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1. Introduction. There is a generalized Clifford surface on any odd
dimensional unit sphere, which is the image of a minimal immersion of
R2 [5], It is an interesting problem to study minimal immersions of a
torus into an even dimensional sphere. As such an example, we know
the Lawson's bipolar surface of a torus [7]. It is a minimal immersion
of a torus into a 4-dimensional unit sphere. Let Sn c iϋ*+1 be an n-
dimensional unit sphere and M an oriented Riemannian 2-manifold. Let
x:M—»S5 be a minimal immersion. The associated Gauss map x*: Λf—•
S3 is defined pointwise as the image of the unit normal in S3 translated
to the origin of R*. We view each map as R*-valued and define x: M-+
S6 c iϋ6 by x = x Λ x*> (We identify Λ2R* with JS6.) This mapping induces
a non-singular metric on M of the form ds2 = (2 — K)ds2, where K is
the Gaussian curvature for the metric induced by x. It is easy to see
that x is also a minimal immersion of M into Sδ by the calculation of
the Laplacian of x [7]. Following Lawson, we shall call this surface the
bipolar surface of x: M —* S3. He has shown that the bipolar surface of
the minimal torus, τm>jfe, is contained in an S* c Sδ where none of the images
lies in an S3dS4. His proof depends heavily on the last theorem of
W. Y. Hsiang and H. B. Lawson, Jr [4].

The purpose of this paper is to calculate the local invariants of the
bipolar surface by means of the local terminologies of x, and we can
show the bipolar surface of a torus is not an J2-surface. I think that
this is the first example of surfaces which are not 22-surfaces (cf. [10]).
As a byproduct, we obtain a very elementary proof of the above Lawson's
result. At last, we give a characterization of the bipolar minimal surface
in S\ Our results are stated in the Theorems 1, 2, 3 and 4.

In this paper, we use freely the concept and the elementary results
of higher fundamental forms of x [5].

2. Frames on the bipolar surface. Since §§2, 3 and 4 are a local
theory, we assume that the minimal immersion x of M is not totally
geodesic at every point of M. The 2nd fundamental tensor hi3 has different
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eigenvalues at each point of M. Let ei9 i = 1, 2, be local tangent unit
vector fields on M such that the 2nd fundamental tensor field is diag-
onalized. We denote the eigenvalue corresponding to the ex by h. The
Gauss equation is, then, represented by

(2.1) 1 + h2 = 2 - K.

Let {Wi} be the dual basis of {ej and wa the connection form on M
for x. By the Codazzi equations and the definition of the covariant
derivatives, we obtain

(2.2) dh + ί(2hw12) = i — iw2) ,

where the semi-colon is the covariant derivatives of hi3- and hΛ = hlul, h\2 =
h1U2. Let e3 be the unit normal vector field of x and x = x A ez. Let

(2.3) e, ~-

where we remark that et and e3 are considered as maps of M into S3 in
i?4. The local frame field {<fj is tangent to x(M) and we have dx =
Σ< ^ ϊ ^ > where wt = V2 — Kw^

We define unit normal vector (local) fields ea, 3 ^ a, β <; 5, of 2ί in
S5 as follows:

x A e2 =

βi Λ e2 = eδ.

Then {x, ei9 ea} is an orthonormal frame field on x(M) in Sδ c Rΰ and we
have

(2.5) e1 A es =

3. Formulae for d$t. We wish to calculate the det. Let <•,•> be
the inner product of R4. Since we have (deifx) = —wi9 by virtue of
(2.3), (2.4) and (2.5), we get

(3.1) dhe*

2h
2- K

By the same method, we have
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(3.2) de2 = -1/2 - Kw& - 1 ~ h* w^e, - 2 h wJe
1 + h* 2 - K

Thus we have

+ ^ . ^ + T^yiΆ

(3.3) wL4 = wZ3 = ~~2h wί2 , wlδ = 2h

τjrw2 ,
Δ — jftL Δ — J\.

(3.4) wu = - « „ = — ^ - , w26 = 5 - ^ = ^

In particular we get

(3.5) hm = —hil2, h4n = Λ312, Λ6U = 0 .

