal affine transformation if and only if it satisfies

$$
\begin{align*}
L_{Z} \widetilde{\Gamma}_{\beta \gamma}^{\alpha}= & \partial_{\beta} \partial_{\gamma} Z^{\alpha}+Z^{\lambda} \partial_{\lambda} \tilde{\Gamma}_{\beta \gamma}^{\alpha}+\widetilde{\Gamma}_{\lambda \gamma}^{\alpha} \partial_{\beta} Z^{\lambda}+\widetilde{\Gamma}_{\beta \lambda}^{\alpha} \partial_{\gamma} Z^{\lambda} \tag{1.6}\\
& -\widetilde{\Gamma}_{\beta \gamma}^{\lambda} \partial_{\lambda} Z^{\alpha}=0 .
\end{align*}
$$

By (1.5) we have

$$
\begin{equation*}
L_{Z} \widetilde{\Gamma}_{\beta \gamma}^{\alpha}=L_{Z} \bar{\Gamma}_{\beta \gamma}^{\alpha}-(1 / 2) L_{Z}(\iota R)_{\beta \gamma}^{\alpha}+(1 / 2) L_{Z} \bar{R}_{\beta \gamma}^{\alpha} . \tag{1.7}
\end{equation*}
$$

Thus we have the following lemma.
Lemma 1.4. Let X be a vector field on M. Then the X^{c} is an infinitesimal affine transformation of $\left(T(M), g^{s}\right)$ if and only if X itself is an infinitesimal affine transformation of (M, g).

Next we shall determine the infinitesimal affine transformation Z of $T(M)$ which are of the form (1.3). By a straightforward calculation we get the following lemmas.

Lemma 1.5. Let $C=\left(C_{j}^{i}\right)$ be a $(1,1)$-tensor field on M. Then we have

$$
\begin{aligned}
L_{\iota c} \bar{\Gamma}_{j \bar{k}}^{\alpha}= & 0, L_{\iota c} \bar{\Gamma}_{\bar{j} k}^{i}=0, L_{\iota 0} \Gamma_{\bar{j} k}^{-\bar{i}}=\nabla_{k} C_{j}^{i}, L_{\iota c} \bar{\Gamma}_{j k}^{i}=0, \\
L_{\iota c} \bar{C}_{j k}^{\bar{i}}= & \left(R_{h j k}{ }^{i} C_{r}^{h}+R_{j r k}{ }^{h} C_{h}^{i}+\nabla_{j} \nabla_{k} C_{r}^{i}\right. \\
& \left.+\Gamma_{j r}^{h} \nabla_{k} C_{h}^{i}+\Gamma_{k r}^{h} \nabla_{j} C_{h}^{i}\right) y^{r} .
\end{aligned}
$$

Lemma 1.6.

$$
\begin{aligned}
& L_{\iota c}(\iota R)_{j \bar{j}}^{\alpha}=L_{t c}(\iota R)_{\bar{j} k}^{i}=L_{\iota c}(\iota R)_{j=}^{\bar{i}}=L_{\iota c}(\iota R)_{j k}^{i}=0, \\
& L_{\iota c}(\iota R)_{j k}^{\bar{i}}=\left(R_{h j k}{ }^{i} C_{r}^{h}+R_{j r k}{ }^{h} C_{h}^{i}+R_{h k j}{ }^{i} C_{r}^{h}+R_{k r j}{ }^{h} C_{h}^{i}\right) y^{r} .
\end{aligned}
$$

Lemma 1.7.

$$
\begin{aligned}
& L_{\iota c} \bar{R}_{j \bar{k}}^{\alpha}=0, L_{\iota c} \bar{R}_{\bar{j} k}^{i}=\left(R_{h j k}{ }^{i} C_{r}^{h}-R_{h r k}{ }^{i} C_{j}^{h}\right) y^{r}, \\
& L_{\iota C} \bar{R}_{\bar{j} k}^{\bar{i}}=-\left(\bar{R}_{j k}^{h} \nabla_{h} C_{s}^{i}+\Gamma_{h s}{ }^{i} L_{\iota c} \bar{R}_{j k}^{h}\right) y^{s}, \\
& L_{\iota c} \bar{R}_{j k}^{i}=\left(\bar{R}_{\bar{h} k}^{i} \nabla_{j} C_{s}^{h}+\Gamma_{j s}^{h} L_{\iota c} \bar{R}_{\bar{h} k}^{i}+\bar{R}_{\bar{h}_{j}^{i}}^{i} \nabla_{k} C_{s}^{h}+\Gamma_{k s}^{h} L_{\iota C} \bar{R}_{\bar{h} j}^{i}\right) y^{s}, \\
& L_{\iota c} \bar{R}_{j k}^{i}=-\left(\bar{R}_{j k}^{h} \nabla_{h} C_{t}^{i}+\Gamma_{h t}^{i} L_{\iota c} \bar{R}_{j k}^{h}\right) y^{t} .
\end{aligned}
$$

