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LIMIT SETS OF SOME KLEINIAN GROUPS
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1. It is well known that the limit set of the so-called Schottky group,
whose fundamental domain is bounded by finitely many mutually disjoint
circles, has always 2-dimensional measure zero. Recently Abikoff [1]
proved that there exists an infinitely generated Kleinian group whose
fundamental domain is bounded by infinitely many mutually disjoint
circles and whose limit set is of positive 2-dimensional measure. In this
note we shall give a sufficient condition in order that the limit sets of
such groups have 2-dimensional measure zero.

2. Let {C,C}L, (NS + ) be an at most countable number of
mutually disjoint circles in the complex plane C and assume, in the case
N = 4+, that these circles cluster to a totally disconnected compact set
E in C and that these circles together with the set £ bound an unbounded
domain F. Let T; be a hyperbolic or loxodromic linear transformation of
C onto itself which maps the outside of C; onto the inside of C!, where
C=cCu {eo} is the Aleksandrov compactification of C. Then G* = (T},
generates a free discontinuous group G whose fundamental domain is F.
In what follows, we call such a group G an S-group. If N < + o, then
an S-group is finitely generated and is a Schottky group. The set 4A(G)
of all accumulation points of a set {{eC|{ = V() for some VeG} is
the limit set of G. Unless N = 1, the set 4(G) for an S-group contains
more than two points and G is (non-elementary) Kleinian by definition
(Ford [2]). In the following we shall deal with an infinitely generated
S-group, that is, the case N = + .

For two elements V and W in G, we denote by VW the composite
transformation VW(z) = V(W(z)) belonging to G. Since G is free, any
VeG is uniquely represented in the form V' =2S,S;  ---8S,, where
S,;eG*UG* (G*' = {Ti'}in) and Si, # S;; A =j=n—1). Here we
call the number n the grade of V. An element of grade % in G is often
denoted by S.,. The element S, € G is the identity I of G.

For an S-group G generated by G* = {T)},, let us denote by G, the
Schottky subgroup of G generated by G¥ = {T}2.,. The grade of V? G,
can be defined in the same way as in the case of G. The unbounded
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domain F,(c C) surrounded by {C, Ci}r., is a fundamental domain of G,.
Consider the image S{%(F,) of F, by S{ (€ G,) with grade n. It is easily
seen that S (F,)(n # 0) is bounded by an outer boundary circle and
(2p — 1) inner boundary circles which are images of C, or C; (1 <7 < p).
We shall call a closed disc bounded by an inner boundary circle of S{(F})
a closed disc of grade » with respect to the group G,. The disc of grade
0 with respect to G, is a closed disc [C;] or [Ci] bounded by C; or Ci,
(1 =<i=< p). It is obvious that the number of all closed dises of grade
n with respect to G, is equal to q(p, n) = 2p(2p — 1)* and every one of
them can be represented by S ([C;]) or S{Z([Ci]) for some S¥ €G, and
for some C; or C! (1 £ ¢ £ p).

3. Let G be an S-group and let Ve @G be of the form
ayz + by,
cyz + dy’
Since no Ve G (V # I) fixes the point oo eC, we see ¢, = 0. Further,
ey |™* equals the radius of the isometric circle ¢,z + d, | = 1 of V in the
sense of Ford [2]. Hence the following lemma holds (¢f. Ford [2]).
LEMMA 1. Let G be an S-group. Then the series
1

I£Ve@ [ Cy [/‘

Vizi ayd, — byc, = 1.

converges for any real number p = 4.
Next we shall prove another lemma.

LEMMA 2. Let D be a closed disc with radius r in F. Suppose that,
for a linear tramsformation VeG, ¢, is not equal to zero and the pole
V(o) = —dyci* of V lies outside D. If p is the distance of D from
V= (c0), then 2-dimenstonal measure m*(V(D)) of the tmage V(D) of D by
V satisfies

2 _ T r N
w0) = =]

PrOOF. Let us denote by C:|z — z,| = r the boundary circle of D.
Obviously V(D) is also bounded by the image circle V(C) of C by V.
Letting L be the length of V(C) and putting 6 = arg{(z — z,)/(V (=) — 2,)},

we have
¢leyz + dy |*

L=
¢
__1 S”" r db _ o r
ley [P do (0 + 1) — 2(0 + r)rcos b + r° ey P (0 + 7P —1®
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Evidently m*(V(D)) is the area of V(D) and is equal to L?/4w. There-
fore we have our lemma.

