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1. Introduction. The notion of the approximately finite (hyperfinite)
factors on separable Hubert space was first introduced by Murray and
von Neumann [9; Chapter IV]. These are factors of type 1^ which can
be suitably approximated by finite dimensional subalgebras. Four kinds
of approximate finiteness were given ([9; Def. 4.1.1, 4.3.1, 4.5.2, and 4.6.1])
and it was shown that all of them are equivalent to each other (Theorem
XII). We list here two of them, the approximate finiteness (A) and (B).

DEFINITION 1. A factor s/ of type llx is approximately finite if,
for each ε > 0 and each finite set Alf , Am of operators in J ^ there
exists an n = n(Aly , Am, ε) such that for every q ;> n there exists a
subfactor of type lq of Jzf containing elements Blf •••, Bm with [[Bt —
Ai\] < ε for i = 1, •••, m, where [[•]] denotes the trace norm in Jϊf.

DEFINITION 2. A factor s*f of type IIX is approximately finite if,
for each ε > 0 and each finite set Al9 , Am of operators in J ^ there
exists a finite dimensional *-subalgebra & of J*f containing elements
Blf , Bm such that [[Bt - A,]] < ε for i = 1, . , m.

Now, a finite dimensional *-subalgebra & is of type I but not of
general center. Also in other definitions the sub- algebras & which
approximate Szf are required to be factors or of finite dimension.
The first purpose of this paper is to show that in Definition 2 the
subalgebra & need not be finite dimensional but only to be of type I
(Theorem 1). This result is generalized from the factor case to the
case of general center. The notion of approximate finiteness was gener-
alized by Misonou [8] and Widom [12] to the case of von Neumann
algebra J ^ of general center. In this case the type I subalgebra &
which approximates J ^ is required to have the same center as J ^
We shall show that it suffices to require that the center of & contains
the center of J ^ (Theorem 2). This justifies the definition of approxi-
mate finiteness by Golodets [5; Def. 3.1.1]. An application of Theorem 2
will be shown in the last section.

2. Preliminaries. Our main tool is the reduction theory of von
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Neumann algebras. Let & be a von Neumann algebra on a separable
Hubert space £$f. Then there exists a complete separable metric space
Λ, a finite positive Borel measure μ on A, a measurable family of Hubert
spaces <ί%f(X), XeA, and a measurable family of factors ^ ( λ ) on
such that

^ = \®3^(χ)dμ(X) and ^
J Λ

([10; Cor. I. 5.10]). This setup describes the central, direct integral
decomposition of &.

If & is of type I, each &(X) is a factor of type I for //-almost all

XGΛ. Put

Λn = {xeΛ\.^(X) is of type Iw}

^(X)dμ(X) is a von Neumann algebra

of type ln on Sίfu = \ ^{X)dμ{X) and & = Σ i ^ ~ θ ^ ([1; HI. 3.1]).

Each operator B = \ B(X)dμ(X) in &n may be regarded as an operator
Un r®

in & defined by B = I B(X)dμ(X) where J5(λ) = 0 for λ g .4 . Hence, if
a faithful normal trace τ is given in &, the trace norm [[B]] = τ{B*B)ιμ

for I? in ^ will mean always that of 5 as an element of &.
LEMMA 1. Let & be a von Neumann algebra of type ln(n < °o)

with finite faithful normal trace τ. Then, for each operator B in &
and each ε > 0, there exists a finite dimensional *-subalgebra <g* of &
and an operator C in ^ such that [[C — B]] < e.

