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1. Introduction. There is a generalized Clifford surface on any odd
dimensional unit sphere, which is the image of a minimal immersion of
R? [5]. It is an interesting problem to study minimal immersions of a
torus into an even dimensional sphere. As such an example, we know
the Lawson’s bipolar surface of a torus [7]. It is a minimal immersion
of a torus into a 4-dimensional unit sphere. Let S*c R** be an n-
dimensional unit sphere and M an oriented Riemannian 2-manifold. Let
2: M— S® be a minimal immersion. The associated Gauss map z*: M —
S? is defined pointwise as the image of the unit normal in S® translated
to the origin of R'. We view each map as R‘-valued and define %: M —
SScR by & =2 A x* (Weidentify 42R* with R®%.) This mapping induces
a non-singular metric on M of the form d3*= (2 — K)ds*, where K is
the Gaussian curvature for the metric induced by xz. It is easy to see
that % is also a minimal immersion of M into S°® by the calculation of
the Laplacian of % [7]. Following Lawson, we shall call this surface the
bipolar surface of «: M— S°. He has shown that the bipolar surface of
the minimal torus, 7,,, is contained in an S* C S*® where none of the images
lies in an S*cS*. His proof depends heavily on the last theorem of
W.Y. Hsiang and H.B. Lawson, Jr [4].

The purpose of this paper is to calculate the local invariants of the
bipolar surface by means of the local terminologies of x, and we can
show the bipolar surface of a torus is not an R-surface. I think that
this is the first example of surfaces which are not R-surfaces (cf. [10]).
As a byproduct, we obtain a very elementary proof of the above Lawson’s
result. At last, we give a characterization of the bipolar minimal surface
in S‘. Our results are stated in the Theorems 1, 2, 3 and 4.

In this paper, we use freely the concept and the elementary results
of higher fundamental forms of Z [5].

2. Frames on the bipolar surface. Since §§2,3 and 4 are a local
theory, we assume that the minimal immersion z of M is not totally
geodesic at every point of M. The 2nd fundamental tensor &,; has different
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eigenvalues at each point of M. Let ¢, 7 =1,2, be local tangent unit
vector fields on M such that the 2nd fundamental tensor field is diag-
onalized. We denote the eigenvalue corresponding to the ¢, by h. The
Gauss equation is, then, represented by

@.1) 1+k=2—-K.

Let {w,} be the dual basis of {¢;} and w, the connection form on M
for . By the Codazzi equations and the definition of the covariant
derivatives, we obtain

@.2) - dh + 1(@Rhw,,) = (h, + th)(w, — 1w,) ,

where the semi-colon is the covariant derivatives of h;; and h,, = hy,4, by =
hu.. Let e; be the unit normal vector field of x and % = x A e;. Let

2.3 &= V;————DI?(M + e))Ae, e, 1/2 — (hx —e) N e,
where we remark that ¢, and e, are considered as maps of M into S® in
R*'. The local frame field {¢;} is tangent to (M) and we have d% =
> W.e;, where W, = V2 — Kw

We define unit normal vector (local) fields ¢, 3 <a,8<5, of ¥ in
S® as follows:

@4 wAe= (@ —hE), TN e = (@ b)),
e, N\ e = €.

Then {%, ¢;, €,} ts an orthonormal frame field on F(M) in S°®C R® and we
have

(2.5) e, /\ €3 = %K‘:(hgs + gl) 9 €, /\ €; = ﬁ(_hé’; + gz) .

3. Formulae for dé;. We wish to calculate the d&,. Let <{-,-)> be
the inner product of R‘. Since we have {de, ) = —w,, by virtue of
(2.3), (2.4) and (2.5), we get

~ . ..~ , 1—h? 1 ~
3.1) dée, = —V2 - Kwgi + 1 + hzwue2 5= the,

2 ih w12€4 + 72%1'&0565

By the same method, we have



BIPOLAR MINIMAL SURFACES IN S* 589

3.2) 4z, = —V3 ~ Rw, — i — Z Wb, — > Ethmaa
+ 5 the4 + T lee‘s .
Thus we have
(3-3) wu = wza = 2__2};(71712 ’ 'wus = 2 ihK/wz ’
(3'4) 'w24 = '“'ww = 2 ihK ’ "T)zs 3 EhK w1
In particular we get
(3°5) i':au = "}:412, Em = ﬁm; Esu =0.
(3.3) and (3.4) show that % is a minimal immersion.
We set
(3.6) ot=5 R, and = ; R
By (3.4) and (3.5), we can verify
1 4h?
3.7 0= —— (4 + k%) and T*=0"+ —— .
(3.7 = K)3( i o + Tty

