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1. Introduction. Let D be the unit disk {|z| < 1}. A holomorphic
function f(2) in D is said to belong to the class N of functions of bounded
characteristic if

(1.1) T(r, ) = —21??” log™® | f(rei®) | d6 = O(1) as r— 1.
0
A function f(z)e N is said to belong to the class N* [2, p. 25] if
(1.2) lim [ "log* | fre) | 0 = | "log* | ()| 0 .
r—1 Jo 0

The class N* can be considered as an F-space in the sense of Banach
[1, p.51], with the metric [9]

8 o(f, ) = = | log (1 + | /e") - g(e*) ) b for f, g N*.

N* is easily seen to be a topological algebra with respect to this metric
(1.83). N™ is neither locally convex nor locally bounded, but has sufficiently
many continuous linear functionals to form a dual system {((N*)*, N*) in
the sense of Dieudonné and Mackey [7, p. 88].

On the other hand, we defined a Fréchet space F'* which contains N*
[9]. We say that a holomorphic function f(z) in D belongs to the class
F+ if
(1.4) M(r, 1) = max [f(2)| = K;exp [ws(r)/(1 — 7)]

with a constant K, > 0 and a continuous function w;(r), 0 < r < 1, de-
pending on f € F'*, such that w,(r) | 0 as r —1. A holomorphic function
f(z) = 3, a,z" belongs to F* if and only if

(L5) 11 = [ exp|

M, Har <
-7

1
for each ¢ > 0. (1.4) is equivalent to
(1.6) a, = 0(expo(Vn)]) as n— oo .
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F* is a countably normed (locally convex) Fréchet space with the system
of (semi-)norms {|| - ||z.}eso- F'* is the second dual space for the space N*
[11], and is a nuclear as well as a Montel space [11]. We can easily see
that F'* is a topological algebra.

In this note, we will characterize generators of the algebra F'*,
following to the methods of Hormander [3], Kelleher and Taylor [5], [6].
Although they treat mainly with several variables, we confine here our-
selves only to one variable case. Generalizations to several variables are
concerns of our further study.

In §§ 5-6, we will determine closed and other maximal ideals in F'*.

2. Generators for F*. Let f,,---, fv€ F'*. Theideal in F'* generated
by f=(f, -+, fv) is denoted as I(f, ---, fv). We write
2.1) If@IF=f@)E+ -+ |fs@) [, zeD.

If we F'* belongs to the ideal I(f, ---, fv), then it is easily seen that
there exist a constant K > 0 and a continuous function w(r), w(r) | 0 as
r —1, such that

(2.2) luz)| < K || fz) |l exp [@®)/1 — )], |z|=7.
THEOREM 1. If we F'* satisfies (2.2), then we have
uzeI(flv "'7fN) .

As a corollary of Theorem 1, we have

THEOREM 2. Let f, «--, fve F*. In order that there exist g,, ---,
gy € F'* such that
(2.3) figi+ o+ fagn =1,
1t 18 mecessary and sufficient that
(2.9 i@ + -+ + | fw()| = dexp [-o(r)/(1 — 7)]

(r = |z]) for some constant 6 > 0 and for some continuous function w(r),
()]0 as r—1.

In contrast to Theorem 1, we have
THEOREM 1*. (2.2) does not imply that we I(f, ---, fx) for we F+.

For the proof, we follow to the method of Rao [8].
In connection with Theorem 2, we have

THEOREM 2*. Let f,, +++, fv€ N*. Then, (2.4) is not sufficient for
fyy ++, fx to be gemerators of Nt. That s, (2.4) does not imply (2.3)
in N*.
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In contrast to the case of Banach algebras, we have
THEOREM 3. Maximal ideals in F'* are not necessarily closed.

Hence, in § 6, we will use somewhat strange method for compactify-
ing in order to put it in a one-to-one correspondence with the maximal
ideal space of F'*.

3. Proof of Theorem 1.

LEMMA 1. Let w,(r) be a continuous function, w,(r)|0 as r— 1.
Then we can find a continwous function w(r) such that w(r) = w,(r) and

0)("‘) g V 1-— 7,
3.1) ()]0, wo@)/A—-7r)fe asr—1
o(r)/(1 — r) is convex.

