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1. Introduction. We continue from our studies [13], [14] on bounded
functions in the abstract Hardy space theory. We mean an abstract H®
space by the following space H = H(X, X, m): Let (X, X, m) be a pro-
bability measure space and H be a weak* closed subalgebra of the
sup-norm algebra L~ of the bounded m-measurable functions, satisfying

le H and Suvdm = Sudm S vdm for all u, ve H. We assume always H

is non-trivial, i.e., H+# C. We have shown in [13, 14] that to every
non-constant u € H there corresponds a unique Carathéodory domain I"(u) =
I'(u, m) such that m{z: u(x) e T'(w)} = 1, gudm € I'(u) and m{x: |u(x) —b| <
g} > 0 for all € > 0 and all be dl'(u), and further that if f is in H*(I"(u)),
i.e., bounded and holomorphic in I"(u), then the composition function f(u)
is well-defined and lies in H(u): the weak* closure of the linear spans
of {1, u, u* ---}. We shall show in this note a converse of this fact,

roughly speaking, if D is a bounded domain in the complex plane C and
for an abstract H* space H it holds f(u) € H(u) for all f € H*(D) and all

w€ H with m{z: u(x)e D} =1 and gudmeD, then D is a Carathéodory

domain (Theorem 4.4). This is a characterization of Carathéodory domains.
We state other related results in the same Section 4. In Section 5 we give
some applications to the classical case. The first one is an extension of
Brown-Shields-Zeller and Hoffman-Rossi’s result and a characterization of
Carathéodory domains in terms of their theorem. Another one is a
remark to a result on absolutely convergent exponential sums. Fundamental
tools are Lemmas 3.1 and 3.2 in Section 3. In the final section a construc-
tion of non-trivial abstract H*= spaces on almost every measure space is
given.

2. Preliminaries and Notation. We mention first some function
theoretical facts. Let D be a domain on the Riemann sphere S, which
supports non-constant bounded holomorphic functions. We denote by H>(D)
the set of all bounded holomorphic functions in D with supremum norm,
which we write as || |l. or || |l W. Rudin [10] defines a boundary
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point b of D as an essential boundary point if there exists an ke H*(D)
such that 2 does not extend to be holomorphic in any neighborhood of
b. If each point in 0D is essential we say that D is maximal for H*(D).
A closed set E is a Painlevé null-set if the algebra of bounded holomorphic
functions on S\E consists of the constants alone. A complex number be
0D is an essential boundary point if and only if for every closed disc
B(b,r)={2€C; |z—b| < r} the set 4D N B(b, r) is not a Painlevé null-set [10,
p. 334]. Two conformally equivalent domains are simultaneously maximal
or not [10, p. 335], and hence each simply connected domain is maximal,
since the open unit disc U is obviously maximal. We notice further if
b is an essential boundary point of D, there exists for every B = B(b, r)
with B(, r) N D+ @ an ac B(b, r) N D and an f € H*(D) such that f(a) =

and |f(z)| <1/2(zeDnN B°). In fact, if BN (D°)" # @, this is trivially
shown by a rational function. If BN (D)’ = @, i.e., BN D°= BN dD, the
set K = B(b, r/2) N 0D is not a Painlevé null-set. Hence there exists a
non-constant bounded holomorphic function f(z) on S\K. We can assume
|f()| <1/2(]z — b] > r) and f(a) = 1 for some a € dB(b, 3r/4) by the max-
imum modulus principle. Since B N D¢ has no interior and K° is connected,

we can assume a € DN B, r). This f(z) satisfies all the desired condi-
tions.

We recall next the definition of H? class on arbitrary domains. For
any domain D and any 0 < p < oo, one defines H?(D) as the set of all
functions f which are holomorphic in D and for which there exists a
harmonic function % in D, such that |f(z)|* < u(2) (€ D). There exists
then the least harmonic majorant u,. If we fix a point a in D and define
| flls = (us(a))’?, H?(D) becomes a Banach space with norm || ||, when
1< p< . HYD) is a Hilbert space.

We recall then the definition of Carathéodory domain. Let D be a
bounded simply connected domain in the complex plane, and let D. be
the unbounded component of (D)°. Then D is said to be a Carathéodory
domain if D and D, have the same boundary. Every Jordan domain is
a Carathéodory domain. Now let D be a bounded domain and D, the
unbounded component of (D). Then D¢ coincides WiEh the polynomial
convex hull D of D. Each component of the interior (D)’ of D is bounded
and simply connected. Exactly one of them contains D, since D is con-
nected and contained in (D). Let it be denoted by D,. Then D, is a
Caratheodory domam and we have 0D, = aDcaD In fact, we have
DCD*CD and aD = 0D, c 0D c oD, and hence D,l< —D i.e., (Dy). = D,
and 0D, DD, 56D = 0D.. On the other hand, by deﬁmtlon we have
oD, D 0Dy, and so 0D, = d(Dy).. = 0D, coD. Thus D, is a Carathéodory
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domain.

Finally we notice that if H is an abstract H” space and D is a
Carathéodory domain, then there exist functions we H with I"(u) = D.
Indeed, let ve€ H be non-constant. Then I'(v) is non-empty. Let ¢ be a
conformal mapping of I"(v) onto D. Then for u = ¢(v) it holds I"(u) = D
by definition of I'(:).

