
Tόhoku Math. Journ.
27(1975), 111-128.

ON BOUNDED FUNCTIONS IN THE ABSTRACT HARDY
SPACE THEORY III

Kόzό YABUTA

(Received March 21, 1974)

1. Introduction. We continue from our studies [13], [14] on bounded
functions in the abstract Hardy space theory. We mean an abstract H°°
space by the following space H = H(X, Σ, m): Let (X, Σ, m) be a pro-
bability measure space and H be a weak* closed subalgebra of the
sup-norm algebra L°° of the bounded m-measurable functions, satisfying

1 G H and \uvdm — I udm \ vdm for all u, ve H. We assume always H

is non-trivial, i.e., Ή.ΦC. We have shown in [13,14] that to every
non-constant ue H there corresponds a unique Caratheodory domain Γ(u) =

Γ(u, m) such that m{x: u(x) e Γ(u)} = 1, \udm e Γ(u) and m{x: \u(x) — b\ <
ε} > 0 for all ε > 0 and all b e dΓ(u), and further that if / is in H°°(Γ(u)),
i.e., bounded and holomorphic in Γ(u), then the composition function f(u)
is well-defined and lies in H(u): the weak* closure of the linear spans
of {l,u,u2, •••}. We shall show in this note a converse of this fact,
roughly speaking, if D is a bounded domain in the complex plane C and
for an abstract H°° space H it holds f(u) e H(u) for all / e H°°(D) and all

w e i ϊ w i t h m{x: u(x) e D) = 1 and \udmeD, then D is a Caratheodory
domain (Theorem 4.4). This is a characterization of Caratheodory domains.
We state other related results in the same Section 4. In Section 5 we give
some applications to the classical case. The first one is an extension of
Brown-Shields-Zeller and Hoffman-Rossi's result and a characterization of
Caratheodory domains in terms of their theorem. Another one is a
remark to a result on absolutely convergent exponential sums. Fundamental
tools are Lemmas 3.1 and 3.2 in Section 3. In the final section a construc-
tion of non-trivial abstract H°° spaces on almost every measure space is
given.

2. Preliminaries and Notation. We mention first some function
theoretical facts. Let D be a domain on the Riemann sphere S, which
supports non-constant bounded holomorphic functions. We denote by H°°(D)
the set of all bounded holomorphic functions in D with supremum norm,
which we write as || |U or || \\D. W. Rudin [10] defines a boundary
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point 6 of D as an essential boundary point if there exists an h e H°°(D)
such that h does not extend to be holomorphic in any neighborhood of
6. If each point in 3D is essential we say that D is maximal for H°°(D).
A closed set E is a Painleve null-set if the algebra of bounded holomorphic
functions on S\E consists of the constants alone. A complex number 6 e
3D is an essential boundary point if and only if for every closed disc
B{b, r) = {z e C; \ z - b | ^ r} the set 3D Π B(b, r) is not a Painleve null-set [10,
p. 334]. Two conformally equivalent domains are simultaneously maximal
or not [10, p. 335], and hence each simply connected domain is maximal,
since the open unit disc U is obviously maximal. We notice further if
b is an essential boundary point of D, there exists for every B = B(b, r)
with B(b, r) f] D Φ 0 an a e B{b, r) Π D and an / e H°°(D) such that f(a) = 1
and \f{z)\ < 1/2 (zeDΠBc). In fact, if B Π (Dc)° Φ 0 , this is trivially
shown by a rational function. If B n (Dc)° = 0, i.e., B ΓΊ Dc = B Π 3D, the
set K = B(b, r/2) Π 3D is not a Painleve null-set. Hence there exists a
non-constant bounded holomorphic function f(z) on S\K. We can assume
I f(z) I < 1/2 (I z - b I > r) and f(a) = 1 for some a e 3B(bf 3r/4) by the max-
imum modulus principle. Since B f] Dc has no interior and Kc is connected,
we can assume aeD Π B(b, r). This f(z) satisfies all the desired condi-
tions.

We recall next the definition of Hp class on arbitrary domains. For
any domain D and any 0 < p < oo, one defines HP(D) as the set of all
functions / which are holomorphic in D and for which there exists a
harmonic function u in D, such that \f(z)\p 5g u(z) (zeD). There exists
then the least harmonic majorant uf. If we fix a point a in D and define
| | / U P = (Uf(a))1/P, HP(D) becomes a Banach space with norm || ||p when
1 ^ P < °° H2(D) is a Hubert space.

We recall then the definition of Caratheodory domain. Let D be a
bounded simply connected domain in the complex plane, and let D^ be
the unbounded component of (D)c. Then D is said to be a Caratheodory
domain if D and D^ have the same boundary. Every Jordan domain is
a Caratheodory domain. Now let D be a bounded domain and D^ the
unbounded component of (D)c. Then Dl coincides with the polynomial
convex hull D of D. Each component of the interior (D)° of D is bounded
and simply connected. Exactly one of them contains D, since D is con-
nected and contained in (J5)°. Let it be denoted by D*. Then D* is a
Caratheodory domain and we have 3D* = 3D a 3D. In fact, we have
DaD*aB and 95 = 3ZL c 35 c 32), and hence 25* = 25, i.e., (2)*)^ = D^
and 32)* z> 35* Z) 35 = 32) .̂ On the other hand, by definition we have
dD^ZDSD*, and so 3D* = 3(0*)^ = 32)0Oc32). Thus 2)* is a Caratheodory
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domain.
Finally we notice that if K is an abstract H°° space and D is a

Caratheodory domain, then there exist functions u e H with Γ(u) = D.
Indeed, let v e H be non-constant. Then Γ(v) is non-empty. Let φ be a
conformal mapping of Γ(v) onto D. Then for u = φ{v) it holds Γ(u) = D
by definition of Γ(-).