PrRoOOF. We can suppose that w,(r) is continuously differentiable and
w(r)<0for0r<1.
Let r,= 0. Let r, be a number, 1/2 < r, < 1, and put

a, = @y(r)/(1 — ),
b= —ar, + o,(r)/l — 7).
Let 7, be such that r, > r, and
a7, + b = o)A — 1) .

Then r, < 1. Suppose {r}iz, 7 < Trs, and {a.};zi, {b}izt be determined.
Then, put

(3.2) @ = O(ra)/(L — 7,)",
(3.2) b, = —a,r, + O(r.)/[1 = 7,),
and let r,., be such that r,,, > r, and
(3.2") Calass + ba = O(1,)/(1 — 7411)
then r,,, < 1. We will show that »,11. For that purpose, we put
(3.3) o= 1132 P o
We have
(3.4) @y = (Tosr — T0) H@)(1,)[(L — 70i1) — O(70)/[(L — 7))
1 o) -0 ) T e 0fra)

1-— Tat1 Tw — Tona Tarr — Ta (1 - /rn+1)(1 - 'rn) |

If o in (3.3) would be p <1, we would have, letting n — o in (3.4),
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@)L = p) = (1 = p)"@i(p) lim T2=Te=t + w,()/(L — oY

n+1 n

hence
I ((ry = 700)/(rass — 7)) = 0
since wj(p) < 0. Then, for ¢ <1, we would have
Tuir — T > (1/6)""(ryy — Tups) » M =m, for an m,.

Letting n— o, we obtain a contradiction. Hence we must have

limr,=1.

7n—00

Having proved that », {1, we define
(3.5) or)y=Q1—-7r)a,r +b,) for r, =r=7r,,,n=01 ---.
Then, since

., >a, and o@)>V1-—17r

we have
o(r)/L — r) is convex and &(r)/(L — r) ] o .
Further,
o(r,) = 0(rar);  O(Tay) = @y(r,) | 0
and
o) =v,(r) for 7., <r=7Tu,

where

V(r) = —a,r* + (@, — b,)r + b, .
Since

v(r,) = —2a,r, + (@, — b,) =0,
we get that

w(r) is concave and monotone decreasing for 7, < r < 7,4, .

Thus w(r) | 0, and our Lemma 1 is proved. q.e.d.

By the Lemma 1, functions w(r) in the below may be supposed to
satisfy the condition (3.1).

LEMMA 2; There exists a constant K such that for any ze€ D,
[z—C| = K exp[—o(®)/A — 7)], r =|2]|, implies L€ D and moreover
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o)/ —p) =20(r)/L—1), p=]].
ProOF. Since exp [—w(r)/(1 — )] < exp [—1/V/1 — 7], we have
exp[-o(®)/1l—-7r]=QL-7)/2, r=R
with an R < 1. Put K= (1 — R)/2. Then we have that, if
zeD, |z —¢| =< Kexp[—w(r)/A —1)],

we get

(3.6,) p={=Q+7)/2<1.

If o= r, we have, as 1 — p= (1 — 1)/2,

(3.6,) w(P)/(1 — p) < 20(r)/(L — 7).

If o <r, we have by (3.1)

(3.6,) ()L — p) < @@L — 7).

(3.6,_;) give the lemma. q.e.d.

We note that f e F* implies f'€ F* [9, Theorem 6].
LEMMA 3. If f ts holomorphic in D, then f belongs to F'* if and
only if for some w(r) satisfying (3.1)
(3.7) (171 = L0 1 srey pexp[ 720 |rdras < oo .
)l 1—7r

PROOF. fe F* obviously satisfies (3.7) with some w(r). On the other
hand, it follows that the mean value of | f| over the disk with center at
zeD:

{Gll—2| = Kexp[-w(r)/1 —n)]}cD
is bounded by
(1/K) || f |lo exp [20(r)/1 — 7)] .

By the subharmonicity of | f|, this gives also a bound for |f(z)], |z| =7,
which shows that fe F'* by (1.4).