We remark that o® and 7* are invariants of x(M). By (2.1) and (2.2),
oc=0at peMif and only if dK =0 at pe M. We know that by (3.5),

we have also
(3.8) R, =0*+ 7%, N, =0t and f, = (2 — 0?)*.
(See [5] for the definitions of the above invariants of %.) We remark
that we have f, < 1 since A*is real in the second formula of (3.7). Since
the immersion = is not totally geodesic at any point of M, we have 7% >
0 on M and f > 0 on Z(M).

Na =0 on #M) if and only if 6* = 0 on x(M). Therefore, N, =0
on F(M) if and only if dK = 0 on x(M). By an Otsuki’s lemma [8, p. 96]
or [5, Lemma 2], if N, = 0, then #(M) is contained in a 3-dimensional
space of constant curvature 1 in S°.

Next, taking the exterior derivative of the first formula in (2.4), we
have

(3.9) Wy = Wy, = ———W), , Wes = '—(

By the similar way, we have
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o 1— At .
(3.10) w“ = —H—MWI .
Summarizing up these result, we have
THEOREM 1. Let 2: M— S® be an isometric minimal immersion
of an oriented Riemannian 2-manifold into S°. Let ¥ be the bipolar
surface of x. We assume that x ts not totally geodesic at any point

~

of M. Then % is a minimal immersion of M into S°. % is mot totally
geodesic on M and 0 < fio, <1 on F(M).

T(M) is contained in a 3-dimensional space of constant curvature
1 in S® if and only if the Gaussian curvature by the induced metric of
x ts constant on M.

REMARK. By a Lawson’s result [6], such a K takes only the values
0or 1.

4. 3rd fundamental form of Z. From now on we shall assume ¢ %= 0
on M. We wish to study the 3rd fundamental form of %. Let

(41) e = ‘;f Z Eallga , el = '1‘ Z Ealzga .
a T a

(3.5) implies that unit normal vector local fields e and e} are orthogonal.
Since we have

oey + itef = (Esu + 1:7{312)(63 - 7/54) + iﬁmzé}s ’
we obtain, by (3.5),
42) d@ + i8) = — (W, + iBYE — iBu(@, + 8) + (B, — iW,)oer + ivel) .

We define a unit normal local vector field e* by
(4.3) e; = %_‘{551264* —T&} .

We can then verify that ef is orthogonal to ef and ef. The formula
(4.2) implies
(4.4) w,*"; = owl,Nw,*, T z'wz,Nw;; =0,:1=12,
wh = —oW,, w) = W, .
The 2nd osculating space is, then, spanned by ¢} and e¢f. We have, taking
the exterior derivatives of w} = 0,
(4 5) ﬁhlﬁl = 0'?40;:5 = h':x1,1w1 + hxﬁl,zﬁz ’
thﬁz = Twzs = h:il,zﬁl - h:‘ung ’

where h%;, = h#%;, are the 3rd fundamental tensors of % (see [5]) and D
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is the covariant differential operator of the van der Waerden-Bortolotti
for the immersion #: M — S°. Thus Dhr%; = 0 is equivalent to wi = 0.
As the 3rd order invariant K, is defined by K. = (h%.)* + (hku), Ko =
0 is equivalent to wk = 0. Therefore, we shall represent w¥ by means of
the terminologies of x. At first we find

(4.6) 24_‘, R de, = —TtW.er + {terms of &} .

We prove (4.62 as follows: By (3.5), the left hand side of (4.6) is equal
to —h,..de; + hy.dé,. We have, by (3.3), (3.5) and (3.9),

L
(4'7) 1+ R (h411w1 - hauwz) - —hmzwm .

From (3.5), (3.9), (3.10) and (4.7), (4.6) follows.
By virtue of (3.5) and the latter half of (4.1), we have

~ ~

(4.8) d(%)% + d(%u)a = o~ D(cer — hyy?y)

where @ = z‘“(ﬁmdﬁm — Elldﬁm). Thus we get from (4.6) and (4.8),

. 2h
4.9 = —TW,+ @ d =2 @,
4.9) ow; TW,, + and ow oG — X

As we have
hoy = —(1 + B)~*Ph, and by = — (1 + k) *Ch, ,
we get
1
4.10 O =—— (h,dh,— h,dh,) .
(4.10) T + h2)3( e adha)
We shall state the properties of K, in the following form.