3. Fundamental lemmas. We shall give in this section two funda-
mental lemmas (Lemma 3.1 and Lemma 3.2) and their corollary to prove
our main results. The first one is a generalization of a theorem of Brown-
Shields-Zeller and Hoffman-Rossi. For a ¢:|t| =1 we define 4(¢; @, k) as
the intersection of the disc {|z — ¢| < k < 1} and the angle of opening 2a,
placed symmetrically about the radius to t.

LEMMA 3.1. Let H be an abstract H” space. Let u be a non-constant
function in H and I'(u) be the Carathéodory domain corresponding to
u. Then it holds

[[f@)l = [fR)rw  for all feH*(I"(u)) .

PrOOF. By [14, Theorem 3.3] it is enough to show the above in the
case where I'(u) is the open unit disc U via conformal mapping. (i) Now
assume there exists an f e H*(U) such that

L= [lfll. <[l -

Then there is a Lebesgue measurable subset E on T of positive Lebesgue
measure such that to every te E there corresponds a truncated angle
4, = A(t; o, h(t)) which satisfies m{x; w(x)e 4} =0 and |f(z)| > 1 for all
z€ 4,, where a is a fixed constant. Therefore there exists an & > 0 such
that the set {t€ E; h(t) = h} is of positive measure and hence has uncoun-
tably many elements, since E = ; {t € E; h(t) = 1/7} and L(E) > 0. Hence
there are two points t,, £, with 4, N 4,, # @. (ii) Let a be a point in U
with | f(a)| > 1 = |[f(u)|l.. Then [f"(@)|— o as n— oo but || f*(w)||.. =
1. Let g,=1— f*/f*(a). Then g,(u) tends to 1 in L*(m)-norm. But
g.(@) =0, so (z— a)'g,€ H°(U), and hence we have (v — a)™'g.(u)e H
by [14, Theorem 3.3]. Therefore (v — a)~'g,(u) tends to (v — @)™ in L*(m)-
norm, and hence (v — @)™ is in H. (iii) From (i) and (ii) it follows that
u — # is invertible in H for ze 4, U 4,, = W. Of course u — z is invertible
in H for all z with |z| > 1. (iv) We next notice that U\W has exactly
two connected components. Let W, W, be these ones. Then one has
miz; uw(x)e W, U W} =1. Set

(1 — 721 — t,2) for ze W,

9(2) = -
0 for ze W,.
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Then g¢(z) is continuous on K = W, U W, and holomorphic on K° = W, U W,.
Since every boundary point of K also is a boundary point of K°=WU
U°, g(2) can be approximated uniformly on K by rational functions with
poles off K in virtue of a criterion for A(K) = R(K) (Gamelin [3, p. 219]).
Since for every rational function h with poles off K it holds A(u) e H by
(iii), we see that g(u) is an L™-norm limit of a sequence of elements in
H, and hence is in H. Now set v = (1 — t,u)(1 — t.u), v, = g(u), and v, =
v — v,. Then we have v, v,, v,€ H and

(Svdm)z + (szdm>2 = S’ufdm + Svﬁdm = S(?A + v dm
= (S(vl + vz)olm>2 = (valdm + szol'm,)2 .

This implies Svldm =0 or szdm = 0. Let \vdm = 0, say. But the

essential range w(v,) of v, is contained in the closure of the set G, =
{@ —2)A —2); 2] <1, 2| <1} and it holds G, = G, = {(1 — 2)% [z| <1}
as we shall see soon later. Since (G,)° is connected, i.e., G, is polynomially
convex and 0€ 0@, Svldm = 0 implies v, = 0 by [13, Lemma 1], that is,
m{x; w(x) € Wy} = 1, which contradicts I"(x) = U. It is impossible by the
same reason that szdm = 0. Therefore there exist no functions f € H*(U)
with ||f(W)]le < || fllyz. Trivially we have ||f()|l. = ||f|ly- Hence we
obtain

If@)le = [1flo for all fe H"(U).
(v) Finally we have to show G, = G,. Let 1 — z; = r;¥% (j =1, 2). Then
we have —7/2 < 0; <7/2 and r; < 2cos0; (j =1,2). Let 6 = (6, + 0,)/2,
0,=0+aand 0,=0 —a. Let r=2cosf and z=1— re*’. Then we obtain
[2] =1 and

72 — 71y, > 4(cos®d — cos (0 + @) cos (0 — a))
=4sinfa=0.
This means |1 — 2)(1 — 2,)| < |1 — z|*and Arg (1 — 2,)(1 — 2,) = Arg (1 —
2)’. Hence we have (1 — z,)(1 — z,) € G,. This completes the proof of the
lemma. q.e.d.
The second lemma is the following.