3. Fundamental lemmas. We shall give in this section two funda-
mental lemmas (Lemma 3.1 and Lemma 3.2) and their corollary to prove
our main results. The first one is a generalization of a theorem of Brown-
Shields-Zeller and Hoffman-Rossi. For a t: \t\ — 1 we define Δ(t; a, h) as
the intersection of the disc {\z — t\ < h < 1} and the angle of opening 2a,
placed symmetrically about the radius to t.

LEMMA 3.1. Let Hbe an abstract H°° space. Let ube a non-constant
function in H and Γ(u) be the Caratheodory domain corresponding to
u. Then it holds

11/NIL = \\f(z)\\Γ{u) for all feH~(Γ(u)) .

PROOF. By [14, Theorem 3.3] it is enough to show the above in the
case where Γ(u) is the open unit disc U via conformal mapping, (i) Now
assume there exists an / e H°°( U) such that

Then there is a Lebesgue measurable subset E on Γof positive Lebesgue
measure such that to every t e E there corresponds a truncated angle
Δt = d(t; a, h(t)) which satisfies m{x; n{x) e Δt} = 0 and \f(z)\ > 1 for all
z e Δt9 where a is a fixed constant. Therefore there exists an h > 0 such
that the set {t e E; h(t) ^ h) is of positive measure and hence has uncoun-
tably many elements, since E = \Jj {t e E; h(t) ^ 1/j) and L(E) > 0. Hence
there are two points tlf ί2 with Δh ΓΊ Ah Φ 0 . (ii) Let a be a point in U
with |/(α)| > 1 - ||/(w)|L. Then \fn(a)\~+ oo as n~+ oo but | | / (w)|U -
1. Let gn = 1 — fn/fn(a). Then gn(u) tends to 1 in L°°(m)-norm. But
gn(μ) = 0, so (z — ay^nβ H^iU), and hence we have (u — a)~ιgn{u)£ H
by [14, Theorem 3.3]. Therefore (u - aYιg%(u) tends to (u - a)'1 in L°°(m)-
norm, and hence (u — α)"1 is in H. (iii) From (i) and (ii) it follows that
u — z is invertible in Hforze Ah U ΔH = W. Of course u — z is invertible
in H for all z with \z\ > 1. (iv) We next notice that U\W has exactly
two connected components. Let Wί9 W2 be these ones. Then one has
m{x; u(x) e ^ U W2} = 1. Set

f(l — «!«)(! — ί » for zeWx

0 for
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Then g(z) is continuous on K = Wx (j W2 and holomorphic on K° = W1{J W2.
Since every boundary point of K also is a boundary point of Kc — W U
?7C, #(2) can be approximated uniformly on K by rational functions with
poles off K in virtue of a criterion for A{K) = R{K) (Gamelin [3, p. 219]).
Since for every rational function h with poles off K it holds h(u) e H by
(iii), we see that g(u) is an L°°-norm limit of a sequence of elements in
H, and hence is in H. Now set v = (1 — ΪΊ%)(1 — t2u), vι = #(w), and v2 =
v — vγ. Then we have v, vlf v2e H and

ί Wdm) + ί \v2dm) = \v\dm + \v\dm = \(v1 + v2)
2dm

This implies yv^m = 0 or \v2dm = 0. Let yv^m — 0, say. But the

essential range 0){v^) of vx is contained in the closure of the set Gx =
{(1 - zj(l - z2); \Zl\< 1, \z2\< 1} and it holds G, = G2 = J ( 1 - z)2; | z | < 1}
as we shall see soon later. Since (G2)

c is connected, i.e., G2 is polynomially

convex and 0edG2, Yv^m — Q implies vt — 0 by [13, Lemma 1], that is,

m{x; u(x) e W2) = 1, which contradicts Γ(u) = U. It is impossible by the

same reason that \v2dm = 0. Therefore there exist no functions / e H°°(U)

with | | / ( t t ) | L < WfWu Trivially we have | | / (u) |U ^ | | / | | ^ . Hence we
obtain

\\f(u)\L = \\f\\π for all f e H"(U) .

(v) Finally we have to show Gx = G2. Let 1 - zs = rfiiB* (j = 1, 2). Then
we have -ττ/2 < θ, < ττ/2 and r y < 2 cos 0, (i = 1, 2). Let θ = (β, + θ2)/2,
θ1 = β + a and 02 = θ — a. Let r = 2 cos 0 and z = 1 — rβ ί(?. Then we obtain
| s | = 1 and

r2 - r xr 2 > 4(cos20 - cos (θ + a) cos (0 - α))

= 4 sin2 α ^ 0 .

This means | (1 - zj(l - z2) \ < 11 - z |2 and Arg (1 - zθ(l - z2) = Arg (1 -
z)2. Hence we have (1 — z^)(l — z2) 6 G2. This completes the proof of the
lemma. q.e.d.

The second lemma is the following.