Thus we have the following lemma.
Lemma 1.8. Let $C=\left(C_{j}^{i}\right)$ be $a(1,1)$-tensor field on M. Then the vector field ιC on $T(M)$ is an infinitesimal affine transformation of $\left(T(M), g^{s}\right)$ if and only if it satisfies
(i) $\nabla_{k} C_{j}^{i}=0$, and
(ii) $R_{h j k}{ }^{i} C_{r}^{h}-R_{h r k}{ }^{i} C_{j}^{h}=0$.

Proof. Suppose that ℓC be an infinitesimal affine transformation on ($T(M), g^{s}$). Putting $\alpha=\bar{i}, \beta=\bar{j}, \gamma=k$, and $Z=\iota C$ in (1.7), we have

$$
\nabla_{k} C_{j}^{i}+(1 / 2) L_{\iota c} \bar{R}_{\bar{j} k}^{\bar{i}}=0
$$

Hence we get (i). Putting $\alpha=i, \beta=\bar{j}, \gamma=k$, and $Z=\iota C$ in (1.7), we have

$$
\left(R_{h j k_{k}}{ }^{i} C_{r}^{h}+R_{r h k}{ }^{i} C_{j}^{h}\right) y^{r}=0 .
$$

Hence we have (ii).
Conversely, suppose that C satisfy (i) and (ii). Then we have

$$
L_{\iota C} \tilde{\Gamma}_{j k}^{\bar{i}}=(1 / 2)\left(R_{k j h}{ }^{i} C_{r}^{h}-R_{k j r}{ }^{h} C_{h}^{i}\right) y^{r} .
$$

By (i) and the Ricci's identity we obtain

$$
R_{k j h}{ }^{i} C_{r}^{h}-R_{k j r}{ }^{h} C_{h}^{i}=0 .
$$

Thus we see that $L_{c c} \widetilde{\Gamma}_{\beta \gamma}^{\alpha}=0$.
q.e.d.
2. General infinitesimal affine transformation of $T(M)$. Let $K=$ $\left(K_{j}^{i}\right)$ be a (1, 1)-tensor field on M. Then the vector field $* K$ on $T(M)$ (S. Tanno [4]) is defined by

$$
\begin{equation*}
* K=\left(K_{r}^{i} y^{r},-\Gamma_{h r}^{i} K_{s}^{h} y^{r} y^{s}\right) . \tag{2.1}
\end{equation*}
$$

For a vector field $Y=\left(Y^{i}\right)$ on M and a (1, 1)-tensor field K on M we put

$$
\begin{equation*}
\bar{X}(Y, K)=Y^{v}+* K \tag{2.2}
\end{equation*}
$$

First we shall determine the infinitesimal affine transformations Z of $T(M)$ which are of the form (2.2).

By a straightforward calculation, we have the following lemmas.
Lemma 2.1. (Yano and Kobayashi [3])

$$
\begin{aligned}
& L_{Y v} \bar{\Gamma}_{-\bar{j} \frac{\alpha}{k}}=L_{Y v} \bar{\Gamma}_{\bar{j} k}^{i}=L_{Y v} \bar{\Gamma}_{\bar{j} k}^{\bar{i}}=L_{Y^{v}} \bar{\Gamma}_{j k}^{i}=0, \\
& L_{Y^{v}} \bar{\Gamma}_{j k}^{\bar{i}}=L_{Y} \Gamma_{j k}^{i} .
\end{aligned}
$$

Lemma 2.2. (Yano and Kobayashi [3])

$$
\begin{aligned}
& L_{Y^{v}}(\iota R)_{j \frac{\alpha}{k}}=L_{Y^{v}}(\iota R)_{\bar{j} k}^{i}=L_{Y^{v}}(\iota R)_{\bar{j} k}^{\bar{i}}=L_{Y^{v}}(\iota R)_{j_{k}}^{i}=0, \\
& L_{Y^{v}}(\iota R)_{j k}^{\bar{i}}=\left(R_{r j k}^{i}+R_{r k j}^{i}\right) Y^{r} .
\end{aligned}
$$

Lemma 2.3.