S Θ
&(X)dμ(X) be the central decomposition of &,

Λ

each ^ ( λ ) hence being a factor of type In. So far as algebraic pro-
perties concern, we may and do assume that each &(X) acts on an n-
dimensional Hubert space 3f?n (cf. [11; Theorem 3]). Let

B = [ΘB(X)dμ(X)

be the decomposition of the operator B. Then &(X) is a //-meas-
urable operator-valued function on A ([10; p. 19]), i.e., B(X)ξ(X) is a
//-measurable vector-valued function (cf. [2; Def. III. 2.10]) for each
ζ(X) in the direct integral Hubert space Jg^ = ( ^^{X)dμ{X)y £ί?(X) =
Jg^. Hence ([2; III. 2.7]) there exists a sequence of /̂ -simple vector-
valued functions %(λ) (fc = 1, 2, •••) such that, for each ε > 0,
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μ{XeΛ\ \\B(X)ξ(X) - %(λ)|| > ε}-+0

as k —> oo. Let {ίp}i^pίΛ be a fixed basis of 3$fn. Then we may choose
sequences of vector-valued functions {^p,*(λ)}fc=li2f...(p = 1, *, w) such that

in μ-measure. Clearly we may assume the functions ||^pffc(λ)|| to be
uniformly bounded. Define the operator-valued functions Bk(X) by

Bk(X)ζP = rjp,k(X) .

Then we see easily that Bk(X) are well-defined and bounded, that Bk(X)ξ
converges to B(X)ζ in //-measure for each ζ e Sίf* and that each Bk(X)ζ
is μ-simple for each ξe 3ίfn since Bk(X)ξp are μ-simple. Hence each Bk(X)
is a ^-simple function and the direct integral operator

B k = \ΘBk(X)dμ(X) (fc = l , 2 f •••)

is clearly in &. By the uniform boundedness of ||%,*(λ)|| we see that

and hence that Bk converges strongly to B ([10; Lemma I. 3.6]). There-
fore, if we put C = Bk for sufficiently large k, we see that

[[C -

([9; Lemma 1.3.2]).
Now the function C(λ) = Bk(X) takes a finite number of values, say,

C(1), . . . , C ( r ) and the set

A s = {\eA\C(\) = CM { 3 = 1 , . - . , r ) }

are all measurable. Since the von Neumann algebra generated by CU)

£ίf(X)dμ{X) has a finite linear basis composed of matrix units, the
Λ 3

von Neumann algebra ^ generated by

Σ θ C(X)dμ(X)
3 = 1 J Λj

is also a finite dimensional subalgebra of £?.

COROLLARY. Let & be a type In subalgebra of a factor Jϊf of type
Hi and Blf , Bm a finite set of operators in &. Then, for each ε > 0,
there exists a finite dimensional ^-subalgebra <& of & containing ele-
ments Cl9 , Cm such that
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PROOF. According to the above lemma, there exists for each operator
Ci(\)dμ(X) such that [[C* — i?*]] < ε, where each

A

d(X) takes only a finite number of values C^, •••, Qri). Then, for any
sequence {j\} (i = 1, , m; 1 ^ j t ^ r*), the set

^yr »y» = iχ e AI c*( λ) = C*U) ίoτ 1 ^ i ^ m ϊ

is measurable and we see that each von Neumann algebra generated

J%f(X)dμ(X) is of finite dimension by the

same argument as in Lemma 1. Therefore, the von Neumann algebra

Ci(X)dμ(X) (i = 1, , m) is a finite dimensional sub-

algebra of &.

3. Approximate finiteness. First we prove that in Definition 2 the
algebra & need only to be of type I.

THEOREM 1. Let sf he a factor of type II l e //, for each ε > 0 and
each finite set Au , Am of operators in Jzf, there exists a subalgebra &
of type I (not necessarily a factor) containing elements Bί9 , Bm such that
[[Bi — Ai\] < ε for i = 1, , m, then Szf is approximately finite.

PROOF. If we show the existence of a finite dimensional *-subalgebra
& of j y and operators Clf , Cm in <& such that [[Ci — B%]\ < ε, then,
combining with the assumption, we see that [[Ct — Ax]\ < 2ε (i — 1, , m)
and hence that J&f is an approximately finite factor by Definition 2.

S ®
&{X)dμ{X) be the central, direct integral decomposition

of &. Put

Λn = {x e Λ I ^ ( λ ) is a In-ΐactor}

and

Since ^ is finite and of type I, we have, for each ε < 0,

μ(Λ.)<6/2(avpi\\Bt\\)

for sufficiently large s, where Bt{l <^ i <^ m) are given operators. For

each operator Bt = I BAX)dμ(X)f put

S,,. - ίΘ Bt(X)dμ(\) .