LEMMA 3.2. Let D be a bounded domain in the complex plane. Let
(X, Σ, m) be a finite positive measure space. Let T be a multiplicative
linear mapping from H°°(D) into L°°(m) which is isometric and satisfies
Tl = 1. Further suppose that if a uniformly bounded sequence fn e H°°(D)
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converges to an f e H°°(D) in H2(D)-norm, there exists a subsequence fnj

such that Tfn. converges to Tf m-almost everywhere. Then we have:
T(H°°(D)) is weak* closed and for every aeD the mapping Φ: Tf —* f(a)
is a unique multiplicative linear functional Φ on T(H°°(D)) with Φ(Tz) = a.
This Φ is weak* continuous and there exists a non-negative function g in
Lx(m) such that

f(a) = Φ{Tf) = \{Tf)gdm for all f e H°°(D) .

PROOF, (i) We shall show first that T(H°°(D)) is weak* closed. Let
fneH°°(D) be a sequence such that || T/J | ^ 1 and Tfn-+g m-almost
everywhere. Since T is isometric, there exists a subsequence {fn.} such
that fn. converges to an / 6 H°°(D) weakly in H\D). Since H\B) is a
Hubert space, a sequence {gk e H°°(D)} of finite convex combinations of fnj

converges to / in H2(D), where gk is of the form ^j^kcXj(k)fnj9 <%j(k) >
0, Σ aj(k) = l By th e assumption Tgk converges to Tf m-almost every-
where. On the other hand, since gk is of the form ^j^koia{k)fn. and
Tfn. converges to g m-almost everywhere, Tgk also converges to g m-
almost everywhere. Hence one gets g = Tf. This shows via L°°-version
of Krein-Shmulian theorem [6, p. 454] that T{H°°(D)) is weak* closed, (ii)
Let iFbea multiplicative linear functional on T(H°°(D)) such that Ψ(Tz) =
a. Let / e H°°(D). Since g(z) = (f(z) - f(a))/(z - a) e H°°(D), we have
Ψ(Tf - f(a)) = Ψ(T(f - f(a))) = Ψ(TgT(z - a)) = Ψ(Tg)Ψ(Tz - a) = 0,
i.e., Ψ(Tf) = f(a). (iii) We show next the weak* continuity of Φ. Let
Tf a be a directed sequence in T^H^φ)) which converges to a Tf weakly*.
We can assume | |Γ/ α | | ^ 1 to show the weak* continuity. Let Tfn be
a countable subsequence of Tfa such that fn{a) tends to a complex number
6. Since T is isometric, there exists a subsequence /„ which converges
to a g G H°°(D) weakly in H\D) and fn.(a) tends to g(a) = Φ(Tg). Further
there exists a sequence gk = Σj=k aj{fyfn0 of finite convex combinations
of fn. which converges to g in H\D). We can hence assume, by assump-
tion, Tgn converges to Tg a.e. by choosing subsequence if necessary.
Now, since Tfn. converges to Tf weakly*, Tgn also converges to Tf
weakly*. Hence we obtain Tg = Tf, and hence b = lim fn(a) = lim fnj(a) =
g(a) = Φ(Tg) = Φ(Tf) = f(a). Therefore one can conclude that lim Φ(Tfa) =
Φ(Tf). Hence Φ is weak* continuous, (iv) Since Φ is a weak* continuous
multiplicative linear functional on the subalgebra T(H°°(D)) of L°°(m),
there exists by a theorem of Konig-Hoίfman-Rossi a non-negative function
g e Lι{m) such that

/(α) - Φ(Tf) = \(Tf)gdm for all / e H°°(D) .



116 K. YABUTA

The proof is thus complete. q.e.d.

Combining Lemmas 3.1 and 3.2 we have a result on the subalgebra
H(u) of an abstract H°° space H, generated by a non-constant function u in H.

THEOREM 3.3. Let H be an abstract H°° space. Let ue H be non-
constant and Γ(u) be the Caratheodory domain corresponding to u. Let
H(u) be the weak* closure of linear spans of {un: n = 0, 1, 2, •}. Then
we have:

(1) H(u) = {f(u);feH-(Γ(u))}

and H{u) is isometrically isomorphic to H°°(U).
(2) For every a e Γ{u) there exists a unique multiplicative linear

functional Φ on H(u) with Φ(u) = a. This Φ is weak* continuous and
there exists a non-negative g e L1^) such that

φ(v) = \vgdm for all veH(u) ,

and in addition

f(a) = Φ(f(u)) = \f{u)gdm for all f e H°°(Γ(u)) ,

and

lπ., for all feH~(Γ(u)).

PROOF. Let T be the composition operator from H°°(Γ(u)) to Ha
L°°(m), defined by Tf = f(u) for feH^iΓiu)). Then T satisfies all the
conditions for Lemma 3.2 in virtue of [14, Theorem 3.3] and Lemma 3.1.
Let Ήγ = T{H°°{Γ(u))) = {fiuy.feH^iΓiu))}. Then by Lemma 3.2 H, is
weak* closed. Since H^ c H(u) by [14, Theorem 3.3] and each finite linear
combination of {1, u, u2, •} is contained in Hί9 we have thus H(u) = Hγ.
Since H^ is isometrically isomorphic to H^iΓiu)) by Lemma 3.1, and since
Γ(u) is simply connected, H(u) = Hγ is isometrically isomorphic to H°°(U).
Let a 6 Γ(u). Then by Lemma 3.2 Φ: f(u) —* f(a) is a unique multiplicative
linear functional on Si = H{u) such that Φ(Tz) = Φ(u) = a. Now let Cn

be Jordan curves in Γ(u) and Dn be domains bounded by Cn and dΓ(u)
such that a £ Dn, Dn+1 c Dn (n = 1,2, ) and lim Dn = 0. Then by Lemma
3.1 and the maximum modulus principle we have

ess sup I Tf(x) I = \\f\\Γ{u) for all / e H»(Γ(u)) .