$$
\begin{aligned}
& L_{Y v} \bar{R}_{\bar{j} \bar{k}}^{\alpha}=0, L_{Y v} \bar{R}_{\bar{j} k}^{i}=R_{h j j_{k}}{ }^{i} Y^{h}, \\
& L_{Y v} \bar{R}_{\bar{j} k}^{\bar{i}}=-\left(\bar{R}_{j k k}^{h} \nabla_{h} Y^{i}+y^{r} \Gamma_{r h}^{i} L_{Y_{v}} \bar{R}_{j}^{k} k\right), \\
& L_{r^{v}} \bar{R}_{j k}^{i}=\bar{R}_{\bar{h} k}^{i} \nabla_{j} Y^{h}+\bar{R}_{\bar{h}_{j}^{i}}^{i} \nabla_{k} Y^{h}+\left(\Gamma_{r j}^{h} L_{r^{v}} \bar{R}_{\bar{h} k}^{i}+\Gamma_{r k}^{h} L_{r^{v}} \bar{R}_{\bar{h} j}^{i}\right) y^{r}, \\
& L_{Y_{v}} \bar{R}_{j k}^{\bar{i}}=-\left(\bar{R}_{j k}^{h} \nabla_{h} Y^{i}+y^{t} \Gamma_{t h}^{i} L_{Y v} \bar{R}_{j k}^{k}\right) .
\end{aligned}
$$

Lemma 2.4.

$$
\begin{aligned}
L_{*_{K}} \bar{\Gamma}_{j \bar{j}}^{\alpha}= & 0, L_{*_{K}} \bar{\Gamma}_{\bar{j} k}^{i}=\nabla_{k} K_{j}^{i}, \\
L_{*_{K}} \bar{\Gamma}_{\bar{j} k}^{i}= & -\left(R_{k h j}{ }^{i} K_{r}^{h}+R_{k r h}{ }^{i} K_{j}^{h}+\Gamma_{h r}^{i} \nabla_{k} K_{j}^{h}\right) y^{r}, \\
L_{*_{K}} \bar{\Gamma}_{j k}^{i}= & \left(\dot{R}_{h j k}{ }^{i} K_{r}^{h}+R_{j r k}{ }^{h} K_{h}^{i}+\nabla_{j} \nabla_{k} K_{r}^{i}\right. \\
& \left.+\Gamma_{k r}^{h} \nabla_{j} K_{h}^{i}+\Gamma_{j r}^{h} \nabla_{k} K_{h}^{i}\right) y^{r}, \\
L_{*_{K}} \bar{\Gamma}_{j k} \bar{i}_{j}^{i}= & \left(R_{r k h}{ }^{i} \nabla_{j} K_{s}^{h}+R_{r j h}{ }^{i} \nabla_{k} K_{s}^{h}\right) y^{r} y^{s}-y^{s} \Gamma_{h s}^{i} L_{*_{K}} \bar{\Gamma}_{j k}^{h} \\
& +\left(R_{r k h}{ }^{i} K_{p}^{h}+R_{h k p}{ }^{i} K_{r}^{h}\right) \Gamma_{j s}^{p} y^{r} y^{s} \\
& +\left(R_{r j h}^{i} K_{p}^{h}+R_{h j p}^{i} K_{r}^{h}\right) \Gamma_{k}^{p} y^{r} y^{s} \\
& +\left(\nabla_{j} R_{h k r}{ }^{i}+\nabla_{h} R_{r j k}{ }^{i}\right) K_{s}^{h} y^{r} y^{s} .
\end{aligned}
$$

Lemma 2.5.

$$
\begin{aligned}
L_{*_{K}}(\iota R)_{\bar{j} \frac{\alpha}{k}}= & 0, L_{*_{K}}(\iota R)_{\bar{j}_{k}}^{i}=0, \\
L_{*_{K}}(\iota R)_{\bar{j} k}^{\bar{i}}= & (\iota R)_{h k}^{\bar{i}} K_{j}^{h}, L_{*_{K}}(\iota R)_{j k}^{i}=-(\iota R)_{j k}^{\bar{h}} K_{h}^{i}, \\
L_{*_{K}}(\iota R)_{j k}^{\bar{i}}= & \left(\nabla_{h} R_{s j k}^{i}+\nabla_{h} R_{s k j}^{i}\right) K_{r}^{h} y^{r} y^{s} \\
& +\left[\left((\iota R)_{h k}^{\bar{i}} \Gamma_{j r}^{p}+(\iota R)_{h j}^{\bar{i}} \Gamma_{k r}^{p}+(\iota R)_{j k}^{\bar{p}} \Gamma_{h r}^{i}\right) K_{p}^{h}\right. \\
& \left.+(\iota R)_{h k}^{\bar{i}} \nabla_{j} K_{r}^{h}+(\iota R)_{h j}^{\bar{i}}{ }_{k} K_{r}^{h}\right] y^{r} .
\end{aligned}
$$