Then, for each von Neumann algebra
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on

(n = 1, •••, s), there exists by the above corollary a finite dimensional
*-subalgebra <ĝ  containing operators Cltnf •••, Cm,n such that

^<^(X)dμ(X) we define ^ to be

the von Neumann algebra composed of only scalar multiples of the
identity operator on ^ ^ j β . Then the direct sum

is clearly of finite dimension. Put C, = (Σi=i © Ci. ) 0 0. Since

ΓΓ(!β*(λ)diM(λ)ΊΊ ^ ess. sup ll^ίλJH μ(Aa)

we have

UP* - Bt]] = ± [[Ci>n - Bi>n]] +

< s ε/2s + ε/2 = ε .

This completes the proof of the theorem.

Next we generalize this theorem to the case of general center.
Hereafter <s*f denotes a von Neumann algebra of type ΊIt with a faith-
ful normal trace τ. For Ae Szf, define the trace norm [[A]] — τ(A*A)1/2.

DEFINITION 3. szf is called approximately finite if, for each ε > 0
and each finite set of operators Al9 , Am, there exists a type I sub-
algebra & of Stf with center %?& identical with the center ^V of szf
and a sequence of operators Blf •••,£» in & such that [[Ai — Bi\] <
6 (i = 1, •••, m).

In the terminology of Widom [11], this is approximate finiteness (A2).
The condition %^ = ^& has also been required in [8; Def. 3.1]. Recently,
Golodets [5] has defined approximately finite algebra as the von Neumann
algebra satisfying the conditions in Definition 3 but replacing 3?^ = JΓ^
by -̂ V S ^ > . He has given no explicit proof of the equivalence of
these two definitions. Our generalization is nothing but to show the
validity of this replacement.
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THEOREM 2. Let Jϊf be a von Neumann algebra of type H with a
faithful normal trace τ. If, for each ε > 0 and each finite set Alf ,
Am of operators in S/, there exists a subalgebra & of type I with center
^^ containing the center ^^ of Jzf and operators Blf , Bmin & such
that [[Bi — Ai\] < e(i = 1, •••, m), then Jzf is an approximately finite
algebra.

J*f(X)dμ(X) be the central, direct integral decom-
Λ

position of sf, each j ^ ( λ ) being hence a ΊIrίactor for almost all XeA.

Se
&{X)dμ{X) where each &(X)

is a subalgebra of type I of j%f(X) ([10; Lemma I. 5.6 and Theorem I.
5.9]). The trace τ has the expression

A(X)dμ(X) e Szf, where τλ is the normalized trace in Jzf(X) and

/(λ) is a function belonging to L^A, μ) and positive almost everywhere
([10; Theorem III. 1.13]). Then, for almost all λ e A and each ε > 0, there
exist by the assumption operators Bίf •••, Bm in & such that

\\BIX) - AlX)\\x < e

where [[A(λ)]h = r;(A(λ)*A(λ))1/2. Therefore, almost all of the factors
j ^ ( λ ) are approximately finite by Theorem 1. Hence s/ is isomorphic
to the tensor product %* (x) j*fQ of the center %* = L°°(A, μ) and an
approximately finite factor J^J ([11; Theorem 3]). Since this is a von Neu-
mann algebra generated by the simple functions in L~(A, μ) and j*J, we
may assume that each operator At given in the assumption is the direct
integral of a //-simple operator-valued function A^X) which takes a finite
number of values, say, Aψ e J^J (j — 1, , r,). Put

Λh...im = {XeAlA^X) - A!f* (i = 1, •••, m)} .