Hence by Lemma 3.2 there exist non-negative gn e L\m) such that gn(x) =
0 for x:u(x)£ Dn and
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f(a) = \jίTf)gndm for all f e H°°(Γ(u)) .

Set g — Σ~=12~ngn. Then g is non-negative and we have

f(a) = \(Tf)gdm for all / e i

that is

f(a) = \f(u)gdm for all / 6 H~{Γ{u)) .

Let dmn = gndm and dm0 = gdm. Now H(u, mn) and H(u, m0) are abstract
H°° spaces and we have by a characterization of Γ(-) mentioned in the
introduction

Γ(u,mn)c:Dn n = 1,2,.... .

Let be 3D and ε > 0. Since limD n= 0 , we have {|z — b| < ε} Π Γ(u, mn) Φ
0 for sufficiently large n and hence mn{x: \u(x) — b\ < ε} > 0 by a pro-
perty of Γ(-), and so mo{x: \u(x) — 6| < ε} > 0. Since mo{x: u(x) e Γ(u)} = 1

and \udm0 = ae Γ(u), we obtain Γ(u, m0) = /"(^) by a characterization of

.Γ( ). Hence we have by Lemma 3.1

\\f(u)\\L-{gdm) = \\f\\Γ{%) f o r a l l f e H~(Γ(u)) .

The proof is thus complete.

4. Main results. At first we shall give two sufficient conditions for
a maximal domain to be simply connected.

LEMMA 4.1. Let D be a maximal domain in the complex plane. Let
H be an abstract H°° space. Suppose for every f e H^iD) it holds f(u) e

H(u) for all ueH with m{x:u(x)eD} = 1 and \udmeD. Then D is

simply connected. Here H(u) denotes the weak* closure of linear spans
of {1, u, u\ •••}.

PROOF. Let J be an arbitrarily fixed Jordan curve in D and E be
the Jordan domain bounded by J. Now assume E Π dD Φ 0 . Fix a & e
E Π dD. Then since D is maximal, 6 is an essential boundary point of
D. Let B = B(b, r) be a closed disc with center at b and radius r, which
lies completely in E. As is mentioned in §2, there exists an f e H°°(D)
such that f(a) = 1 for some aeDf)B and \f(z)\ < 1/2 for zeDf]Be.
Naturally aeE Π B. Let Jγ be a Jordan curve situated inside E and
surrounding a, B and E ΠDC. Let F be the domain bounded by J and

e/Ί. Then there exists a ue H such that \udm e F, m{x: u(x) e F} = 1 and
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Γ(u) = E. In fact, let v e H satisfy Γ(v) = C/and \vdm = 0 (there exists

always such one as is mentioned in §2), and φ be a uniformization function

of U onto F, SO that φ is holomorphic in U and the range of φ is precisely

F. Then u = φ(u) is in H and \udm = φ(0) e F by [14, Theorem 3.3] and

it can be easily shown that J and JΊ are contained in the essential range
of u. Hence Γ(u) = E by a characterization of Γ(u). Now for this u
we obtain by assumption g(u)eH(u) for all geH°°(D). Let Φ be the
multiplicative linear functional on H(u) such that Φ(u) = a. Then by
Theorem 3.3 there exists an m-absolutely continuous positive measure m0

such that Φ(v) = \vdm0 for all v e H(u) and hence

Φ(jr(w)) = \g(u)dm0 for all ^ e H°°(D) .

Since for every g e H°°(D) it holds 0(3) — g(ά)•= (2 — α ) ^ ) for some Λ,e
H^iD), and since Φ is multiplicative on ifyO, we have Φ(g(u) — g(a)) =
Φ((u — a)h(u)) = Φ(^ — a)Φ(h(u)) = 0. That is, we have

j % ) d m 0 = flr(α) for all g e H°°(D) ,

especially

( * ) \f(u)dm0 = f(a) = 1 .

On the other hand, since m{x: u(x) e F) = 1 and | f(z)| < 1/2 for zeDf] B%
we have mo{ίc: u(x) e F} = 1 and \f(z)\ < 1/2 for zeF. Hence we have

I ̂ f(u)dm0 ^ \\f(u)\dm0 ^ 1/2 .

This contradicts (*). Hence we obtain E ΓΊ dD = 0 , and hence EczD.
This means D is simply connected. The proof is complete.

LEMMA 4.2. Suppose H be an abstract H°° space such that there
exists a non-constant ueH with \u\ = 1. Let D be a maximal domain
in the complex plane. Then, if for every f e H°°(D) it holds f(v) e H for

all v e H with m{x: v(x) e D} = 1 and \vdm e D, it follows that D is a simply

connected domain.