LEMMA 3.2. Let D be a bounded domain in the complex plane. Let
(X, X, m) be a finite positive measure space. Let T be a multiplicative
linear mapping from H=(D) into L*(m) which is isometric and satisfies
T1 =1. Further suppose that if a uniformly bounded sequence f, € H*(D)



BOUNDED FUNCTIONS IN THE ABSTRACT HARDY SPACE 115

converges to an f € H”(D) in H*(D)-norm, there exists a subsequence f .y
such that Tf n; converges to Tf m-almost everywhere. Then we have:
T(H>(D)) s weak* closed and for every a€ D the mapping @: Tf — f(a)
18 a unique multiplicative linear functional @ on T(H>(D)) with &(Tz) = a.
This @ is weak* continuous and there exists a mon-negative function g in
L'(m) such that

fa) = O(Tf) = S(Tf)gdm for all fe H™(D).

Proor. (i) We shall show first that T(H>*(D)) is weak* closed. Let
f.€ H(D) be a sequence such that ||Tf,||<1 and Tf,—g¢g m-almost
everywhere. Since T is isometric, there exists a subsequence {fa,} such
that f,, converges to an f e H”(D) weakly in H*D). Since H*(D) is a
Hilbert space, a sequence {g,€ H*(D)} of finite convex combinations of f iy
converges to f in H*D), where g, is of the form 3;., a;(k)f., aik) >
0, >,a;(k) = 1. By the assumption Tg, converges to Tf m-almost every-
where. On the other hand, since g, is of the form Y., a;(k) fa; and
Tfnj converges to g m-almost everywhere, Tg, also converges to g m-
almost everywhere. Hence one gets ¢ = Tf. This shows via L*-version
of Krein-Shmulian theorem [6, p. 454] that T(H*(D)) is weak* closed. (ii)
Let ¥ be a multiplicative linear functional on T(H“(D)) such that ¥ (Tz) =
a. Let fe H"(D). Since g(z) = (f(?) — f(a))/(z — a) e H*(D), we have
VTf = f@) =0T - f@)=%(T9T(z—a) =¥(T9)¥(Tz — a) =0,
i.e., ¥(Tf) = f(a). (iii) We show next the weak* continuity of @. Let
Tf. be a directed sequence in T(H>*(D)) which converges to a Tf weakly*.
We can assume || Tf,|| =<1 to show the weak* continuity. Let Tf, be
a countable subsequence of T'f, such that f,(a) tends to a complex number
b. Since T is isometric, there exists a subsequence f,, which converges
to a g€ H*(D) weakly in H*D) and f, (a) tends to g(a) = @(Tg). Further
there exists a sequence g, = >;_, ®;(k)f,, of finite convex combinations
of f,, which converges to g in H¥D). We can hence assume, by assump-
tion, Tg, converges to Tg a.e. by choosing subsequence if necessary.
Now, since Tf,, converges to Tf weakly*, Tg, also converges to Tf
weakly*. Hence we obtain Tg = Tf, and hence b = lim f,(a) = lim f, (a) =
g(a) = @(Tg) = O(Tf) = f(a). Therefore one can conclude that lim @(Tf,) =
O(Tf). Hence @ is weak* continuous. (iv) Since @ is a weak* continuous
multiplicative linear functional on the subalgebra T(H®(D)) of L~(m),
there exists by a theorem of Konig-Hoffman-Rossi a non-negative function
g € L'(m) such that

fa) = O(TF) = S(Tf)gdm for all fe H*(D).
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The proof is thus complete. q.e.d.

Combining Lemmas 3.1 and 3.2 we have a result on the subalgebra
H(u) of an abstract H* space H, generated by a non-constant function w in H.

THEOREM 3.3. Let H be an abstract H” space. Let we H be non-
constant and I'(uw) be the Carathéodory domain corresponding to u. Let
H(u) be the weak* closure of linear spans of {u*:n =20,1,2 -.-}. Then
we have:

(1) H(w) = {f(w); f e H*(I'(w))}

and H(u) s tsometrically isomorphic to H*(U).

(2) For every acI'(u) there exists a unique multiplicative linear
Sunctional @ on H(u) with ®(u) = a. This @ is weak* continuous and
there exists a non-negative g € L'(m) such that

o(v) = Svgdm for all ve H(u),

and in addition

f@ =o0¢@) = \fegdm for all fe BT W),
and
| £ @)l gam = || Fllre for all  fe H=(I'()) .

ProoF. Let T be the composition operator from H>*(I"(uw)) to HC
L*(m), defined by Tf = f(u) for fe H*(I"(u)). Then T satisfies all the
conditions for Lemma 3.2 in virtue of [14, Theorem 3.3] and Lemma 3.1.
Let H, = T(H*(I"(w))) = {f(w): f € H*(I"(«))}. Then by Lemma 3.2 H, is
weak* closed. Since H,  H(u) by [14, Theorem 3.3] and each finite linear
combination of {1, u, u? ---} is contained in H,, we have thus H(u) = H,.
Since H, is isometrically isomorphic to H*({"(u)) by Lemma 3.1, and since
I'(u) is simply connected, H(u) = H, is isometrically isomorphic to H*(U).
Let ¢ € I'(w). Then by Lemma 3.2 @: f(u) — f(a) is a unique multiplicative
linear functional on H, = H(u) such that &(T2) = &(u) = a. Now let C,
be Jordan curves in I"(x) and D, be domains bounded by C, and oI'(u)
such thate¢ D,, D,,,C D, (n =1,2,---)and lim D, = @. Then by Lemma
3.1 and the maximum modulus principle we have

esssup | T'f ()| = || fllra for all fe H*(I'(w)) .

u(x) €Dy

Hence by Lemma 3.2 there exist non-negative g, € L(m) such that g,(z) =
0 for x:u(x)¢ D, and
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fla) = S(Tf)g,,dm for all fe H*(I'(w) .
Set ¢ =3=,2"g,. Then g is non-negative and we have

£@ = ((Tgam tor all 7 e HT@),
that is

fla) = Sf(u)gdm for all fe H*(I'w)) .