4. Let G be an infinitely generated S-group whose fundamental
domain F is an unbounded domain bounded by mutually disjoint circles
{C,, C}z, in C which cluster to only one point z = 0, the origin of C.
Denote by 7(C) the radius of a circle C in C. Then we can prove the
following

THEOREM. Suppose that there exists a numerical constant K satisfy-
ng
r(C) .
uo)

where I(C) = inf |z — C| and the infimum is taken for all zeC and for
all Le{C, Cl}z, — C. Then the limit set A(G) of the group G has 2-
dimensional measure zero.

sup{ Ce{C, C! ;-;1} —K< oo,

PrOOF. Describe a closed disc D,:|2z| =<7, in C and pick up all pairs
(C;, C}) such that at least one of [C,] and [C]] contains a point lying
outside D,. We may assume that all pairs picked up as above are
{(C,, Ci)}ir,, where p, depends on 7. Put Gj = {T}?, and denote by G,
the group generated by Gj. Clearly G, is a Schottky subgroup of G.
We call G, the Schottky subgroup of G associated with 7. Let us
denote by {8™}i%" . g(p,, m) = 2p,(2p, — 1)*, the set of discs of grade
n with respect to G,,.

Now we put k, = (4K*® + 1)/(2K + 1)’ and take a constant k satisfying
k, < k <1. Here K is the numerical constant appeared in the assumption
of Theorem. For a given number ¢ as such as 0 < ¢ < k/k, — 1, we de-
termine a positive integer n, = n(7, €) such that

q(py,n1) q(py,n1)
(1) 3w = mi(CY o) <.

4 =1

J=1
In fact, every 0™ has the form SZ5([C;]) or SE([Ci]) for some

(ng)

S € G,, and for a suitable C; or C; and 6y = S75([C\]), for instance,
implies S 7'(«0) ¢ [C;]. Hence we can apply Lemma 2 to estimate m*(@{»"")

and Lemma 1 yields (1).

Put ﬁv:: 2,01 ([CJU[CD) U {0}, which is a closure of the set
Uz, {C] U [Ci]}. Obviously

(2) 1@< (" ar)u (U U s @)

7=0 (py)

Here Uy, means the union taken over all Si € G, and this abreviation



94 H. YAMAMOTO

is used throughout the paper. We choose a number M satisfying

(3) max <m2<G u sy (3:,:)), 1) <M.

n=0 (p;y)

The existence of such an M follows from the fact that the set Sfé’)"(ﬁ,:)

coincides Withfl\); and Sfi';i’(’B;) (n # 0) lies inside some C, or C}, 1 <4 < p,.

Now choose a positive number 7, (< 7,) so small that

i) there is a circle C,; (p, < 7) outside the open disc |z| < 7,

ii) (@n/r([Cop))3)* < 1/(2K + 1)* for the diameter d of the set

ZAICGI U [C:]} and the distance I, of U2, {[C] U [C]} from UL, .. {[C.]U
[Ci]}.

Let us determine the number p, in the following way: {(C, C))}r, is
the set of all pairs (C;, C;) such that at least one of [C;] and [C]] contains
a point lying outside the closed disc |z| =< 7,.

Let n, = n(n,, k&) be such a number that

q(pg,mg)
(4) m2( ;L——'-Jl 3;;;2,”2)) < ke, (s, m5) = 2po(2p; — 1)2,

where 0" is a disc of grade n, with respect to G,, and k satisfies ¢ <
klk, — 1 as stated already. By the same reasoning as in the case for
G,,, we have the inclusion relation
q(pg,mg) ng ~
1= (o) u(y s @0).

similar to (2).
For the sake of brevity we put

a(py,m2) ! o
A, = U o, B, =U U S (D) ,
j=1 n=0 (py)

for x =1, 2.
It is not so difficult to certify that

q(p1,ng)

A1,2 = L=Jl 3}?1"»2) CcA4,, a(p,, nz) = 2p1(2p1 — 1),

n2 ~
B,.=UU ((::)1)(D'71)C A,UB,,

n=0 (p1)