PROOF. We notice that f(v) e H for all / e H°°(D) implies [f(v)dm =

fίyvdmλ for all f e H°°(D) as in the proof of Lemma 4.1. Now let J be

an analytic Jordan curve in D and G the Jordan domain bounded by J.
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Let a be an arbitrarily fixed point of G ΓΊ D. Let g be a conformal map-

ping of U onto G satisfying g(\udmj = α. Then we see by [14, Theorem

3.1] that v = g(u) satisfies m{x: v(x) e J) = 1, I vrfm = α and (*) m{#: v(ίc) e

E) = ma(E) for every harmonically measurable set E aJ, where ma is
the harmonic measure with respect to α. Now let f(z) e H°°(D). Then
we have by (*) and the assumption

^f(z)dma(z) = \f(v)dm = f^vdm) = f(a) .

This equation implies that f(z) can be continued harmonically from G Π
D onto G and hence holomorphically. Since D is maximal, we obtain that
G Π 3D is empty, and so Ga D. This means that D is simply connected,
which completes the proof.

Next we shall state a condition for a bounded simply connected domain
to be a Caratheodory domain.

LEMMA 4.3. Let D be a bounded simply connected domain in the
complex plane and φ be a conformal mapping U onto D. Let H be an
abstract H°° space and u be a non-constant function in H with Γ{u) = U.
Then, if we have ue H(φ(u)), it follows that D is a Caratheodory domain.

PROOF. Let D* be the component of the interior of D, which contains
D. Then we have 3D* = dD c 3D and D* is a Caratheodory domain, as
is shown in §2. We have further φ(u)eH and Γ(φ(u)) = D*, since
Γ(φ(u))Z)D and Γ{φ{u))(zD* by [13, Theorem A]. We have in addition
by Lemma 3.1

11 fiφiμ)) IU = 11 /1 k for all fe H~(D*) .

Assume now D is not a Caratheodory domain. Then there exists a point
bedDOD* such that_dist (&, 3Z>*) = 28 > 0. Set A = D Π {\z - b\ > 3}
and E = {x: φ(u(x)) e 5 j and fix a point a e D. Then by the maximum
modulus principle we have

ess sup I f(φ(u(x))) I = 11 /1 k for all fe H°°(DJ .
xe E

Hence by Lemma 3.2 there exists an m-absolutely continuous positive
measure m0 on X such that

f(a) = \f(Φ(u))dm0 for all / e H~(D*)

and m0 is concentrated on E. By Theorem 3.3 we have H(φ(u), m) =
{f(φ(u)):feH°°(D*)}, because Γ(φ(u), m) = D*. Hence one can construct
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an abstract H°° space H(φ(u), mQ) = H(X, Σ, m0) starting from φ(u) and
m0. Since ueH(φ(u)) by assumption, u is also in H{φ{u), m0). Since m0

is m-absolutely continuous, we have Γ(u, m0) c U by [13. Lemma 2] and
hence either Γ(u, m0) = U or there exists a point c in U\Γ(u, m0). As-
sume the first case takes place. Then we have by Lemma 3.1

(1) 11/MlkHI/llr for all feH-(U).

H o w e v e r , a s w e h a v e m e n t i o n e d i n t h e p r e l i m i n a r i e s , t h e r e e x i s t s a g e
H°°(D) such t h a t g(d) = 1 for some de D Π {\z - b\ < d} and \g(z)\ < 1/2

for z e Dλ. This implies that / = g(φ) e H°°(U) does not satisfy the above
equality (1), a contradiction. Assume next the second case takes place.
As in the proof of Theorem 3.3 we can choose m0 so that

II f(Φ(u)) |U-(.O, = If/Ik for all / e H~(D+) .

Then, if we regard the composition operator as an operator from H^iD*)
into L°°(m0), there exists again by Lemma 3.2 an m0-absolutely continuous
positive measure m1 such that

f(Φ(c)) = \f(Φ(u))dmί for all f e H~(D*) ,

and especially (2) φ(c) === [φ^iijdm^ We can construct also an abstract H°°

space H(u, mj like as H(φ(u), m0). Since mγ is m0-absolutely continuous,

we have \udm1 e /'(u, m0) and /^(^, mL) c Γ(u, m0). Then by [14, Theorem

3.3] we have f(u) e H(u, mθ for all / e H°°(Γ(u, mO). Since the integration
with respect to m1 is multiplicative and linear on H(u, raj, we have in

the same way as in the proof of Lemma 4.1 \f{u)dmί — fiλudmΛ for all

feH~(Γ(u, mO). Since φ is in H°°(Γ(u, m0)), we have hence \φ(u)dmί =

φ(\udm\ However, since \udmγ£ Γ(u, m0), ce U\Γ(u, m0) and φ is one-

to-one, we get φ(c) Φ φiλudmλ = {φi^dm^ This contradicts (2). Hence

D is a Caratheodory domain and we are done.

Now we are in the position to state our main theorem.

THEOREM 4.4. Let D be a bounded maximal domain in the complex
plane. Let H be an abstract H°° space. Suppose it holds f(u) e H(u) for

all f e H°°(D) and all ue H with m{x: u(x) e D) — 1 and \udm e D. Then

D is a Caratheodory domain.

PROOF. D is simply connected by Lemma 4.1. We shall next show
that there exists a ueH with (*) m{x: u(x)e U} = 1 and Γ(u) = U. Let
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G be the simply connected domain decided by two curves: φγ — tan (πr/2)
and φ2 = tan (πr/2) + π, 0 ^ r < 1, (r, <p; polar coordinates), which con-
tains the point (1/2, 0). Let ve H satisfy Γ(v) = U as in §2 and g a con-
formal mapping of U onto G. Then u = f/(t;) satisfies (*) in virtue of
properties of Γ( ) in §1. Now let φ be a conformal mapping of U onto Zλ
Since u satisfies m{x:u(x)e U] — 1 we have u = φ^oφfa) and φ(u)eH,

\φ(u)dm = φ(\udm)eD as before. And since φ^e H°°(D), we have
u e H(φ(u)) by the assumption. Hence by Lemma 4.3 the domain Z) is a
Caratheodory domain. q.e.d.