Let dm, = g,dm and dm, = gdm. Now H(u, m,) and H(u, m,) are abstract
H> spaces and we have by a characterization of 7I"(-) mentioned in the
introduction

'u,m,)cD, n=12 ---.

Let be oD and € >0. Since lim D, = @, we have {|z — b|<e} N I"(u, m,) #*
@ for sufficiently large » and hence m,{x: |u(x) — b| < e} >0 by_a pro-
perty of I'(-), and so m,{x: |u(x) — b| < &} > 0. Since m{x: u(x) e I'(u)} =1
and Suolmo = a € I'(u), we obtain I'(u, m,) = I'(u) by a characterization of
I'(-). Hence we have by Lemma 3.1

| f@)]|z=gam = |[fllrw for all fe H*(I(w)) .
The proof is thus complete.

4., Main results. At first we shall give two sufficient conditions for
a maximal domain to be simply connected.

LeEMMA 4.1. Let D be a maximal domain in the complex plane. Let
H be an abstract H” space. Suppose for every f € H”(D) it holds f(u) e

H(w) for all we H with m{z: u(x)e D} =1 and SudmeD. Then D 1is

stmply conmected. Here H(u) denotes the weak* closure of linear spans
of {1, u, ', ---}

ProOOF. Let J be an arbitrarily fixed Jordan curve in D and E be
the Jordan domain bounded by J. Now assume ENoD = @. Fixabe
E NoD. Then since D is maximal, b is an essential boundary point of
D. Let B = B(b, r) be a closed disc with center at b and radius », which
lies completely in E. As is mentioned in §2, there exists an fe H*(D)
such that f(a) =1 for some ac DN B and |f()| <1/2 for ze DN B".
Naturally ac EN B. Let J, be a Jordan curve situated inside EF and
surrounding a, B and E N D°. Let F be the domain bounded by J and

Ji. Then there exists a u € H such that Sudm eF m{z:u()e F} =1 and
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I'(w) = E. In fact, let ve H satisfy I"(v) = U and Svdm = 0 (there exists

always such one as is mentioned in §2), and ¢ be a uniformization function
of U onto F, so that ¢ is holomorphic in U and the range of ¢ is precisely

F. Then u = ¢(u) is in H and Sudm = ¢(0) € F' by [14, Theorem 3.3] and

it can be easily shown that J and J, are contained in the essential range
of w. Hence I'(u) = E by a characterization of I'(u). Now for this u
we obtain by assumption g(uw)<€ H(u) for all ge H*(D). Let @ be the
multiplicative linear functional on H(u) such that @(u) = a. Then by
Theorem 3.3 there exists an m-absolutely continuous positive measure m,

such that @(v) = Svdmo for all ve H(u) and hence
D(g(n)) = Sg(u)dmo for all ge H*(D) .

Since for every ge H>(D) it holds g(z) — g(a) = (2 — a)h(z) for some he
H*(D), and since @ is multiplicative on H(u), we have @(g(u) — g(a)) =
O((u — a)h(u)) = @(u — a)®@(h(u)) = 0. That is, we have

gg(u)dm0 =g(a) for all ge H*(D),
especially
(=) Sf(u)dm0=f(a)=1.

On the other hand, since m{x: u(x)e F} = 1 and |f(2)| <1/2 for ze DN B,
we have mo{x: u(x)e F} = 1 and | f(2)| < 1/2 for ze F. Hence we have

|| ream,

This contradicts (). Hence we obtain ENdD = @, and hence EC D.
This means D is simply connected. The proof is complete.

= [If@lam = 172,

LEMMA 4.2. Suppose H be an abstract H™ space such that there
exists a non-constant u € H with |u| =1. Let D be a maximal domain
in the complex plane. Then, if for every f € H*(D) it holds f(v) € H for

all ve H with m{x: v(x) € D} =1 and Svdm € D, it follows that D is a simply
connected domain.

Proor. We notice that f(v) € H for all f € H*(D) implies gf (v)dm =
f<Svdm> for all fe€ H*(D) as in the proof of Lemma 4.1. Now let J be
an analytic Jordan curve in D and G the Jordan domain bounded by J.
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Let a be an arbitrarily fixed point of G N D. Let g be a conformal map-
ping of U onto G satisfying g(Sudm) = a. Then we see by [14, Theorem
3.1] that v = g(u) satisfies m{x: v(x) e J} = 1, Svdm = a and (x) m{x: v(x) €
E} = m,(E) for every harmonically measurable set £ c.J, where m, is

the harmonic measure with respect to a. Now let f(z)e H”(D). Then
we have by (+) and the assumption ‘

[r@dm.@ = [r@dm = f(feam) = @ .