LEMMA 4. Let g be a form of type (0,1) in D with locally square
summable coefficient g(r, 6), and let 4(r, 6) be a subharmonic function
wn D such that

[ 10t oy peseoraran < o .
D

It follows that there is a function f (a form of type (0, 0)) with df = g,
and
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[, 176, 0y e + 42y rrara0

< “ lg(r, 6) |2 e #"Prdrdd .
D

Proof is found in [3, p. 945, Lemma 4].

For non-negative integers » and g, we shall denote by L? the set of
all differential forms # of type (0, ¢) with values in A?C", such that for
some function w(r) satisfying (3.1),

3.8) SSDIW' 8) |* exp [IL(’”)] rdrdf < oo .

In other words, for each p-tuple S = (¢, +++, %), 1 =%, -++, ©%p = N, h has
a component kg which is a differential form of type (0, ¢) such that &g
is skew symmetric in S and

“D | hs(r, ) [2exp[1 w(r)er'rdﬂ < oo,

Note that L7 =0if p > N or ¢ > 1.
Now d-operator acts componentwise on the elements of L? and yields
a linear mapping 9: L? — {(0, ¢ + 1)-forms with values in 4?C?}, such that

3 = 0. Furthermore, the interior product P; by f = (f.- - -, fv) maps Lr+
into L?: If he L?** then

N
(3.9) (Prh)s = Z{ hsif; for S = (i +-+, 1) .
We define P;L)=0. Clearly P} =0 and P; commutes with d since

Sy, -+, fv are holomorphic. So, we have a double complex.

LEMMA 5. For every he L?, the equation dg = h has a solution
ge L?.

Proof. This follows immediately from the Lemma 4.

LEMMA 6. For any ve C¥D) we have for 0 < r <1,
Srt“S(t)dt - —LS” o(r, 6)d6 — v(0) ,
0 2w Jo

where

1 o™ o*v
S(t) = —_SS tvdedy , Ao =22 4 OV
@) 21 Jiaist vdady Y ox? * oy

Proof is a simple consequence of Green’s formula. See [4, p. 231,
Lemma 3.3].



GENERATORS AND MAXIMAL IDEALS 37

LEMMA 7. Let f, -, fy€ F*. Then, if we put
wii(2) = (fDfi2) — [ R, 4,i=1,---, N,

we have
SS | w,i(z) I* exp [M]rdrdﬂ < o
D 1—17r

for a function w(r) satisfying (3.1).

Proor. At first we suppose that f,, ---, fy have no common zeros.
Then

(3.10) v(z) = 2log || f(z) || € CX(D) ,

and, if we write

w(z) = %Av = 5 1£@FE — H@FE I F@ 1,

i,j=1

it suffices to prove that

SSDw(z) exp [{ﬂr—)]rdrdﬂ < oo,

—7Tr

We apply Lemma 6 for the function » in (3.10). Then
Srt‘ls(t)dt < Mr)
0 1—1»r

for a continuous function A\(r) satisfying (3.1). Now S(t) is non-negative
and increasing, since v(z) in (3.10) is subharmonic, so

S'§@-dt = S 50 gy > 5091y,
t 2 ¢ r

0 r

thus

N MP) ) 0 \:
S(r*) = a— < T ) hence S(r) < (f—_'r>

with a continuous function o(r) satisfying (3.1).
Then, writing w(r)/(1 — r) = p(r),

Sgbw(z) °xp [%(j)_—(:)-:l?‘drdﬁ = Sgl’(r)éz + g SSznsp(r)szﬂ“

<K, + i‘, e ” dvdady

p(r)sentl

<K, + iZ““ exp[—2"] < o .
n=1
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For the case where f,, ---, fy have common zeros, the desired conclusion
may be deduced via a standard argument by considering v,(2) =
log (|| f(?) ||* + € and letting ¢ — 0. q.e.d.

Proor oF THEOREM 1. Suppose ue€ F* satisfies (2.2). Let a =
(ay, « -+, ay) e L; be such that

a, =wf/|flF, 4=1,.--, N.
Then

dor, = || £ |- w 3, £ 07 = 7075 -
If we put
B = || F I wTF = 7377 »

then we get 8 = gﬁi,-)e L: by Lemma 7. Clearly, da = P;3, and there
exists ve L with vy = g8 by Lemma 5. Then, if we put

g =a — Pﬂe L,
then dg = 0, hence g, F*,j =1, ---, N, by Lemma 3, and
P;g =w*, which shows that € I(f,, ---, fx) . q.e.d.