(3.3) and (3.4) show that x is a minimal immersion.
We set

(3.6) <τ2 = Σ f e i and τ2

By (3.4) and (3.5), we can verify

<3-7) a> - ( ώ ) ^ + * a and r " =
We remark that α2 and τ2 are invariants of x(M). By (2.1) and (2.2),
σ = 0 at p e Λί if and only if dϋT = 0 at p e ikf. We know that by (3.5),
we have also

(3.8) ΪC{2) = σ2 + τ2, N{2) = σV and / ( 2 ) = (τ2 - σ2)2 .

(See [5] for the definitions of the above invariants of x.) We remark
that we have / ( 2 ) ^ 1 since h2 is real in the second formula of (3.7). Since
the immersion x is not totally geodesic at any point of M, we have τ2 >
0 on M and / ( 2 ) > 0 on x(M).

N{2) = 0 on x(M) if and only if σ2 = 0 on α(ikf). Therefore, JV(2) = 0
on £(itf) if and only if dK = 0 on x(ikf). By an Otsuki's lemma [8, p. 96]
or [5, Lemma 2], if Ni2) = 0, then x(M) is contained in a 3-dimensional
space of constant curvature 1 in Sδ.

Next, taking the exterior derivative of the first formula in (2.4), we
have

(3.9) Wv = w12 = 4 T - Π - W I « f *35 = ( ^ T

1 + ft V 1 +
By the similar way, we have
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(3.10) w46 = γ = ^ r « i

Summarizing up these result, we have

THEOREM 1. Let x: M—+ S3 be an isometric minimal immersion
of an oriented Riemannian 2-manifold into S3. Let x be the bipolar
surface of x. We assume that x is not totally geodesic at any point
of M. Then x is a minimal immersion of M into S6. x is not totally
geodesic on M and 0 < f{2) <*1 on x(M).

x(M) is contained in a S-dimensional space of constant curvature
1 in S6 if and only if the Gaussian curvature by the induced metric of
x is constant on M.

REMARK. By a Lawson's result [6], such a K takes only the values
0 or 1.

4. 3rd fundamental form of x. From now on we shall assume σ Φ 0
on M. We wish to study the 3rd fundamental form of x. Let

(4.1) ef = 1 Σ Kanea , eί = - Σ Knea .
O a T a

(3.5) implies that unit normal vector local fields ef and e* are orthogonal.
Since we have

σet + iτet = {hzn + ihm)(e3 — ie4) + ihδl2eδ,

we obtain, by (3.5),

(4.2) d(ex + ie2) = —{w1 + iw2)x — iwl2{e1 + ie2) + {w^ — iw2)(σef + iτet) .

We define a unit normal local vector field β5* by

(4.3) eϊ = ±{ϊίme* - τe6} .
a

We can then verify that β5* is orthogonal to ef and e4*. The formula
(4.2) implies

w?3 = σwu wt = τw2, wfδ = 0, i = 1, 2 ,
(4.4)

^2* = —ow2j w& = τwί .

The 2nd osculating space is, then, spanned by ef and e*. We have, taking
the exterior derivatives of w% = 0,

(4.5)

where hfijk = Λ,5*ίi)fc are the 3rd fundamental tensors of x (see [5]) and ί)
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is the covariant differential operator of the van der Waerden-Bortolotti
for the immersion x: M —> S5. Thus Dhδij = 0 is equivalent to w*δ = 0.
As the 3rd order invariant Kw is defined by Kw = (h*luy + (Λ^m)2, Kw =
0 is equivalent to wζδ = 0. Therefore, we shall represent w% by means of
the terminologies of x. At first we find

(4.6) ΣΛ α l l de α = — τw12et + {terms of e j .
α=3

We prove (4.6) as follows: By (3.5), the left hand side of (4.6) is equal
to -hA12dez + h312de4. We have, by (3.3), (3.5) and (3.9),

1 _ h 2 ~ ~ ~

(^^ ^ ^ ) = hw(4.7)

From (3.5), (3.9), (3.10) and (4.7), (4.6) follows.
By virtue of (3.5) and the latter half of (4.1), we have

(4.8) d(^ήe3 + df^je, = σ~*τΦ{τeΐ - hδί2eδ) ,

where Φ = τ~ι(hzi2dhzn — hB11dh312). Thus we get from (4.6) and (4.8),

(4.9) σwt = -τw12 + Φ and σwj = — Φ .
(7(2 — iiC)

As we have

Km = - ( 1 + A 2 )" 3 ^ : 1 and Λ312 = - ( 1 + ^2)-3/2Λ;2 ,

we get

(4.10) Φ = _ L _ ( f c s l r f f c s l - Λ5ld*;0

We shall state the properties of Km in the following form.