This equation implies that f(z) can be continued harmonically from G N
D onto G and hence holomorphically. Since D is maximal, we obtain that
G NoD is empty, and so G D. This means that D is simply connected,
which completes the proof.

Next we shall state a condition for a bounded simply connected domain
to be a Carathéodory domain.

LEMMA 4.3. Let D be a bounded simply connected domain in the
complex plane and ¢ be a conformal mapping U onto D. Let H be an
abstract H” space and u be a non-constant function in H with I'(u) = U.
Then, if we have u € H(¢(u)), it follows that D is a Carathéodory domain.

PrROOF. Let D, be the component of the interior of 5, which contains

D. Then we have 0D, = 31:)C3D and D, is a Carathéodory domain, as
is shown in §2. We have further ¢(u)e H and I (¢(w)) = D,, since
I'(¢(u)) oD and I'(¢(u)) € Dy by [13, Theorem A]. We have in addition
by Lemma 3.1

If (@)l = 1Ifllo. for all feH"(Dy).

Assume now D is not a Carathéodory domain. Then there exists a point
beoD N D, such that dist (b, 0D,) =20 > 0. Set D,=DN{z— b|> o}
and E = {x: ¢(u(x)) € D} and fix a point a€ D. Then by the maximum
modulus principle we have

ess sup | F(p@))| = | fllo. for all feH(D.) .

Hence by Lemma 3.2 there exists an m-absolutely continuous positive
measure m, on X such that

f@ = [fG@)dm, for all feHD,)

and m, is concentrated on E. By Theorem 3.3 we have H(g(u), m) =
{f(¢(w)): f € H(D,)}, because I'(¢(w), m) = D,. Hence one can construct
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an abstract H* space H(¢(u), m,) = H(X, X, m,) starting from 4(u) and
m,. Since u € H(¢(u)) by assumption,  is also in H(s(u), m,). Since m,
is m-absolutely continuous, we have I'(u, m,) C U by [13. Lemma 2] and
hence either I'(u, m,) = U or there exists a point ¢ in U\I'(u, m,). As-
sume the first case takes place. Then we have by Lemma 3.1

(1) @)y = [| fllo for all feH>(U).

However, as we have mentioned in the preliminaries, there exists a g€
H>*(D) such that g(d) =1 for some de DN {jz —b|] <} and |g(z)| < 1/2
for ze D,. This implies that f = g(¢) € H*(U) does not satisfy the above
equality (1), a contradiction. Assume next the second case takes place.
As in the proof of Theorem 3.3 we can choose m, so that

1f @) zomy = [[.f|lo. for all fe H (D) .

Then, if we regard the composition operator as an operator from H®(D,)
into L*(m,), there exists again by Lemma 3.2 an mg-absolutely continuous
positive measure m, such that

£6©) = |F@@pdm. for all feH (D),

and especially (2) 4(c) = SqS(u)dml. We can construct also an abstract H”
space H(u, m,) like as H(¢(u), m,). Since m, is m,-absolutely continuous,
we have \udm,e I'(u, m,) and I"(w, m,) C I"(u, m,). Then by [14, Theorem

3.3] we have f(u) € H(u, m,) for all f € H*(I"(u, m,)). Since the integration
with respect to m, is multiplicative and linear on H(u, m,), we have in

the same way as in the proof of Lemma 4.1 S fwydm, = f (gudml> for all
fe H(I'(w, m,)). Since ¢ is in H*(I'(u, m,)), we have hence ng‘: (w)dm, =
é( \udm,). However, since gudmleF(u, m,), ¢€ U\I"(u, m,) and ¢ is one-
to-one, we get ¢(c) # ¢(§udm1) = ggs(u)dml. This contradicts (2). Hence
D is a Carathéodory domain and we are done.

Now we are in the position to state our main theorem.

THEOREM 4.4. Let D be a bounded maximal domain in the complex
plane. Let H be an abstract H” space. Suppose it holds f(u) € H(u) for
all fe H*(D) and all uwe H with m{x: u(x) € D} = 1 and Sudm €D. Then
D is a Carathéodory domain.

Proor. D is simply connected by Lemma 4.1. We shall next show
that there exists a we H with (*) m{z: u(x)e U} =1 and I'(u) =U. Let
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G be the simply connected domain decided by two curves: @, = tan (77/2)
and @, = tan (7r/2) + 7, 0 < r < 1, (r, »; polar coordinates), which con-
tains the point (1/2, 0). Let ve H satisfy I'(v) = U as in §2 and ¢ a con-
formal mapping of U onto G. Then u = g(v) satisfies (*) in virtue of
properties of I'(-) in §1. Now let ¢ be a conformal mapping of U onto D.
Since u satisfies m{x: u(x)e U} =1 we have u = ¢ 'og(u) and ¢(u)e€ H,
d(u)dm = ¢(gudm>e D as before. And since ¢7'e H*(D), we have
u € H(¢(w)) by the assumption. Hence by Lemma 4.3 the domain D is a
Carathéodory domain. q.e.d.