4. Proofs of Theorem 1*, 2* and 3.

ProOF OF THEOREM 1*. Let f,ge F*. If we take in (2.2) N =2,
fi=r% f: =9 and u = fg, then (2.2) holds. If it were true that (2.2)
would imply w € I(f,, ---, fv), we would have fg € I(f? g°) for any f, g€ F'*.
We will show that this is not the case for some f and g¢.

Suppose fg € I(f? 9%, i.e., fg = Af*+ Bg* with A, Be F*. Then

(4.1) Afilg=f— BgeF*, Bg[f=g— AfeF".
We put
@) =11 (@ — )/ - 72) ,
where
2, =1—b* with a constant b, 0<b<1/3,
and

9(z) = exp[—ci + z] with a constant ¢> 0.
—z

Then by (4.1), B/f is holomorphic.
Then, as we shall see shortly later, if H(z) is holomorphic in D,

4.2) fx He F* implies HeF*.
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Thus
Alg =peF* since (A4/9)f*e F+,
B/f =qe F+* sgince BeF*.
Hence
(4.3) l=pXxf+gxg.

This is impossible, since p(2:)f(2,) = 0 and ¢(2,)9(z;) — 0 as seen from (1.4)
and the definition of g(2).

Now we will show (4.2). First we note that
f@1z Iz —|z]/Q —|z]]|2]) .
Put
r™ =1—b"1+ b)/2 = (2, + 2,11)/2 .
Then, if |z| = r™,
lz] — |2l = [b* —b"(1 + b)/2],
1—|z]]z|<b"+0"Q1 +b)2.
Thus, if |[z]| = r™,

3 — b H(L + B)/2 1 1 — b x 2/(1 + b)
@ 1@l = kI>In> kIsI 1T+ 0" 51+ b)2 sl + 07" x 2/(1 + b)

— ™1+ b)/2 . 1 — b™ x 2b/(L + b)
= m;ol T o™ + b)/2 a=01 + b™ x 2b/(1 + b)

=K>0.

Let
h(z) = f(2)H(z) e F* .
Then, for any constant a > 0,

M(r, h)exp[———a’—:l-—»O as r—1.
1—17r

By (4.4), we have

M(r™, H) < M(r™, h)/K .
Thus, for r* ™ < r < r™

M(r, H) £ M(r™, h)/K .

Hence, for r* 0 < r £ r™,

M(r, H) exp [1 'r:| KM@, h) exp [—a/(L — r® )]
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< K'M(r™, h) exp [—ab/(1 — r™)] — 0 as n— o,

hence
M(r, H)exp[—i]—m as r—1
1—17r

for any a > 0, which shows that He F'*. q.e.d.

Proor oF THEOREM 2*. Let v(t), 0 <t < 27, be a continuous and
monotone increasing function such that v(0) =0, ¥v(27) = 1, and V() =0
almost everywhere on [0, 27]. We put, for 2n7r <t < (2n + 2)7,

pr@t) =n + vt — 2n7w) , n=0 +1, £2 ..

and

f(z) = exp [— S::: J_r z d#(t)} .

Then f(z)e H*C N* and
1/f)e F*,

as shown in [12, Proof of Theorem 1]. Therefore, f(2) satisfies (2.4) but
does not generate N*, since f(z) is not invertible in N* while f(z) is
invertible in F'*.

Proor oF THEOREM 3. Put

E = {exp[——ci + z]; c> 0} .

Then EC NtcC F*. If we write [ =fU+fE, I is a proper ideal. It is
eFr
easy to see that

exp[—c1 + z:l——»l as c¢c—0.
1—2z2

Hence the maximal ideal containing I is not closed.

5. Closed maximal ideals in F*. Let A be a topological algebra
with identity 1, locally convex and commutative, over the complex number
field C. Topology of A is defined by a countable family of semi-norms
{Il * l|la}«cz» Which are supposed to satisfy that ||1]l. =1 and for a,bec A

(5.1) labl. = ||@|l«]|0]|l. for every ael.