THEOREM 2. Let M be an oriented Bίemannian 2-manifold and let
x: M—> S3 be an isometric minimal immersion with σ Φ 0 on M and not
totally geodesic at any point of M. Let {e%) be the local principal vector
fields of x. Then the 3rd fundamental form of x is given by (4.9) and
(4.10).

Km — 0 on x(M) if and only if e^h): e2(h) is constant on the each
domain of definition.

5. The case of τm>k. As an application, we shall study the bipolar
surface τm>fc of a minimal torus, τm>fc. The τm>k(m ^ k ^ 1) is defined by
the image of the doubly periodic immersion Ψ: R2—> S3 given by

(5.1) Ψ{xly x2) = (cos mx1 cos x2, sin mxι cos x2, cos kxλ sin x2, sin kx} sin x2) .
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Then the first fundamental form of τm>k is

(5.2) Σ gadXidXj = g\x2)dx\ + dx\ ,

where g\x%) = m2 cos2 x2 + k2 sin2 x2.
The vector-valued second fundamental form can be expressed as

(5.3) Biά = Wti -

where / , = g(xj-ψl9 f2 = Ψ2, ¥< = dΨ/dx, and y<y =
It is easily verified that Bn = B22 = 0 and

(5.4) i?1 2 = mkg (x2)~1ed ,

where

e3 = g(x^Γ\k sin ma?! sin x2, — k cos mα^ sin x2 ,

— m sin kxλ cos cc2, m cos kx^ cos x2)

is the unit normal vector field of τm>k. Since (xl9 x2) is the global coordinates
of τm>k, e3 is also globally defined on τm>k. We have, then, B12 Φ 0 on the
τm>k. This shows that τm>k is not totally geodesic at any point of the
surface. Then, by the Gauss equation, we have

(5.5) K=l- m2k2g(x2)~2 .

It follows from the Theorem 1 that the bipolar surface of τm>k has N{2) =
0 if and only if m = k. When the case of m > k >̂ 1, we have N{2) Φ 0
except the points (xu (s/2)π) with s = 0, 1, 2, 3, but we shall show ^ ( 3 ) = 0
on the τl,k = τm,k - {(χl9 (s/2)π)}: We set e, = 2~1/2(/1 + / 2 ) , e2 - 2"1'2(/1 -
f 2 ) . We denote the 2nd fundamental tensor for the above vectors et, hi5.
We then have hn = —h22 = h and h12 = 0, where h = mkg(x2)~ι and h is
the globally defined function on the τmtk. Since we have w1 = 2~ll2(g(x2)dx1 +
dx2) a n d ̂ 2 = 2~1{2(g(x2)dx1 — dx2), we can verify

(5.6) h.tl + Λ;2 = 0 ,

C5 7) /?, _ mk(m2 — k2) sin 2x2
K ;1 ~ 2i/^^(α;) 3

The formula (5.6) leads to K{3) = 0 on τ°m>k by Theorem 2. Therefore, by
the Otsuki's lemma [8, p. 96] or [5, Lemma 2], τo

m>k is contained in a 4-
dimensional space of constant curvature in Sδ.

Moreover, we shall prove the following Lawson's result by an ele-
mentary way.

THEOREM 3. [7]. The bipolar surface τm>k of the minimal torus
τm>k with m > k is contained in an S4 c Sδ where none of the images lies
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in an S3cS*.

PROOF. From (3.4) and (5.6), we have

(5.8) hm = hil2 = (2 - K)-v%u Km = -h411 = -(2 - Kr'1%, .

By virtue of the second formula of (5.8), we can define the following
orthonormal vector fields βj which are normal vector fields on τmΛ:

(5.9)

We remark that vector fields (5.9) are globally defined on τm>k: By defini-
tion (xl9 x2) is a global coordinates of τmtk and β1? e2, β3 are the globally
defined field. Since the function h is defined globally on the surface,
ea are also globally defined on fm fc. By (3.3) and (5.8), Kaij are also defined
globally on the τm,k.