Using Lemma 4.2 and the proof method of Lemma 4.3 we have
another characterization of Carathéodory domains.

THEOREM 4.5. Let D be a bounded maximal domain in the complex
plane. Suppose for any abstract H” space H it holds f(u)e H for all

fe H*(D) and all we H with m{x: u(x)e D} =1 and gudm eD. Then D
18 a Carathéodory domain.

PrROOF. Since there exist abstract H*™ spaces which satisfy the
conditions in Lemma 4.2, D is simply connected. Assume D is not a
Carathéodory domain. Let D,, D, a, b be the same as in the proof of

Lemma 4.3. Let {a;€ U}, satisfy {a;} D0U and
FO = 3 fayey for all feH(U),

where @; > 0 and Y2, a; = 1. There exist such pairs {a;; @;}, for example,
the example of J. Wolff: Let U, = {|z — a,| < r.,} be a sequence of
mutually disjoint subdises of U with center a, and radius 7, such that
the planar measure of U\JU, is zero. Set u(j) = a;for j =1,2, --- and
let m = 3%, @;0;, where 0; is the Dirac measure at j. Then H(u): the
m-weak* closure of linear spans of {1, u, u* ---} is an abstract H> space.
Hence if we let ¢ be a conformal mapping of U onto D, one gets ¢(u)€
H(u) and I'(¢(u)) = Dy by virtue of [13, Theorem A]. Thus we have by
Lemma 3.1

sup | f(¢(ay)| = sup |f(z)] for all fe H™(D).

Let {¢j}=, = {#(a,)} N{ze D: |z — b| > d}. Then one has by the maximum
modulus principle

sup | f(c;)| = sup | f(z)] for all feH" (D).

Applying Lemma 3.2 there exists a probability measure m, = 37, B0;
on N such that



122 K. YABUTA

3. /()8 = f(@ forall feH (D).

Let v(3) = ¢; for je N. Then the weak* closure H(v, m,) of linear spans
of {v:n=0,1,2 ---} is an abstract H~ space and we have m,{x: v(x) €
D} =1 and S’udmo = a€D. Hence by assumption we have ¢ *(v) € H(v, m,).

Put w = ¢7'(v). Then we get ¢(w) = v, and hence w e H(s(w), m,). The
rest of the proof follows along the same lines as the last step of the
proof of Lemma 4.3. The proof is thus complete.

REMARKS TO THIS SECTION. Let dm = n~'dxdy be the 2-dimensional
normalized Lebesgue measure on U = {|z + iy| < 1}. Then we have

£(0) = SUf(x + ig)dm for all fe HU).

Hence H = H(U, m) is an abstract H~ space. Let D be the annulus
{1/2 < |z| < 1}. Then it is clear that for every f € H*(D) it holds f(u)e
H for all we H with m{u(z)e D} =1 andgudm € D, because the condition
for w implies that the range of u is contained in D. Hence the assumptions
f(w) e H(u) in Lemma 4.1 and Theorem 4.4 are not superfluous. That
the maximality conditions for D in this section are not superfluous is
trivially shown by an elemental example: Let D be the punctured dise
U\{0}. Then every f e H®(D) can be defined as a holomorphic function
in U. Hence for every abstract H> space we have f(u)e H for all fe
H>*(D) and u € H with m{x: u(x)e D} = 1 and gumde D, as is mentioned

in the introduection. . It is plausible that the assumptions in Lemma 4.2
alone implies D is a Carathéodory domain, if D is bounded.

5. Applications. One of our applications is as follows.

THEOREM 5.1. Let D be a Carathéodory domain in the complex
plane and {a,} a sequence in D. Let ac D be fixed. Then the following
are equivalent. (i) There exist mon-negative mumbers {c,} such that the
closure of the subset {a,;} with c,, > 0 contains 0D and

(1) o(a) = >, c.p(a,) for all polynomials .
(ii) For all fe H*(D) we have
(2) sup [ f(@.)| = |[ £l -

(iii) For every be D, there exist non-negative numbers {d,} such that the
closure of the subset {a,;} with d,; > 0 contains 0D and

(3) h®) = S d,h(a,) for all he H (D).

(iv) For every be D, there exist non-negative numbers {e,} such that
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(4) () = > e,p(a,) for all polynomials .

Proor. Suppose {a,} satisfies (i). Let ¢g(j) = a; and m = 3 ¢;0;,
where 0; is the Dirac measure at j€ N. Then gdm =1 by 1). If we
set H = H(g, m): the o(L”(m), L'(m)) closure of linear spans of {1, g, ¢
-++}, H is an abstract H” space and I'(9) = D. Hence we have (2) by
Lemma 3.1. Next suppose {a,} satisfies (ii). Let be Dand m = >3, 27%;.
Let T be the mapping from H>(D) into L”(m) defined by

(THG) = f(a;) for all feH™(D).

Then T satisfies all the conditions in Lemma 3.2. Hence there exist
non-negative numbers {d,} such that

f®) =>.d,f(a,) for all feH"D).
And one can easily show that we can take the subset {a,;} with d,. >0
so that the closure of {a,,} contains the boundary of D. The proof follows

along the same lines as that of the last equation in Theorem 3.3. In
this case one has further from the step (i) to (ii)

sup | f(a.)| = [[fllo for all feH"(D).