Using Lemma 4.2 and the proof method of Lemma 4.3 we have
another characterization of Caratheodory domains.

THEOREM 4.5. Let D be a bounded maximal domain in the complex
plane. Suppose for any abstract H°° space H it holds f(u) e H for all

f e H°°(D) and all ue H with m{x: u(x) e D) — 1 and \udm e D. Then D

is a Caratheodory domain.

PROOF. Since there exist abstract H°° spaces which satisfy the
conditions in Lemma 4.2, D is simply connected. Assume D is not a
Caratheodory domain. Let Z?*, Dlf a, b be the same as in the proof of
Lemma 4.3. Let {ase U}J=1 satisfy (θj}z)dU and

/(0) = Σ /(αi)«y for all / e H°°(U) ,

where aά > 0 and ΣΓ=i ao — l There exist such pairs {a,-; α }̂, for example,
the example of J. Wolff: Let Un = {\z — an\ < rn} be a sequence of
mutually disjoint subdiscs of U with center an and radius rn such that
the planar measure of U\\J Un is zero. Set u(j) = aό for j = 1, 2, and
let m = ΣΓ=i a3^3f where d3- is the Dirac measure at j . Then H(u): the
m-weak* closure of linear spans of {1, u, u2, •} is an abstract H°° space.
Hence if we let φ be a conformal mapping of U onto D, one gets φ(u) e
H(u) and Γ(φ(u)) — D* by virtue of [13, Theorem A]. Thus we have by
Lemma 3.1

sup I f(φ(a3)) I - sup I f(z) \ for all / e Ή~(D*) .
j zeD*

Let {Cj}J=ί = {φ(an)} Π {ze D: \z — 6| > d}. Then one has by the maximum
modulus principle

sup I f(c3) I - sup I f(z) I for all / e ίr°°(D*) .
j zeD*

Applying Lemma 3.2 there exists a probability measure mQ = V~=]

on N such that
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Σ /(<*)& = f(a) for all / 6 #-(£>*) .

Let v(j) = cs for j e N. Then the weak* closure H(v, m0) of linear spans
of {vn: n — 0, 1, 2, •} is an abstract H°° space and we have mo{x: v(x) e

D) = 1 and l wZm0 = aeD. Hence by assumption we have φ~x{v) e H(v, m0).

Put w = Φ~ι{v). Then we get φ(w) = v, and hence weH(φ(w), m0). The
rest of the proof follows along the same lines as the last step of the
proof of Lemma 4.3. The proof is thus complete.

REMARKS TO THIS SECTION. Let dm = π~ιdxdy be the 2-dimensional
normalized Lebesgue measure on U = {\x + iy\ < 1}. Then we have

/(0) =[ f(χ + iy)dm for all / 6 H°°(U) .

Hence H = H(U, m) is an abstract H°° space. Let D be the annulus
{1/2 < |z | < 1}. Then it is clear that for every / e H°°(D) it holds f(u)e

H for all u e H with m{u(z) e D) = 1 andludm e D, because the condition

for u implies that the range of u is contained in D. Hence the assumptions
f(u) e H(u) in Lemma 4.1 and Theorem 4.4 are not superfluous. That
the maximality conditions for D in this section are not superfluous is
trivially shown by an elemental example: Let D be the punctured disc
ί7\{0}. Then every feH°°(D) can be defined as a holomorphic function
in U. Hence for every abstract H°° space we have f(u) e H for all / e

H°°(D) and u e H with m{x: u(x) e D} = 1 and \umd e D, as is mentioned

in the introduction. It is plausible that the assumptions in Lemma 4.2
alone implies D is a Caratheodory domain, if D is bounded.

5. Applications. One of our applications is as follows.

THEOREM 5.1. Let D be a Caratheodory domain in the complex
plane and {an} a sequence in D. Let aeD be fixed. Then the following
are equivalent, (i) There exist non-negative numbers {cn} such that the
closure of the subset {an.} with cn. > 0 contains 3D and

(1) p(a) = Σ cnP(o>n) for all polynomials .

(ii) For all f e H°°(D) we have

(2) βup|/(α.)| =

(iii) For every beD, there exist non-negative numbers {dn} such that the
closure of the subset {anj} with dn. > 0 contains 3D and

(3) hφ) = Σ dnh(*») for all h e H°°(D) .

(iv) For every beD, there exist non-negative numbers {en} such that
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(4) p(b) = Σ enp(an) for all polynomials .

PROOF. Suppose {αj satisfies (i). Let g(j) = a5 and m = Σ^A*
where δ; is the Dirac measure at jeJV. Then I dm = 1 by (1). If we
set H = H(g, m): the σ(L°°(m), L\m)) closure of linear spans of {1, g, g2,
• }, H is an abstract H°° space and Γ(g) = D. Hence we have (2) by
Lemma 3.1. Next suppose {αj satisfies (ii). Let beD and m = Σ~=i 2~y£y.
Let Γ be the mapping from H^iD) into L°°(m) defined by

(T/)(i) = /(αy) for all f e H°°(D) .