Lemma 2.6.

$$
\begin{aligned}
& L_{*_{K}} \bar{R}_{\bar{j} \bar{k}}^{i}=\left(R_{r k h}{ }^{i} K_{j}^{h}+R_{r j h}^{i} K_{k}^{h}\right) y^{r}, L_{* K} \bar{R}_{\bar{j} \bar{k}}^{\bar{i}}=-y^{s} \Gamma_{s}{ }^{i} L_{*_{K}} \bar{R}_{\bar{j} \bar{k}}^{p}, \\
& L_{*_{K}} \bar{R}_{\bar{j} k}{ }^{i}=\left(K_{s}^{h} \nabla_{h} R_{r j k}{ }^{i}-R_{r j k}{ }^{h} \nabla_{h} K_{s}^{i}+R_{r j h}{ }^{i} \nabla_{k} K_{s}^{h}\right) y^{r} y^{s} \\
& +y^{s} \Gamma_{s k}^{h} L_{*_{K}} \bar{R}_{\bar{h} j}^{i}, \\
& L_{*_{K}} \bar{R}_{\bar{j} k}^{\bar{i}}=R_{r j k}{ }^{p} R_{p h s}{ }^{i} K_{t}^{h} y^{r} y^{s} y^{t}-y^{t} \Gamma_{t h}{ }^{i} L_{*_{K}} \bar{R}_{\bar{j}}{ }^{h}, \\
& L_{* K} \bar{R}_{j k}^{i}=\left[\left(\Gamma_{r k}^{p} \nabla_{j} K_{t}^{h}+\Gamma_{r j}^{p} \nabla_{k} K_{t}^{h}+\Gamma_{r j}^{p} \Gamma_{k t}^{l} K_{l}^{h}\right.\right. \\
& \left.+\Gamma_{r j}^{l} \Gamma_{k t}^{p} K_{l}^{h}\right) R_{s p h}{ }^{i}+K_{t}^{h}\left(R_{s p k}{ }^{i} R_{h j r}^{p}+R_{s p j}{ }^{i} R_{h k r}{ }^{p}\right. \\
& \left.+\Gamma_{r j}^{p} \nabla_{h} R_{s p k}{ }^{i}+\Gamma_{r k}^{p} \nabla_{h} R_{s p j}{ }^{i}\right)-\left(R_{s p k}{ }^{h} \Gamma_{r j}^{p}\right. \\
& \left.\left.+R_{s p j}{ }^{h} \Gamma_{r k}^{p}\right) \nabla_{h} K_{t}^{i}\right] y^{r} y^{s} y^{t}, \\
& L_{*_{K}} \bar{R}_{j k}^{\bar{i}}=\left(\Gamma_{t}{ }^{i} \bar{R}_{j k}{ }^{h} \nabla_{h} K_{u}^{l}-R_{h p t}{ }^{i} \bar{R}_{j k}^{p} K_{u}^{h}\right) y^{t} y^{u}-y^{u} \Gamma_{u h}{ }^{i} L_{*_{K}} \bar{R}_{j k}{ }^{h} .
\end{aligned}
$$

Thus we have the following lemma.
Lemma 2.7. Let $\bar{X}(Y, K)$ be an infinitesimal affine transformation of $\left(T(M), g^{s}\right)$. Then
(i) $L_{Y} \Gamma_{j k}^{i}+(1 / 2)\left(R_{k h j}{ }^{i}+R_{j h k}{ }^{i}\right) Y^{h}=0$,
(ii) $\nabla_{k} K_{j}^{i}+(1 / 2) R_{h j j_{k}}{ }^{i} Y^{h}=0$,
(iii) $R_{r j k}{ }^{h} \nabla_{h} Y^{i}+R_{h k r}{ }^{i} K_{j}^{h}=0$,
(iv) $R_{r h k}{ }^{i} \nabla_{j} Y^{h}+R_{r h j}{ }^{i} \nabla_{k} Y^{h}+2 \nabla_{j} \nabla_{k} K_{r}^{i}+2 R_{h j k}{ }^{i} K_{r}^{h}-R_{k j r}{ }^{h} K_{h}^{i}=0$,
(v) $K_{s}^{h} \nabla_{h} R_{r j k_{k}}{ }^{i}+R_{r j h}{ }^{i} \nabla_{k} K_{s}^{h}-R_{r j k}{ }^{h} \nabla_{h} K_{s}^{i}$ is skew-symmetric in r and s.