(iii) trivially implies (i) and (iv). Suppose now (iv). For every be D, b¢
{a,}, choose a sequence {d,(b)} satisfying (4). Then infinitely many d,(b)
are positive. We construct an abstract H*” space H(g, m(d)) as in (i),
where m(b) = >, d,(b)d,. Then I'(g, m(d)) is a non-empty open set containing
b and contained in D. It holds by the step (i) to (ii)

sup | h(a,) | =F(§171£))[ h(z)| for all he H*(D).

dy(0)>0

Since clearly we have D = Usep\a, (9, m(b)), we obtain for all f e H*(D)
sup | f(a,)| = sup sup [f(a,)]

beD\lay} dp(B)>0

= sup sup))]f(z)l = S%le(z)l .

beD\{a,} I'(g,m(d
Trivially sup,|f(2)| = sup, | f(a,)|. Hence we obtain (2). The proof is
thus complete.

As a corollary we have the following result which contains a theorem
of Hoffman-Rossi.

COROLLARY 5.2. Let D be a Carathéodory domain, and {a,} ¢ sequence
wm D with no limit points in D. Let an a€ D, a & {a,} be fixed. These
are equivalent:

(i) There exist non-negative numbers {c,} such that

p(a) = 3 ¢,p(a,) for all polynomials .
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(ii) For all fe H*(D) we have
sup | f(a.)| = sup [ f(2)] .

(iii) For every be D, there exist mon-negative numbers {d,} such that
h(®) = >, d,h(a,) for all he H*(D).

ProOF. It is enough to show that (i) implies (ii). The other implica-
tions follow immediately from Theorem 5.1. Suppose (i). Let m =
>.¢.0,and u(n) = a, forn =1, 2, ---. Then H(u, m) is an abstract Hardy
space and I"(u, m) is non-empty, since a ¢ {a,} and hence u is non-constant
in L*(m). Since each boundary point of I'(w, m) is a limit point of {an;}
with ¢,. > 0 by a property of I'(-), and since {a,} has no limit points in
D, we have I'(u, m) = D. Hence by Lemma 3.1 we obtain (ii). q.e.d.

REMARK. If a€{a,}, the corollary is still valid when we replace (i)
by the following proposition (I’): There exist non-negative numbers {c,}
such that infinitely many ¢, are positive and

p(a) = > ¢,p(a,) for all polynomials .

One can prove in this case with a slight modification of the proof.

Hoffman and Rossi showed the above in the case where D is the unit
disc. We can further characterize Carathéodory domain in terms of
Theorem 5.1.

THEOREM 5.3. Let D be a bounded maximal domain in the complex
plane. The following three propositions are equivalent:
(i) D is a Carathéodory domain.
(ii) Let {a,} be a sequence of distinct points in D with no interior limit
points, for which there exist an a € D and non-negative numbers {c,} with
infinitely many positive ones such that

p(a) = >, ¢,p(a,) for all polynomials .
Then one has
sup [ f(a,)| = sup | f(2)| for all feH>D) .

(iii) Let {a,} be a sequence of distinct points in D such that for every
c€ D there exist mon-negative numbers {d,} satisfying

p(c) = X d,p(a,) for all polynomials .
Then one has

sgplf(a,.)l=sgplf(z)l Sor all feH*(D) .



BOUNDED FUNCTIONS IN THE ABSTRACT HARDY SPACE 125

Proor. At first we shall show that for every bounded domain D
there exists a sequence {a,} in D which satisfies the assumptions in (ii)
and (iii). Let D, be the component of the interior of D, which contains

D. Then we have oD, = af)c&D* and D, is a Carathéodory domain. It
holds further

(5.1) sup [f(2)| = sup[f(2)| for all feH (D).

In fact, let H be the abstract H® space constructed in the remark at
the end of the last section and ¢ be a uniformization function from U
onto D, and so ¢ is holomorphic in U and its range is precisely D. Then
we have clearly ¢(u)c€ H and I'(¢(u)) = D, since 0D, CoD. Hence by
Lemma 3.1 we obtain

sup [ f(#(2))] = || f($() ls=m = sUP | F(w)| for all feH"(Dy),

and so we have (5.1). Now let {b,} be a sequence of distinct points in
the unit disc U with no interior limit points, 0¢ {b,}, such that

sup | f(b,)| = sup | f(2)| for all fe H=(U).

An example in [1, p. 172] is such a sequence. Let + be a conformal
mapping of U onto D, and ¢, = ¥(b,). Then {c,} is a sequence of dis-
tinet points in D, with no interior limit points and we have through the
conformal mapping +»

(5.2) sup [ f(c,)| = sup [f()[ for all feH™(D,).
Set {a,} = {¢,€ D}. Then by (5.1) and (5.2) we have
(5.3) sup [ f(a,)| = sup | f(2)| for all feH=(D,).