Then Γ satisfies all the conditions in Lemma 3.2. Hence there exist
non-negative numbers {dn} such that

/(δ) = Σ dnf(an) for all / e fΓ%D)

And one can easily show that we can take the subset {an.} with dn. > 0
so that the closure of {an.} contains the boundary of D. The proof follows
along the same lines as that of the last equation in Theorem 3.3. In
this case one has further from the step (i) to (ii)

sup I f(anj) I = | | / |U for all / e H°°(D) .

(iii) trivially implies (i) and (iv). Suppose now (iv). For every beD, b£
{an}, choose a sequence {dn(b)} satisfying (4). Then infinitely many dn(b)
are positive. We construct an abstract ίΓ° space H(g, m(b)) as in (i),
where m(b) = X dn(b)δn. Then Γ(g, m(b)) is a non-empty open set containing
b and contained in D. It holds by the step (i) to (ii)

sup I h(an) I = sup I h(z) \ for all h e H°°(D) .
dn(b)>0 Γ(flτ,m(6))

Since clearly we have D = \JheD\{an)Γ(g, m(6)), we obtain for all f e H°°(D)

sup I f(an) I ̂  sup sup | f(an) \
n beD\{an} dn(b)>0

= sup sup I f(z) I = sup I f(z) \ .
beD\{an] Γ(g,m(b)) D

Trivially sup^ \f(z)\ ^ supw \f(an)\. Hence we obtain (2). The proof is
thus complete.

As a corollary we have the following result which contains a theorem
of Hoffman-Rossi.

COROLLARY 5.2. Let D be a Caratheodory domain, and {an} a sequence
in D with no limit points in D. Let an aeD, α$ {an} be fixed. These
are equivalent:
( i ) There exist non-negative numbers {cn} such that

p(a) = Σ cnP(an) for all polynomials .
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(ii) For all feH°°(D) we have

sup I f(an) I = sup I f(z) \ .
n D

(iii) For every beD, there exist non-negative numbers {dn} such that

h(b) = Σ dnh{an) for all h e H°°(D) .

PROOF. It is enough to show that (i) implies (ii). The other implica-
tions follow immediately from Theorem 5.1. Suppose (i). Let m =
Σ cnδn and u(n) = an for n = 1, 2, . Then H(u, m) is an abstract Hardy
space and Γ(u, m) is non-empty, since a g {an} and hence u is non-constant
in L°°(m). Since each boundary point of Γ(u, m) is a limit point of {an.}
with cn. > 0 by a property of Γ(-), and since {αj has no limit points in
D, we have Γ(u, m) = D. Hence by Lemma 3.1 we obtain (ii). q.e.d.

REMARK. If ae{an}, the corollary is still valid when we replace (i)
by the following proposition (i'): There exist non-negative numbers {cn}
such that infinitely many cn are positive and

v{°) = Σ cΛj>(αΛ) for all polynomials .

One can prove in this case with a slight modification of the proof.
Hoffman and Rossi showed the above in the case where D is the unit

disc. We can further characterize Caratheodory domain in terms of
Theorem 5.1.

THEOREM 5.3. Let D be a bounded maximal domain in the complex
plane. The following three propositions are equivalent:
( i ) D is a Caratheodory domain.
(ii) Let {an} be a sequence of distinct points in D with no interior limit
points, for which there exist an ae D and non-negative numbers {cn} with
infinitely many positive ones such that

p(a) = Σ cnp(an) for all polynomials .

Then one has

sup I f(an) I = sup I f(z) | for all f e H~(D) .
n D

(iii) Let {an} be a sequence of distinct points in D such that for every
ce D there exist non-negative numbers {dn} satisfying

P(c) = Σ dnP(an) for all polynomials .

Then one has

sup I f(an) I - sup I f(z) \ for all f e H~{D) .
n D
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PROOF. At first we shall show that for every bounded domain D
there exists a sequence {an} in D which satisfies the assumptions in (ii)
and (iii). Let D* be the component of the interior of D, which contains
D. Then we have 3D* = 3JD c 3D* and D* is a Caratheodory domain. It
holds further

(5.1) sup I f(z) I - sup I f(z) | for all / e H~(D*) .
D D*

In fact, let H be the abstract H°° space constructed in the remark at
the end of the last section and φ be a uniformization function from U
onto D, and so φ is holomorphic in U and its range is precisely D. Then
we have clearly φ(u)eH and Γ(φ(u)) = D*, since 3D* a 3D. Hence by
Lemma 3.1 we obtain

sup I f(φ(z)) | = 11 f(φ(z)) I |L~(m) = sup I f(w) | for all / e i T φ*) ,
zeU weD*

and so we have (5.1). Now let {bn} be a sequence of distinct points in
the unit disc U with no interior limit points, 0 ί {bn}, such that

sup I f(bn) I = sup I f(z) I for all f e H~(U) .
n U

An example in [1, p. 172] is such a sequence. Let | be a conformal
mapping of U onto D* and cn = ψ(bn). Then {cn} is a sequence of dis-
tinct points in D* with no interior limit points and we have through the
conformal mapping ψ

(5.2) sup I f(cn) I - sup I f(z) | for all / e H»{DJ .
n D*

Set {«„} = {cneD}. Then by (5.1) and (5.2) we have

(5.3) sup I f(an) I = sup I f{z) \ for all / e H~φ*) .