According to Definition 1, for each (j\, , jm) and each ε > 0, there
exists an integer n = n(j\, , j m t ε) such that for every integer q^n
there exists a subfactor ^yr..im of type Iq of J ^ containing elements
C[V9 •• , C ^ ) with

[[Cϊ^ - AWh <ε <ΐ = 1, .., m; λ e 4 v i J

Taking the maximum of n(j\, , jmf e) for all (j\, , im), we may assume
that n depends only on ε. Therefore, putting ^ ( λ ) = Cάv..ύm for λe
Ajv..jm, we get a measurable family {^(λ)} of type I factors. The
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operator-valued functions ^ ( λ ) defined by

Cί(X) = C^) for λ e 4 . . , m

(i = 1, , m) are all measurable and the direct integral operators Ct =

S θ rθ

Ci(λ)dμ(λ) clearly belongs to the type I algebra C = I ^(X)dμ(X) which
has the same center as S/. Further,

[[Ci - AJ] - {r[(C, - Λ ) * ^ - Λ)]}1/2

{J - A,(λ))*(C((λ) - Λ
/2 (ΐ = 1, . ., m) .

Thus ^ is a type I subalgebra of Jϊf with the same center as J ^ and
contains operators Cl9 , Cm which approximate Alf , Am. Therefore,

is an approximately finite algebra.

4. An application. As an application of Theorem 2, we generalize
a theorem of Dye [4; Cor. 6.1] which essentially shows the approximate
finiteness of the cross product G (x) S/ of an abelian von Neumann
algebra Jzf by an approximately finite group G of its automorphisms.
For the definition of the approximately finite group, see [3; Def. 5.1].
In his proof the approximation of G (g) Ssf by a type I subalgebra with
center larger than that of G ® Jzf is achieved rather easily and the
proof is, for the most part, devoted to the discussion of the center of
the type I subalgebra. We can slightly generalize this result as follows.

THEOREM 3. // ^f is a finite von Neumann algebra of type I and
G is a group of automorphisms of J&f acting freely and approximately
finite on the center of Szf, then the cross product G (x) Jϊf is approximately
finite.

Some generalizations of Dye's results to the cross product have been
investigated in [6] and [7]. According to [7; Theorem 4.10], we may
follow the first paragraph of the proof of [4; Cor. 6.1] word for word.
Then by Theorem 2 we get the conclusion of Theorem 3 without com-
plicated discussion for the coincidence of the center of Szf and that of
type I subalgebra which approximates

REFERENCES

[ 1 ] J. DIXMIER, Les algebres d'operateurs dans Γespace Hilbertien, Gauthier-Villars, Paris,
1957.

[ 2 ] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators, Part I, Interscience, New York, 1958.



332 Y. HAGA

[3] H. A. DYE, On groups of measure preserving transformations I, Amer. J. Math., 81
(1959), 119-159.

[4] f On groups of measure preserving transformations II, Amer. J. Math., 85
(1963), 551-576.

[ 5 ] V. JA. GOLODETS, Crossed products of von Neumann algebras, Uspekhi Mat. Nauk, 26
(1971), 3-50 (Russian).

[ 6 ] Y. HAGA AND Z. TAKEDA, Correspondence between subgroups and subalgebras in a cross
product von Neumann algebra, Tδhoku Math. J., 24 (1972), 167-190.

[7J Y. HAGA, On subalgebras of a cross product von Neumann algebra, Tόhoku Math. J.,
25 (1973), 291-305.

[8] Y. MISONOU, Generalized approximately finite W*-algebras, Tόhoku Math. J., 7 (1955),
192-205.

[9] F. J. MURRAY AND J. VON NEUMANN, On rings of operators IV, Ann. Math., 44 (1943),
716-808.

[10] J. T. SCHWARTZ, TF*-Algebras, Gordon and Breach, New York, 1967.
[11] M. TAKESAKI, Remarks on the reduction theory of von Neumann algebras, Proc. Amer.

Math Soc, 20 (1969), 434-438.
[12] H. WIDOM, Approximately finite algebras, Trans. Amer. Math. Soc, 83 (1956), 275-280.

FACULTY OF ENGINEERING

IBARAGI UNIVERSITY

HITACHI, JAPAN.