We shall show def = 0 on τm>k: Since we have W& = —(e£,dei),
making use of (5.8), we have w& = 0. From (3.9), (3.10), (4.7) and (5.8),
we have w& = 0. By (5.8), we get w£ = — τw2 and wf2 = —τw^ Taking
the exterior derivatives of w*t = 0 and making use of the above results, we
get Wu = 0. Thus we have shown de* = 0 on τm>k, and so e5* is the constant
vector in JBβ. It follows that the bipolar surface of the τm>k is contained
in an Sδ Π π, where π is the hyperplane which is orthogonal to e5*. Since
we have (x, e*) = 0, we get S4 = Sδ Π π, i.e., the radius of Sδ Π π is 1.
This proves Theorem 3.

6 Characterization of the bipolar surface. Let (M, g) be a 2-dimen-
sional Riemannian manifold with the metric g and let x: (ikf, g) —> M4(l)
be an isometric minimal immersion of (ikf, </) into a 4-dimensional space
of constant curvature 1. In this case, we have /(2) = Kf2) — 4ΛΓ(2), where
2K{2) is the square of the length of the 2nd fundamental tensor and 4^ (2) is
the square of the normal curvature of x. If /(2) = 0 on ikf, such a surface
is called an JK-surface and has studied by many mathematicians, for
instance, Borύvka [2], Wong [10]. Recently S. S. Chern has proved that
the minimal immersion of a 2-sphere in ikf4(l) is the iϋ-surface and charac-
terized such an immersion completely by a rational curve in P\C), ([3]
or cf. Barbosa [1]). Following Wong, the surface with /(2) Φ 0 is called
a general minimal surface. By Theorems 1 and 3, τmk is the general type.
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In this section we study a general minimal surface with 0 < / ( 2 ) < 1
on M. Since / ( 2 ) > 0 on M, x is not totally geodesic on M. Therefore,
we can assume that the 2nd fundamental tensors, haij, 3 ^ a, β ^ 4, of
x has of the forms,

(6.1) wι3 + iw23 = hniw, - iw2) ,

wu + w24 = ihiί2(w1 — iw2) ,

and we have

(6.2) Λ) = (&. - hln)\ N{2) = hlM12 = i jV 2 ,

where JV is the normal curvature of wu, i.e., dwu = —Nw1 A w2. We call
the above defined system of (local) vector fields the adapted frame on
(M, g). We remark that such the adapted frame is uniquely determined
up to isometries of the ambiant space, if N is not vanish.

PROPOSITION. Let x: (M, g) —> M\ΐ) be an isometric minimal immer-
sion with 0 < /(2) < 1. Suppose that the immersion satisfies,

(6.3) ^NDh312 + (2hln + KljDKm = 0 .
Δ

We define a function h on M as follows:

< 6 4)

and we set

(6.5) gti = ̂ L-fc, ,

(6.6) feu = —h22 — h and h12 = 0 .

TT&ew ί/̂ ere exists an isometric minimal imbedding xσ of a neighborhood
U of any fixed point in (M, g) into a ^-dimensional space of constant
curvature 1 such that (6.6) is the second fundamental tensor for xv.

For a proof of Proposition, we shall need the following Lemmas 6.1
and 6.2. We treat only the case of h\12 — h\n > 0. In the other case we
can get the same conclusions by the similar way.

LEMMA 6.1. Under the same hypothesis and notations as Proposition

we have

(6.7) w12 = ^ 3 - ^ 1 2 f
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where w12 is the connection form of (M, g).

PROOF OF LEMMA 6.1. By (6.5), the basic forms on (M, g) are repre-
sented by

( 6-8 ) - = T Γ T T ^ •

Taking the exterior derivatives of (6.8), we have

(6.9)

By 0 < f{2) < 1, we have (1 — h2)2 > 0. Taking the exterior derivative of
(6.4), we get

where

where " , w denotes the covariant derivative for gijm By (6.9) and (6.10),
we have

(6.11) w12 = w12 + f+h^

where D is the covariant differential operator of the van der Waerden-
Bortolotti for the isometric immersion x: (M, g) —• M\l) and consider {haij}
as the components of the 2nd fundamental form of this immersion. On
the other hand, we know

(6.12) Dhiu = —2hmiΰ12 + hmwu and Dh3ί2 = 2h3nw12 — hil2w34 .

By (6.11) and (6.12), Lemma 6.1 follows. q.e.d.