Conversely, if Y and K satisfy (i) $\sim(v)$, then the vector field $\bar{X}(Y, K)$ defined by (2.2) is an infinitesimal affine transformation of $\left(T(M), g^{s}\right)$.

Proof. Putting $\alpha=i, \beta=\bar{j}, \gamma=\bar{k}$ and $Z=\bar{X}(Y, K)$ in (1.7) we have

$$
\begin{equation*}
R_{r k h}{ }^{i} K_{j}^{h}+R_{r j h}{ }^{i} K_{k}^{h}=0 \tag{2.3}
\end{equation*}
$$

Putting $\alpha=i, \beta=\bar{j}, \gamma=k$ and $Z=\bar{X}(Y, K)$ in (1.7), we have

$$
\begin{align*}
\left(\nabla_{k} K_{j}^{i}\right. & \left.+(1 / 2) R_{h j k}^{i} Y^{h}\right)+(1 / 2)\left(K_{s}^{h} \nabla_{h} R_{r j k}^{i}\right. \tag{2.4}\\
& \left.+R_{r j h}^{i} \nabla_{k} K_{s}^{h}-R_{r j k}^{h} \nabla_{h} K_{s}^{i}\right) y^{r} y^{s}=0
\end{align*}
$$

where we have used (2.3). By (2.4) we have (ii) and (v).
Putting $\alpha=\bar{i}, \beta=\bar{j}, \gamma=k$, and $Z=\bar{X}(Y, K)$ in (1.7), we have

$$
\begin{aligned}
& -\left(R_{k h j}^{i} K_{r}^{h}+R_{k r h}{ }^{i} K_{j}^{h}+\Gamma_{h r}^{i} \nabla_{k} K_{j}^{h}\right) y^{r}+(1 / 2) L_{*_{K}} \bar{R}_{\bar{j} k}^{\bar{i}} \\
& -(1 / 2)\left(R_{r j k}{ }^{h} \nabla_{h} Y^{i}+\Gamma_{r p}^{i} R_{h j k}^{p} Y^{h}\right) y^{r} \\
& -(1 / 2)\left(R_{r h k}{ }^{i}+R_{r k h}{ }^{i}\right) K_{j}^{h} y^{r}=0 .
\end{aligned}
$$

Using (2.3) and (ii) this is written as

$$
\begin{equation*}
-\left(R_{r j k}{ }^{h} \nabla_{h} Y^{i}+R_{h k r}{ }^{i} K_{j}^{h}\right) y^{r}+L_{* K} \bar{R}_{\bar{j} k}^{\bar{i}}=0 . \tag{2.5}
\end{equation*}
$$

Then we obtain (iii). Putting $\alpha=i, \beta=j, \gamma=k$ and $Z=\bar{X}(Y, K)$ in (1.7) and using (ii), we have

$$
\begin{aligned}
\left(R_{r h k}{ }^{i} \nabla_{j} Y^{h}\right. & +R_{r h j}{ }^{i} \nabla_{k} Y^{h}+2 \nabla_{j} \nabla_{k} K_{r}^{i} \\
& \left.+2 R_{h j k}^{i} K_{r}^{h}-R_{k j r}{ }^{k} K_{h}^{i}\right) y^{r}+L_{* K} \bar{R}_{j k}^{i}=0 .
\end{aligned}
$$

Hence we have (iv). Putting $\alpha=\bar{i}, \beta=j, \gamma=k$ and $Z=\bar{X}(Y, K)$ in (1.7), we have

$$
\begin{aligned}
L_{Y} \Gamma_{j k}^{i} & -(1 / 2)\left(R_{h j k}^{i}+R_{h k j}{ }^{i}\right) Y^{h}+(1 / 2) L_{*_{K}} \bar{R}_{j k}^{\bar{i}} \\
& +L_{*_{K}} \bar{\Gamma}_{j k}^{\bar{i}}-(1 / 2) L_{*_{K}}(\ell R)_{j k}^{\bar{i}}+(1 / 2) L_{Y v} \bar{R}_{j k}^{\bar{i}}=0 .
\end{aligned}
$$

Using (2.3), (ii), (iii) and (iv) this is written as

$$
L_{Y} \Gamma_{j k}^{i}-(1 / 2)\left(R_{h j k}^{i}+R_{h k j}{ }^{i}\right) Y^{h}+(1 / 2) L_{*_{K}} \bar{R}_{j k}^{\bar{i}}=0 .
$$

Hence we get (i).
Conversely, suppose that Y and K satisfy (i) $\sim(v)$. From (iii) we obtain (2.3). By the preceding argument we see that $L_{\bar{X}(Y, K)} \widetilde{\Gamma}_{\beta \gamma}^{\alpha}=0$. Thus we have completed the proof.