For an acl, let E, = {ac 4; ]| all. = 0}. E, is obviously an ideal in A.
For ac A, we write ¢ =a + E,c A/E,. Then A/E, is a normed space
with ||a”||l. = ||a]||l.. We have, by (5.1), for a,bec A
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(6.1) 1a70 e = [1a™ [la 11 87 []a -

The completion of A/E, with res. to the norm ||-||, is denoted as A¥.

LEMMA 8. Let ge A. Suppose |1 — pg s tnvertible for |p| <é.
Then, for any a c I there is a d(a) >0 such that || (L — ¢g)7" ||, i bounded

for | 1] < 8(@).
ProoF. Put é(a) = min (9, 1/2|| ¢ ||,) and
ha=1+pg+ -+ +pg"ed, hiecAlE,.
{h.} is a Cauchy sequence in A% if |p¢| < d(a). Then
K™ =lim ke A% .

For a fixed p, we define a linear operator T on A/E, by
Ta™ =1 — pg)a" e AJE, for acA.

T is continuous on A/E, by (5.1'), and continuously extended on Aj.
Then

Tk~ = lim Thy, = lim (1 — pg)h,)” = lim (1 — g™ =1".
Thus A~ = (1 — pg)™')" € A/E,. Then we have, for | ¢| < d(@)
1@ — p9)" lle = Iim | B3 |le = lim [[ Ay ]l = 1 + “Z:Llllﬂgll” =2.
LEMMA 9. Let feA and eC. Suppose N — f 1is invertible for
[N —N| <8,0>0. Then (M — f)* is continuous with respect to \.
PrROOF. Put (A, — f)'=g¢ and £ =%, — A. Then
A=) == 1)
=N — )7 — p9) — 1]
= pg(N — )7L — p9)™" = pg’(1 — pg)™ .
Then for any acl, if |¢| =< d(a),
= )" = = )7 la
slelllgllzll@ — )7l
= 2| p [glle—0 as AN—X, p—0,
hence (A — f)™' is continuous.

LEMMA 10. For any fe A, there is a number \; such that Ay — f
18 not tnvertible.

ProoF. Suppose » — f were invertible for any A€ C. Then (A — f)™
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is continuous with respect to n. Let L be a continuous linear funectional
on A. Then

GO = L — )7
is an entire function. For,
GON) — GOv) = —(v = M) L — )"0 — )7,
hence, by Lemma 9, we obtain
G'(M) = —L((N — )"0 — )7
Further, by the continuity of L,
GO [ =L =)D =K[ON = 1)
with an @el and a constant K. Thus, by Lemma 8, if [N > 2| f |
GV | = KIMTA =Nl 2K/ N —0
as |A|— . Therefore G(\) = 0, i.e.,
L= f)"H=0 for neC
for any continuous linear functional L on A, which is absurd.

As a characterization of closed maximal ideals we have, in analogy
with the well known theorem of Igusa [4], the following

THEOREM 4. Let M be a maximal ideal in F*. The following
conditions for M are equivalent:

(i) M s closed im the topology of uniform convergence on every
disk |z| =r,r <1

(ii) F*/M=C.

(iii) M corresponds to a point z,€ D, i.e., M consists of all functions
of F* which vanish at z,.

Proor. (i) — (ii): Obviously, F*/M>C. For fe F*, we denote
fl=Ff+Me F*/M.
We introduce the family of semi-norms in F*/M as follows:
I1LA11l, = inf (max | f(z) + h(z) N, 0=r<1.

Then clearly

folll, = AT 0L -, 07 <1.
By Lemma 10, to each [f]e€ F*/M, there corresponds a number A € C such
that M — [f] is not invertible. But, since F'*/M is a field by the maxi-
mality of M, A — f must belong to M, i.e., e [f]. Thus we obtain
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F*M=C.

(ii) — (iii): Let z, be the coset [2]e€ F*/M. Then z — z,€ M, hence
2z, € D.
For each f(z)e F'*, we have

(5.2) f(R) — f(z)) = AR)(z — 2) .
As easily seen, A(2) € F't, thus f(z) — f(z)) e M. If f(z) e M, then f(z,) € M,

whence f(2,) = 0. Thus M corresponds to the point z,€ D.
(iii) — (i): This is evident from the theorem of Hurwitz.