THEOREM 2. Let M be an oriented Riemanntian 2-manifold and let
x: M — S® be an isometric minimal immersion with ¢ + 0 on M and not
totally geodesic at any point of M. Let {e;} be the local principal vector
fields of x©. Then the 3rd fundamental form of % is given by (4.9) and
(4.10).

Ky =0 on ZM) if and only if ei(h): ex(h) is constant on the each
domain of definition.

5. The case of 7, ,. As an application, we shall study the bipolar
surface 7,, of a minimal torus, ,, The 7,.(m =k = 1) is defined by
the image of the doubly periodic immersion ¥: R*— S*® given by

(6.1) T(x, x,) = (cos mz, COS X,, SIn M, COS X,, o8 kx, Sin 2, sin kx, sin x,) .
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Then the first fundamental form of 7, , is
(5.2) > 9idxda; = gi(x,)dat + dag

where ¢%*(x,) = m*®cos®x, + k*sin®x,.
The vector-valued second fundamental form can be expressed as

(5-3) Bif:wii_zkl<wifrfk>fk+gijw’

where f, = g(x,)"' ¥, fo =¥, ¥, = 0¥/ox, and ¥,; = 0¥ [ox,0x;.
It is easily verified that B,, = B,, = 0 and

(5.4) B, = mkg (x,)"e; ,
where
e;s = g(x,)"'(k sin mx, sin x,, — k cos mx, sin «, ,
—m sin kx, cos &, m cos kx, cos x,)

is the unit normal vector field of 7z, ,. Since (x,, x,) is the global coordinates
of T, ¢; is also globally defined on 7,,. We have, then, B,, = 0 on the
Tmy This shows that z,, is not totally geodesic at any point of the
surface. Then, by the Gauss equation, we have

(5.5) K=1— m¥g(w) .

It follows from the Theorem 1 that the bipolar surface of 7, , has N, =
0 if and only if m = k. When the case of m >k =1, we have N, = 0
except the points (x,, (s/2)7) with s = 0, 1, 2, 3, but we shall show K =0
on the 7%, = T, — {(x, (s/2)7)}: We set e, = 27'*(f, + f)), €. = 27*(f, —
f2). We denote the 2nd fundamental tensor for the above vectors e, A;;.
We then have h,, = —hy,, = h and h, = 0, where & = mkg(x,)™" and % is
the globally defined function on the 7, ,. Since we have w, = 27'*(g(x,)dx, +
dx,) and w, = 27'*(g(x,)dx, — dx;), we can verify

(5'6) h’;l + h;z =0,
k(m? — k?) sin 2z,

5.7 hy="™ _

(6.7) ' 2V 2 g(x,)°

The formula (5.6) leads to K = 0 on %%, by Theorem 2. Therefore, by
the Otsuki’s lemma [8, p. 96] or [56, Lemma 2], 7%, , is contained in a 4-
dimensional space of constant curvature in S°.

Moreover, we shall prove the following Lawson’s result by an ele-
mentary way.

THEOREM 3. [7]. The bipolar surface 7,, of the minimal torus
Tmix With m > k is contained in an S* C S° where none of the images lies
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m an SPc S
ProOF. From (3.4) and (5.6), we have
(5~8) Em = }7412 = (2 - K)_slzh;u Eau = _‘ﬁm = _(2 - K)_slzh;l .

By virtue of the second formula of (5.8), we can define the following
orthonormal vector fields e which are normal vector fields on 7, ;:

e;k = _l/lg('é; - 'é") ’
(5.9) ot = (S hat)
7T \"a
ef = 1/—2%(5512(53 + 54) + 2}731166) .

We remark that vector fields (5.9) are globally defined on 7, ,: By defini-
tion (x, «,) is a global coordinates of ¢, , and e, ¢, ¢; are the globally
defined field. Since the funection % is defined globally on the surface,
¢, are also globally defined on %, ,. By (3.3) and (5.8), /.., are also defined
globally on the %, ,.