Next we shall determine the forms of all infinitesimal affine transformations on ($T(M), g^{s}$).

Let $Z=\left(Z^{h}, Z^{\bar{h}}\right)=\left(Z^{\alpha}\right)$ be an infinitesimal affine transformation on ($T(M), g^{s}$).

By the Taylor's theorem we have

$$
\begin{align*}
Z^{h}\left(x^{u}, y^{v}\right)= & Z^{h}\left(x^{u}, 0\right)+\partial_{\bar{r}} Z^{h}\left(x^{u}, 0\right) y^{r}+(1 / 2) \partial_{\bar{r}} \partial_{\bar{s}} Z^{h}\left(x^{u}, 0\right) y^{r} y^{s} \tag{2.6}\\
& +(1 / 6) \partial_{\bar{r}} \partial_{\bar{s}} \partial_{\bar{t}} Z^{h}\left(x^{u}, 0\right) y^{r} y^{s} y^{t}+(*)^{h},
\end{align*}
$$

$$
\begin{align*}
Z^{h}\left(x^{u}, y^{v}\right)= & Z^{\bar{n}}\left(x^{u}, 0\right)+\partial_{\bar{r}} Z^{\bar{n}}\left(x^{u}, 0\right) y^{r}+(1 / 2) \partial_{\bar{r}} \partial_{\bar{s}} \overline{Z^{\bar{h}}}\left(x^{u}, 0\right) y^{r} y^{s} \tag{2.7}\\
& +(1 / 6) \partial_{\bar{r}} \partial_{\bar{s}} \partial_{\bar{t}} \bar{Z}^{\bar{n}}\left(x^{u}, 0\right) y^{r} y^{s} y^{t}+(*)^{\bar{h}}
\end{align*}
$$

for $(x, y)=\left(x^{u}, y^{v}\right)$ in the neighborhood of the 0 section, where $(*)^{\lambda}$ is of the form

$$
(*)^{\lambda}=(1 / 24) \partial_{\bar{r}} \partial_{\bar{s}} \partial_{\bar{t}} \partial_{\bar{p}} Z^{\lambda}\left(x^{u}, \theta(x, y) y^{v}\right) y^{r} y^{s} y^{t} y^{p}
$$

Then we have the following lemma.
Lemma 2.8. (S. Tanno [5])

$$
\begin{aligned}
& X=\left(X^{h}\right)=\left(Z^{h}(x, 0)\right), Y=\left(Y^{h}\right)=\left(Z^{\bar{n}}(x, 0)\right), \\
& K=\left(K_{r}^{h}\right)=\left(\partial_{\bar{r}} Z^{h}(x, 0)\right), E=\left(E_{r s}^{h}\right)=\left(\partial_{\bar{r}} \partial_{\bar{s}} Z^{h}(x, 0)\right), \\
& F=\left(F_{r s t}{ }^{h}\right)=\left(\partial_{\bar{r}} \partial_{\bar{s}} \partial_{\bar{t}} Z^{h}(x, 0)\right)
\end{aligned}
$$

are tensor fields on M. Furthermore, if $Z^{h}(x, 0)=0$, then

$$
P=\left(P_{r}^{h}\right)=\left(\partial_{\bar{r}} Z^{\bar{h}}(x, 0)\right)
$$

is a tensor field on M.
Putting $\alpha=i, \beta=j$ and $\gamma=k$ in (1.6), we have

$$
\begin{equation*}
\partial_{j} \partial_{k} Z^{i}+Z^{\lambda} \partial_{\lambda} \widetilde{\Gamma}_{j k}^{i}+\widetilde{\Gamma}_{\lambda k}^{i} \partial_{j} Z^{\lambda}+\widetilde{\Gamma}_{j \lambda}^{i} \partial_{k} Z^{\lambda}-\widetilde{\Gamma}_{j k}^{\lambda} \partial_{\lambda} Z^{i}=0 \tag{2.8}
\end{equation*}
$$