Making use of the Lemma 6.1, we can show the "Codazzi equation"
for hiά: By (6.8), (6.9) and Lemma 6.1, we have

(6.13) (dh + i(2hw12)) A {w1 - iw2) = 0 .

Let D denote the covariant differentiation for giό and its derivatives
" ". Since we can see, by (6.6),

(6.14) Dhn = dh and Dhί2 = 2hw12 ,

(6.13) is equivalent to

(6.15) (Dhn + iDh12) A (w, - iw2) = 0 .
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The formula (6.15) implies

(6.16) h 1 V t 2 = h 1 2 ; ί , h 1 2 . 2 + λ 1 1 ; 1 = 0 .

By (6.6), (6.16) is equivalent to hij;k = hik.ά. This proves the Codazzi equation
for hi3 . We remark that we do not use (6.3) for the proof of the Codazzi
equation for hti. The hypothesis (6.3) is essential in the following Lemma
6.2.

LEMMA 6.2. Under the same assumptions as Proposition, we have

/a i7ϊ h 2 — 1 1 ; 1 ~̂~ 1 1 ; 2

( b 1 7 ) hin ~ (i + h*y

PROOF OF LEMMA 6.2. By the Gauss equation of x, we know

(6.18) h l n + h l ί 2 = l - K ,

where K denotes the Gaussian curvature of (M, g). By (6.4) and (6.18),
we get

(6.19) 2hL = g - *y _ K .

By (6.10) we have

( 6 > 2 0 ) (1 + hψ*hιM ~ •«L-h')ft '

And we get

( 6 2 1 ) {f + f)

By (6.12), we have a formula:

(6.22) 3 W A + (2Λ3

2

U + h*12)Dh4n

= 2{h\n - h\ι2)(hulwu + h412w12) .

By (6.3), (6.12) and (6.22), we get

(6.23) Dh4n = -3hil2wί2 .

We remark that under the condition / ( 2 ) > 0, (6.3) is equivalent to the
condition

(6 .24) ^311^34 = -^412^12

The other formula equivalent to (6.3) is

(6.3)' (2Λ4i + hl12)hil2>i = Sh3nh412hsn t .

Taking the exterior derivatives of (6.24), we get
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(6.25) (hmdh412 — h412dh311) A w12 = hmhil2(2h2

m + K)w1 A w2

By (6.3)' and (6.23), (6.25) is reduced in the following formula,

(6.26) hl2tl + h*12t2 = e f f i n g (2hin + K) .

By (6.3)', we have

By (6.19), (6.21), (6.26) and the above formula, Lemma 6.2 follows.
q.e.d

PROOF OF PROPOSITION. We have shown the "Codazzi equation" of
hij. We shall show the "Gauss equation", that is,

(6.27) h2 = 1 - K,

where K is the Gaussian curvature of (M, g). We shall prove (6.27) as
follows: Taking the exterior derivative of (6.7), we have

(6.28) -Kw, Aw2 = 2 Dhn A Dh12 - ( * + ff'&fli Λ ^ 2 .
(1 — Λ )(1 + Λ ) 1 — hr

Therefore we have

κ - 2(1+ h

(ΐΐ
= 1 - h2 .

From the fundamental theorem for the surface theory (cf. [9]), the Pro-
position follows. q.e.d.

LEMMA 6.3. Let x:M—*S* be an isometric minimal immersion.
Under the condition (6.3), the following conditions are equivalent:

( 1 ) 4̂12,1: hil22 = constant,
(2) hmΛ: h311>2 = constant,
(3) λ;1: h;2 = constant.

PROOF. From (6.3)' and (6.10), Lemma 6.3 follows. q.e.d.

Thus we have a converse version of the Theorem 2.

THEOREM 4. Let (M, g) be a 2-dimensional Biemannian manifold
and let x: (M, g) —> S4 be an isometric minimal immersion with 0 < f{2) <
1. Suppose that, for the adapted frame.
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—NDh312 + (2h2

311 + h2

4ί2)Dh4n = 0, and
Δ

4̂i2,Γ 4̂i2,2 = constant on the each domain of definition. Then the image
of M under & is locally the bipolar surface of a minimal surface in S3.

PROOF. Theorem 4 follows from the Proposition and the results in
§4. q.e.d.

REMARK. Let M be a torus. Then the Riemann-Roch's theorem
implies that /(2) = 0 on M or /(2) > 0 on M. (See [3] or [5].)
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