We shall show de =0 on 7, ,: Since we have w} = —{ef, dé,),
making use of (5.8), we have wj; = 0. From (3.9), (3.10), (4.7) and (5.8),
we have w} = 0. By (5.8), we get wji = —t@W, and w}; = —7@,. Taking

the exterior derivatives of w¥ = 0 and making use of the above results, we
get w = 0. Thus we have shown def = 0 on 7, ;, and so ¢ is the constant
vector in R’. It follows that the bipolar surface of the 7, , is contained
in an $* N 7w, where 7 is the hyperplane which is orthogonal to e¢¥. Since
we have (%, ¢}> = 0, we get S* = S*N«, i.e., the radius of S°Nx is 1.
This proves Theorem 3.

6. Characterization of the bipolar surface. Let (M, §) be a 2-dimen-
sional Riemannian manifold with the metric § and let %: (M, §) — M*(1)
be an isometric minimal immersion of (M, §) into a 4-dimensional space
of constant curvature 1. In this case, we have f, = K3 — 4N, where
2K, is the square of the length of the 2nd fundamental tensor and 4N, is
the square of the normal curvature of & If f, @ = 0on M, such a surface
is called an R-surface and has studied by many mathematicians, for
instance, Boriuvka [2], Wong [10]. Recently S. S. Chern has proved that
the minimal immersion of a 2-sphere in M*(1) is the R-surface and charac-
terized such an immersion completely by a rational curve in P*C), ([3]
or cf. Barbosa [1]). Following Wong, the surface with f, = 0 is called
a general minimal surface. By Theorems 1 and 3, 7,, , is the general type.
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In this section we study a general minimal surface with 0 < fi,, < 1
on M. Since fi, >0 on M, % is not totally geodesic on M. Therefore,
we can assume that the 2nd fundamental tensors, %.; 3 < a, 8 <4, of
% has of the forms,

(6.1) Wig + Ty = Mgy (W, — T,
Wos + Wy = Thay(, — 190,) ,
and we have
=1
4

where N is the normal curvature of s, i.e., di, = — N, A\ @, We call
the above defined system of (local) vector fields the adapted frame on
(M, §). We remark that such the adapted frame is uniquely determined
up to isometries of the ambiant space, if N is not vanish.

(6-2) f(z) = (ﬁfu - }ngu)z, N(z) = Eguﬁh Nz y

PROPOSITION. Let %: (M, §) — M*(1) be an isometric minimal immer-
ston with 0 < fu, < 1. Suppose that the immersion satisfies,

(63) %Nﬁﬁam + (2};;11 + EEIZ)ﬁEﬂl =0.
We define a function h on M as follows:
4\ _ %
6.4 - ) = Je
(6.4 () =7
and we set
=_1 5
(6.5) 9 = 1+ hzg” ’
(6.6) hy = —hy=h and h,=0.

Then there exists an isometric minimal imbedding x, of a neighborhood
U of any fixed point in (M, g) into a 3-dimensional space of constant
curvature 1 such that (6.6) is the second fundamental tensor for x.

For a proof of Proposition, we shall need the following Lemmas 6.1
and 6.2. We treat only the case of hi, — k%, > 0. In the other case we
can get the same conclusions by the similar way.

LEMMA 6.1. Under the same hypothesis and notations as Proposition
we have

6.7) we = 2EP 5,
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where w,, 1s the connection form of (M, g).

PrOOF OoF LEMMA 6.1. By (6.5), the basic forms on (M, g) are repre-
sented by

(6.8) wi = ———_:-_wi .
Taking the exterior derivatives of (6.8), we have

(6.9) {I_Jr"'%;dh + (W, — wm)} A (@, — iWy) = 0.

By 0 < f;, <1, we have (1 — h?)* > 0. Taking the exterior derivative of
(6.4), we get

(6.10) han = LM s ra,

where
fi = 54125412,;' - Eauﬁau,i ’
where “,” denotes the covariant derivative for §,;. By (6.9) and (6.10),

we have

2)2 ~ oo ~ o~
(611) Wy = w;z + -Z(%i—t:}%);)—(”“huzDhAu - hau-Dhalz) ’

where D is the covariant differential operator of the van der Waerden-
Bortolotti for the isometric immersion %: (M, §) — M*(1) and consider {f,;}
as the components of the 2nd fundamental form of this immersion. On
the other hand, we know

(6-12) ﬁﬁm = —2541277712 + 531177734 and 55312 = 2531177712 - 541217734 .
By (6.11) and (6.12), Lemma 6.1 follows. q.e.d.

Making use of the Lemma 6.1, we can show the “Codazzi equation”
for h;;: By (6.8), (6.9) and Lemma 6.1, we have

(6.13) @h + i(2hwy)) A (w; — tw,) = 0 .