A,NB, =@ n=1,2)and A4,,N B,, = @. Further we can see that 4, U
B,CA,,UB,,.
We shall show that

m(B,) < km*(By,s) .
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For the purpose we consider all the sets {’S(‘,:’Z}(Dﬂz)};V:";”1 contained in

a set S&'(D,)(C B,,), where an element S} € G,,1 0 < n £ m,) is fixed and
~~

N, , = N, ,(S@’) is a number of sets ’S(‘,2’2}(D,72) contained in S{,’:}’(Dﬁ)
Necessarily, n < k; < n,, and a grade number k; of some ’S“’Z} may coin-
cide to each other.

If n < k;, then every iS5([C.]) and ISEH([C:]) (p. < @) are contained
in a certain SZ’([C:]) o ((,’:,"([C,’/])(zo1 <" < p,) which is a subset of

(‘,’.’,"(,13,,/1). Hence for a concentric dise I';; |z — z;| < r(C)(1 + 1/2K) of
[C or I'; |2z — 2i| < r(CH)(L + 1/2K) of [C}], we easily see

ISEIC) ST ) Sw'(Dy),  p: <,
ISEA(CH]) < 7S¢ 2)(F')CSff.’)"(i?\;:), p, <1,
and
S NISEE) = ST 0SB
S ) NS =0, p.<t.

Further the pole of “S{?z is outside of Uz,,., {I":U I'} U {0}. Hence from
Lemma 2, we have

m*(*SE5([C.]))
WOSET)
_ [ r(C) (e +7(CY) —r(C)(1 +1/2K)* ]2
(o + r(C))y — r(C) r(C)(1 + 1/2K)
< 4K*
= @K+ 1y

For [C!] (i > p,), We obtain the quite similar estimate
m(SE(C]) . 4K°
mCSEI) — @K+ 1)
Next we consider the case » = k;. In this case, it is seen that

f,€2§(D72) = ’Sf,’,’,"(/D\;). Since the pole of S’ lies inside Uz, ([C:] U [C)])
and from the properties (i), (ii) of 7,, we have

mA( f:f’(ii;» 3, meSECIUICD

(p1)

mz«sw(ﬁ;)) m(S & ([Co,a]))

(n)

IA

Gaeey &) = e
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~
Therefore, for a set S(‘,’I,"(D,,l) which appears in B,, we get

(U 'se30,)

mz(S((:)l)(Dﬂl))
’Z# mz:',mz(as 2’([0;] U [C‘l,])) N mz(is(‘:?’(’ﬁ;)) < 4K*+ 1

= Z Z mz(’S(kj)(F,; U [':)) mz(S(pl)(_/.I)) = (2K + 1)2 = ko .

k,*n p2<s (n)

Since the set B, can be obtained as a union Uz, U,y Uin™ ’S"’zi(D,,z ,
it follows that :

& of T (T
wpy _ 2 Tsm®))

j=

2 - it D -
m(B,) 55V mASE (D,)

where 3, means the sum for all Si’e G, and N,, = N,,(S%). Thus
we can see

m*(B,) = kym*(B,,;s) .
Therefore, it holds from (1), (3) and ¢ < k/k, — 1 that
mi(B,) < kym*(A, U B)) = ky(m*(A,) + m*(B)))
<k(c+M)<k—Fky +kM=EM+ (k—k)1—M)<EkM,
which together with (4) implies
mi (A, U By) = m*(A4,) + m*(By) < k(e + M) .

Repeat the same procedure. Then we get the sequence {1,}i, of positive
numbers such that 7, < 9,_,, lim,_.., 7, = 0 and such that for the Schottky
subgroup G,, of G associated with 7,, the estimate

m* (A, U B) < k(e + M)

holds, where A; is the union iZ™2 672", q(p;, my) = 2p,(2p; — 1)™,
of dises with grade 7, = N;(7;, k*'¢) with respect to G,, and B; =
Uz, Uy Sei? (D'u) Clearly A(G)c A, U B; so that

m(A(Q)) < ke + M) .

Since 0 < k£ < 1 and A is arbitrary, we have our Theorem.
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