Substituting (2.6) and (2.7) into (2.8) and taking the part which does not contain y^{r}, we have

$$
\partial_{j} \partial_{k} X^{i}+X^{h} \partial_{h} \Gamma_{j k}^{i}+\Gamma_{h k}^{i} \partial_{j} X^{h}+\Gamma_{j h}^{i} \partial_{k} X^{h}-\Gamma_{j k}^{h} \partial_{h} X^{i}=0 .
$$

Hence $X=\left(X^{i}\right)$ is an infinitesimal affine transformation on (M, g). By Lemma 1.4, $Z-X^{c}$ is also infinitesimal affine transformation on ($\left.T(M), g^{s}\right)$. Hence we may assume that

$$
\begin{gather*}
Z^{h}=K_{x}^{h} y^{r}+(1 / 2) E_{r s}^{h} y^{r} y^{s}+(1 / 6) F_{r s t}{ }^{h} y^{r} y^{s} y^{t}+(*)^{h} \tag{2.9}\\
Z^{\bar{h}}=Y^{h}+P_{r}^{h} y^{r}+(1 / 2) Q_{r s}^{h} y^{r} y^{s}+(1 / 6) S_{r s t}{ }^{h} y^{r} y^{s} y^{t}+(*)^{\bar{h}} \tag{2.10}
\end{gather*}
$$

where $P=\left(P_{r}^{h}\right)$ is a tensor field on M and

$$
Q_{r s}^{h}=\partial_{\bar{r}} \partial_{\bar{s}}^{-} \overline{Z^{h}}(x, 0), S_{r s t}{ }^{h}=\partial_{\bar{r}} \partial_{\bar{s}} \partial_{\bar{t}} Z^{\bar{n}}(x, 0) .
$$

Puttting $\alpha=i, \beta=\bar{j}$ and $\gamma=\bar{k}$ in (1.6) we have
(2.11) $\quad E_{j k}^{i}+(1 / 2)\left(R_{r k h}{ }^{i} K_{j}^{h}+R_{r j h}^{i} K_{k}^{h}+2 F_{r j k}{ }^{i}\right) y^{r}+(---) y^{r} y^{s}=0$.

Hence we see that

$$
\begin{equation*}
E_{j k}^{i}=0 \tag{2.12}
\end{equation*}
$$

Putting $\alpha=i, \beta=\bar{j}$, and $\gamma=k$ in (1.6) and using (2.12), we have

$$
\begin{align*}
\nabla_{k} K_{j}^{i} & +(1 / 2) R_{h j{ }_{k}}^{i} Y^{h}+(1 / 2)\left(R_{r h k}{ }^{i} P_{j}^{h}+R_{h j k}{ }^{i} P_{r}^{h}\right) y^{r} \tag{2.13}\\
& +(---) y^{r} y^{s}=0 .
\end{align*}
$$

Hence we have

$$
\begin{gather*}
\nabla_{k} K_{j}^{i}+(1 / 2) R_{h j k}^{i} Y^{h}=0, \tag{2.14}\\
R_{r h k}^{i} P_{j}^{h}+R_{h j k}^{i} P_{r}^{h}=0 . \tag{2.15}
\end{gather*}
$$

Putting $\alpha=\bar{i}, \beta=\bar{j}$ and $\gamma=k$ in (1.6) and taking the part which does not contain y^{r}, we have

$$
\begin{equation*}
\nabla_{k} P_{j}^{i}=0 \tag{2.16}
\end{equation*}
$$

Hence ιP is an infinitesimal affine transformation of $\left(T(M), g^{s}\right)$ by virtue of the Lemma 1.8. By denoting $Z-\iota P$ again by Z, we may assume that

$$
Z^{\bar{h}}=Y^{h}+(1 / 2) Q_{r}{ }^{h} y^{r} y^{s}+(1 / 6) S_{r s t}{ }^{h} y^{r} y^{s} y^{t}+(*)^{\bar{h}}
$$

Putting $\alpha=\bar{i}, \beta=\bar{j}$ and $\gamma=\bar{k}$ in (1.6) we have

$$
Q_{j k}^{i}+\Gamma_{h k}^{i} K_{j}^{h}+\Gamma_{h j}^{i} K_{k}^{h}+S_{r j k}{ }^{i} y^{r}+(---) y^{r} y^{s}=0
$$

where we have used (2.12). Hence we have

$$
\begin{equation*}
Z^{\bar{h}}=Y^{h}-\Gamma_{l r}^{h} K_{s}^{l} y^{r} y^{s}+(*)^{\bar{h}} . \tag{2.17}
\end{equation*}
$$