Let D denote the covariant differentiation for g¢,; and its derivatives
“”. Since we can see, by (6.6),

(6.14) Dhy, = dh and Dh,, = 2hw,, ,
(6.13) is equivalent to
(6.15) (Dhyy + ©Dhy) N\ (w; — tw,) = 0 .



596 K. KENMOTSU

The formula (6.15) implies
(6.16) hisis = RBugyy Bugis + By = 0

By (6.6), (6.16) is equivalent to h,;;, = h;,,;. This proves the Codazzi equation
for h;;. We remark that we do not use (6.3) for the proof of the Codazzi

equation for A,;. The hypothesis (6.3) is essential in the following Lemma
6.2.

LEMMA 6.2. Under the same assumptions as Proposition, we have

7 hi, + Al
(6.17) hi, = W .
Proor oF LEMMA 6.2. By the Gauss equation of %, we know
(6.18) Ry + Ry, =1—-K,

where K denotes the Gaussian curvature of (M, §). By (6.4) and (6.18),
we get

6.19 g, = L=y g
(6.19) A+ B¥)?
By (6.10) we have

h _ (1 + ke
6.20 oy = .
(6.20) (L + AP T 41 — hY) I

And we get

B + Ba _ (L4 B,
6.21) &M¥-émf%m+m.

By (6.12), we have a formula:
(6.22) 3}7311}241213}2312 + (~25§u~+ ﬁzm)ﬁizm
= 2(h%, — hi)(hayWs + ha, @) .
By (6.3), (6.12) and (6.22), we get
(6.23) Dhyy = —8ho,,, .

We remark that under the condition f, >0, (6.3) is equivalent to the
condition

(6'24) ﬁsllwﬂ = "'Enz'wm .
The other formula equivalent to (6.3) is
(6-3)’ (272211 + 54212)5412,1' = 37;31171:412’1311 i

Taking the exterior derivatives of (6.24), we get
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(6'25) (ﬁaudﬁuz - Eﬂzdﬁsu) /\ wm = 7”'3115412(2;1/-;! + ‘f()wl /\ wz .
By (6.8) and (6.23), (6.25) is reduced in the following formula,
%3 72 955115312 %3 74
(6'26) hnz,l + huz,z = ~_—T(2hsu + K) .
hfxz - hgu
By (6.3)', we have
2 P2y o ~

ﬁ+ﬂ=%ﬂﬂﬁ%iwm+%M-
By (6.19), (6.21), (6.26) and the above formula, Lemma 6.2 follows.

, q.e.d.

PROOF OF PROPOSITION. We have shown the “Codazzi equation” of
h;;. We shall show the “Gauss equation”, that is,

(6.27) M=1—-K,
where K is the Gaussian curvature of (M, g). We shall prove (6.27) as
follows: Taking the exterior derivative of (6.7), we have

2\ o
6.28) —Kuw, Awn= = h2)2(1 5 Dl A Dhs S 1Y Ru A w,

Therefore we have
2L+ KV B + Rha) . A+ BY  F 7
K= (1 + h2) ( L h”)“l’z) + (1 d h2) A — k2, — B2

~
2

2\2 ~ ~
—_ M_(zhsu + 1-— hgu - hle)

1—h?

=1-—h®.
From the fundamental theorem for the surface theory (cf. [9]), the Pro-
position follows. q.e.d.

LEMMA 6.3. Let % M— S* be an isometric minimal immersion.
Under the condition (6.3), the following conditions are equivalent:

(1) Ayt b, = constant,

(2) Ryt By s = constant,

(3) h,:h, = constant.

Proor. From (6.3)" and (6.10), Lemma 6.3 follows. q.e.d.
Thus we have a converse version of the Theorem 2.

THEOREM 4. Let (M, §) be a 2-dimensional Riemannian manjfold
and let %: (M, §)— S* be an isometric minimal immersion with 0 < f, <
1. Suppose that, for the adapted frame,
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%Nﬁﬁsu + (25511 + ﬁfxz)ﬁzm =0, and

ﬁm,l: Em,z = constant on the each domain of definition. Then the image
of M under % 1s locally the bipolar surface of a minimal surface in S°.

ProoF. Theorem 4 follows from the Proposition and the results in
§4. q.e.d.

REMARK.~ Let M be a torus. Then the Riemann-Roch’s theorem
implies that f,, =0 on M or f; >0 on M. (See [3] or [5].)
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