This {αw} satisfies the assumptions in (ii) and (iii) by Corollary (5.2). Now
we shall show the theorem, (i) implies (ii) and (iii) by Theorem 5.1 and
Corollary 5.2. Suppose next (ii) or (iii) and let {an}, D* be as above.
Assume D is not a Caratheodory domain. Then there exists a b e 3D
such that dist (6, 3D*) = 2δ>Q. Set A = D Π {\z - b\ > δ}. By the
maximum modulus principle and (5.3) we have

sup I / ( O I - sup I f(z) I for all / e H°°(D*) .

Hence by Theorem 5.1 the set {an: ane A} satisfies the assumptions in (ii)
and (iii), and hence by assumption we get

(5.4) sup I f(an) I - sup I f(z) \ for all / e H~(D) .
aneD1 D
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On the other hand, since D is maximal, there exists a g e iP°(Z)) such
that supzez) |0(z)| > 1 and \g(z)\ < 1/2 for zeD,. This contradicts (5.4).

q.e.d.

Our second application is some remarks to the work of Brown-Shields-
Zeller [1]. We remark that almost all of their results for Jordan domains
are still valid for Caratheodory domains, but we do not describe them
here. We shall however answer to some of their questions. The first
one is the following: Their Lemma 3 [1, p. 165] is valid for Caratheodory
domains and it is in a sence the largest class of domains for which their
Lemma 3 holds. We state it as follows.

PROPOSITION 5.4. Let D be a bounded maximal domain in the com-
plex plane. The following proposition (*) holds if and only if D is a
Caratheodory domain.

(*) If a measure μ in D satisfies \ezwdμ(w) = 0, then it follows

\
f(w)dμ(w) = 0 for all f e H~(D) .

This follows immediately from our Theorem 5.3 and Corollary 5.2

and the following two facts: (1) \ezwdμ(w) = 0 is equivalent to

\p(w)dμ(w) = 0

for all polynomials. (2) If D is a Caratheodory domain, every / e H°°(D)
can be approximated point wise boundedly by polynomials.

Next let D be a bounded domain in the complex plane. By E(D) we
denote the set of all those entire functions h(z) that admit a representation
of the form

h(z) - Σ

Then we have the following (cf. [1, p. 167]).

PROPOSITION 5.5. Let D be a bounded domain in the complex plane
and D* the component of the interior of the polynomial convex hull D
of the closure of D, which contains D. Then we have E(D) = E(D*).

PROOF. AS is shown in the proof of Theorem 5.3, there exists a
sequence of distinct points in D such that

sup I f(an) I - sup I f{z) \ for all / 6 H°°(D*) .
n Dm

This implies by Theorem 5.1 that for every a e D* there exist non-negative
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numbers {dn} such that

P(a) — Σ dnp(an) for all polynomials .

Since for every weC ewz can be approximated uniformly on D* by
polynomials, we have

eaw = Σ dne
a*w for all weC .

Hence we obtain E{D*)aE{D) and hence E(D*) = E(D). q.e.d.

6. Finally we remark that one can construct an abstract H°° space
on any positive measure space except exceptional cases. In fact, we can
show the following.

PROPOSITION 6.1. Let (X, Σ, m) be a positive measure space such that
there exist infinitely many disjoint m-measurable set Aό with 0 < m{A3) <
oo. Then there exist an m-absolutely continuous positive measure m0

and a m-measurable function f e L°°(mo) such that

for n = 1, 2, .

That is to say, the σ(L°°(m0), L1(m0)) closure of linear spans of {1, /, /2,
•••} is an abstract Hardy space.

PROOF. Let c3, a3- satisfy the following equations, as in the proof of
Theorem 4.4. \c3\ < 1, a5 > 0, ΣOLS = 1 and

Σ cla, = (Σ CM)* for n = 1, 2, .
3

Set f(x) = Cj for x e Aό (j = 1, 2, •), = 0 otherwise and g(x) = a
for x e Aj (j = 1, 2, •), = 0 otherwise. Let dm0 = gdm. Then we have

dmQ ^ 0 and \dmQ = Σ aά — 1

Σ c]aά = (Σ

for ^ = 1, 2, . q.e.d.

COROLLARY 6.2. Let (X, 2*, m) δβ a non-atomic probability measure
space. Then there exist bounded m-measurable functions f such that

[f*dm - ([fdmj for n = 1, 2,

In fact, let cjf a3- be the same as in the proof of Proposition 6.1.
Since the space is non-atomic, it holds that if A e Σ with m(A) > 0 and
0 <: a S m{A), there exists a BeΣ with BczA such that a = m(B).
(See, for example, Halmos [4, p. 174].) Hence there exist countably many
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disjoint Aj e Σ such that m{Aj} = aά and hence X m(A3) = 1. Set /(#) =
Cy for a?eAy(i = l, 2, •••)• Then feL°°(m) and satisfies the desired
conditions.

REMARK. The above spaces H contain no inner functions, i.e., there
are no non-constant functions ue H with \n\ = 1. Indeed, let u e iϊ(X, I',
m0) in Proposition 6.1 and \u\ = 1. Then there are at most countably
many α, on the unit circle \z\ = 1 such that mo{#: w(#) e {α,}} = 1 and
so mo{x: u(x) = ak} > 0 for some k. This implies however u = ak by [12,
Theorem 1].
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