Putting $\alpha=\bar{i}, \beta=\bar{j}$, and $\gamma=k$ in (1.6) and using (2.14), we have

$$
\begin{aligned}
& -(1 / 2)\left(R_{r j k}{ }^{h} \nabla_{h} Y^{i}+2 R_{k h j}{ }^{i} K_{r}^{h}+R_{k h r}{ }^{i} K_{j}^{h}\right) y^{r} \\
& +(---) y^{r} y^{s}=0 .
\end{aligned}
$$

Hence we get

$$
\begin{align*}
& R_{r j k}{ }^{h} \nabla_{h} Y^{i}+2 R_{k h j}{ }^{i} K_{r}^{h}+R_{k h r}{ }^{i} K_{j}^{h}=0, \tag{2.18}\\
& R_{j r k}{ }^{h} \nabla_{h} Y^{i}+2 R_{k h r}{ }^{i} K_{j}^{h}+R_{k h j}{ }^{i} K_{r r}^{h}=0 .
\end{align*}
$$

Forming (2.18) $+\left(2.18^{\prime}\right)$ we have

$$
\begin{equation*}
R_{k h r}{ }^{i} K_{j}^{h}+R_{k h j}{ }^{i} K_{r}^{h}=0 . \tag{2.19}
\end{equation*}
$$

This is equivalent to (2.3). By (2.18) and (2.19) we have

$$
\begin{equation*}
R_{r j k}{ }^{h} \nabla_{h} Y^{i}+R_{h k r}{ }^{i} K_{j}^{h}=0 \tag{2.20}
\end{equation*}
$$

By (2.11) and (2.19) we have

$$
\begin{equation*}
Z^{h}=K_{r}^{h} y^{r}+(*)^{h} . \tag{2.21}
\end{equation*}
$$

Studying the case ($\alpha=\bar{i}, \beta=j, \gamma=k$), $(\alpha=i, \beta=j, \gamma=k)$ and ($\alpha=$ $i, \beta=\bar{j}, \gamma=k$) we have (i), (iv) and (v) of Lemma 2.7. Therefore, $\bar{X}(Y$,
$K)$ is an infinitesimal affine transformation on ($\left.T(M), g^{s}\right)$.
If we put $\bar{Z}=Z-\bar{X}(Y, K)=\left(\bar{Z}^{\alpha}\right)$, then we have

$$
\left(\bar{Z}^{\alpha}\right)_{p}=\left(\partial_{\beta} \bar{Z}^{\alpha}\right)_{p}=0
$$

for $\alpha=i, \bar{i}$ and $\beta=j, \bar{j}$ at a point $p=\left(x_{0}, 0\right)$. Since an infinitesimal affine transformation is determined by the value of its components and their first partial derivatives at a point (cf. Kobayashi and Nomizu [1], p. 232), we have $\bar{Z}=0$ on $T(M)$.

Thus we have the following theorem.
Theorem. Let $\left(T(M), g^{s}\right)$ be the tangent bundle with the Sasaki metric of a Riemannian manifold (M, g). Let
(a) $X=\left(X^{i}\right)$ be an infinitesimal affine transformation of (M, g),
(b) $C=\left(C_{j}^{i}\right)$ be a (1, 1)-tensor field on M satisfying (i), (ii) of Lemma 1.8,
(c) $Y=\left(Y^{i}\right)$ and $K=\left(K_{j}^{i}\right)$ be tensor fields on M satisfying (i) $\sim(v)$ of Lemma 2.7.

Then the vector field Z on $T(M)$ defined by

$$
\begin{equation*}
Z=X^{c}+\iota C+\bar{X}(Y, K) \tag{2.22}
\end{equation*}
$$

is an infinitesimal affine transformation on $\left(T(M), g^{s}\right)$.
Conversely, every infinitesimal affine transformation Z on $\left(T(M), g^{s}\right)$ is of the form (2.22).

References

[1] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Tracts No. 15, 1963.
[2] S. SASAKI, On the geometry of tangent bundles of Riemannian manifolds, Tōhoku Math. J., 10 (1958), 338-354.
[3] K. Yano and S. Kobayashi, Prolongation of tensor fields and connections to tangent bundles I, J. Math. Soc. Japan, 18 (1966), 194-210.
[4] S. Tanno, Infinitesimal isometries on the tangent bundles with complete lift metric, to appear.
[5] , Infinitesimal isometries on the tangent bundles with Sasaki metric, to appear.
tōhoku Institute of Technology
Sendai, Japan