This {a,} satisfies the assumptions in (ii) and (iii) by Corollary (5.2). Now
we shall show the theorem. (i) implies (ii) and (iii) by Theorem 5.1 and
Corollary 5.2. Suppose next (ii) or (iii) and let {a,}, D, be as above.
Assume D is not a Carathéodory domain. Then there exists a beoD
such that dist (b, 0D,) =20 >0. Set D,=DN{z—b|>d. By the
maximum modulus principle and (5.3) we have

sup | f(a.)| = sup [f(z)| for all feH (D).

ay€Dy

Hence by Theorem 5.1 the set {a,:a,€ D} satisfies the assumptions in (ii)
and (iii), and hence by assumption we get

(6.4 sup | f(a,)| = sup [ f(z)| for all feH™(D).
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On the other hand, since D is maximal, there exists a ge H™(D) such
that sup,.,|9(2)| > 1 and |g(2)| < 1/2 for ze D,. This contradicts (5.4).
q.e.d.

Our second application is some remarks to the work of Brown-Shields-
Zeller [1]. We remark that almost all of their results for Jordan domains
are still valid for Carathéodory domains, but we do not describe them
here. We shall however answer to some of their questions. The first
one is the following: Their Lemma 3 [1, p. 165] is valid for Carathéodory
domains and it is in a sence the largest class of domains for which their
Lemma 3 holds. We state it as follows.

PROPOSITION 5.4. Let D be a bounded maximal domain in the com-
plex plane. The following proposition () holds if and only if D is a
Carathéodory domain.

(%) If a measure p in D satisfies Se’wd/x(w) = 0, then it follows

Sf(w)d#(w) —0 for all feH=(D).

This follows immediately from our Theorem 5.3 and Corollary 5.2
and the following two facts: (1) Se”’dﬂ(w) = 0 is equivalent to

§p(w)d#<w> =0

for all polynomials. (2) If D is a Carathéodory domain, every f € H*(D)
can be approximated pointwise boundedly by polynomials.

Next let D be a bounded domain in the complex plane. By E(D) we
denote the set of all those entire functions %(2) that admit a representation
of the form

h(z) = 3. d, exp (a,2), 3. |d,| < o, @, €D .
Then we have the following (cf. [1, p. 167]).

PROPOSITION 5.5. Let D be a bounded domain in the complex plane

and D, the component of the interior of the polymomial convexr hull ﬁ
of the closure of D, which contains D. Then we have E(D) = E(D,).

PROOF. As is shown in the proof of Theorem 5.3, there exists a
sequence of distinct points in D such that

sup | f(a,)| = S;lplf(z)l for all fe H”(D,) .

This implies by Theorem 5.1 that for every a € D, there exist non-negative
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numbers {d,} such that .
p(a) = >, d,p(a,) for all polynomials .
Since for every weC e”* can be approximated uniformly on D, by
polynomials, we have
e = > d,e” for all weC.
Hence we obtain E(D,) C E(D) and hence E(D,) = E(D). q.e.d.

6. Finally we remark that one can construct an abstract H® space
on any positive measure space except exceptional cases. In fact, we can
show the following.

PRrOPOSITION 6.1. Let (X, X, m) be a positive measure space such that
there exist infinitely many disjoint m-measurable set A; with 0 < m(4;) <
co. Then there exist an m-absolutely continuous positive measure m,
and a memeasurable function f € L*(m,) such that

Sf"dmo = (Sfdmo)n for m=12 +--.
That is to say, the o(L>(m,), L'(m,) closure of linear spans of {1, f, f?

.-} 18 an abstract Hardy space.

PrOOF. Let ¢;, a; satisfy the following equations, as in the proof of
Theorem 4.4. |¢;| <1, a; >0, S,a; =1 and

dicia; = leca)" for =12 ---.
Set f(x) =¢; for x€ A; (1 =1,2, ---), = 0 otherwise and g(x) = a;/m(4;)
for x€eA; (7 =1,2, ---), =0 otherwise. Let dm, = gdm. Then we have
dm, = 0 and golm0 =>a;=1, and

[ £ram, = 5 6a; = (S ey = ([ram,)
for n=1,2, :--. q.e.d.

COROLLARY 6.2. Let (X, 2, m) be a non-atomic probability measure
space. Then there exist bounded m-measurable functions f such that

Sf"dm = (Sfdm)ﬂ for m=12 +--.

In fact, let ¢;, @; be the same as in the proof of Proposition 6.1.
Since the space is non-atomie, it holds that if Ae ¥ with m(4) > 0 and
0 <axm(A), there exists a BeY with Bc A such that a = m(B).
(See, for example, Halmos [4, p. 174].) Hence there exist countably many
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disjoint A;€ 3 such that m{A4,} = a; and hence 3, m(4;) =1. Set f(x) =
¢c; for x€A;(3=1,2 -.+). Then feL”(m) and satisfies the desired
conditions.

REMARK. The above spaces H contain no inner functions, i.e., there
are no non-constant functions v € H with || = 1. Indeed, let ue H(X, 2%,
m,) in Proposition 6.1 and || = 1. Then there are at most countably
many a; on the unit circle |2] =1 such that mx: u(x)€{a;}} =1 and
80 mo{x: u(x) = a,} > 0 for some k. This implies however u = a, by [12,
Theorem 1].
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