6. Maximal ideals in F*. Now we will study some structures of
maximal ideal space of the algebra F'*.

The complex w-sphere is denoted by W. Let @ be the set ofjfall
continuous funections w(r), 0 < r < 1, satisfying (3.1).

Taking a function f(2) € F'*, we define a topology 7o(f) in W.

For a number ¢ > 0 and a function w(r) € Q, we define neighborhood
U(a) of a € W as follows:

(A) a # oo.

A(i) Suppose there is a point 2z, € D such that f(z)) = a. Then we put
for a number 7 > 0,

U(a) = Ua; &, @, 2o, ) = {w; w = f(z), where |z — z,| <7 and

exp [T%]If@) —al<¢f

A(ii) Suppose there is a point §, | | = 1, such that
1imexp[ﬁ(|z_|)_]|f(z) —al=0.
1—|z|

2=

Then we put for a number 7 > 0,

U(a) = Ua; ¢, o, &, ) = {w;w =a+ 0¥, 0<60 <2r, and

0 < €exp [;1_%] for a point ze D such that
z=ol<y, en[2EL ]I ~al < U@

A(iii) Suppose there is neither z, in A(i) nor {, in A(ii). We put
Ue) = Ula; &, ) = {a} .
B) a= .
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B(i) Suppose there is a point &, || = 1, such that
Hm exp| Z2U2D 7)== .

) |2
Then we put for a number 7 > 0,

U(ec) = U(os 6, 0,8, 1) = fw; w = 0,0 <0 <27, and

0> (1/e) exp [1‘"(_"7')_[] for a point ze D such that

2=l <7, exp[lw(llz|l)]lf(z)l > 1/e} U o} -

B(ii) Suppose there is no point {, in B(ii). Then
U() = U(; €, ®) = {0} .

By this system of neighborhoods, W becomes a Hausdorff space. We
note that the topology depends on the function f(2).

Let f(D)C W be the range of f(z) in D, and (f(D))* be the closure
of f(D) with respect to the topology determined by f. Since f(2) e F*,
(f(D))* does not contain «. We compactify (f(D))* as follows:

Let P; be an (abstract) element. Neighborhoods of P, are defined
to be open sets (in the sense of the usual Riemann sphere topology) con-
taining W — (f(D))".

Then, A; = (f(D))*U {P;} is obviously compact. We note that
A; — {P;} satisfies the Hausdorff separation axiom, although A; does
not. A; might be considered, in a sense, as an Alexandroff compactifi-
cation of (f(D))".

Further, let C, be the set of all continuous complex valued functions
with compact supports in D.

Put

(6.1) T = 1'[ A ¢H W, (W, = W with the usual Riemann
sert % sphere topology)

T is compact with the Tychonoff topology. We denote by 7, or 7, the
projection of T on A, or on W,, respectively. We write, for ze D,

V(2) = {f(2), (@)} scr+, sec,

4 is a continuous and one-to-one mapping from D into 7. We write the
closure of ¥(D) in T as D*. Then D* is compact and (D) is dense in D*.

4 is an open mapping. To see this, for z,e D, let U be a relatively
compact neighborhood of z,, and ¢ be a function of C, with support
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contained in U and 4(z,) # 0. Put
V = {pe D*; m,(p) # 0} .

V is a neighborhood of v(z) on D*. V — 4(U) is an open set, as we shall
see shortly later. But we have

(V — (D)) N (D) = void ,
hence V — y(U) is void, for ¥(D) is dense in D*. Therefore we obtain
Vey@)cyd), Vayw),
and + is an open mapping.

Now we will show that V — 4(U) is open, i.e., ¥(0) is closed. Let
g¢¥(0). If there is an f,c F* such that 7s (@) # Py, then there is a
neighborhood U(x,(q)) such that U(z,(q)) N 7, (0 (0)) = void. If 7 (q) = P,
for any fe F'*, then there is, for an f,e F*, a neighborhood U(P;) such
that U(P;,)) N 7s(v(0)) = void, since 7, (v(0)) = f(U) is compact in f,(D).
Thus, if U(q) is a neighborhood of ¢ such that 7, (U(q)) = U(z,,(q)), then
U(q) N ¥(T) = void, and (y(0))° is open, hence ¥(T) is closed.

Thus + is homeomorphic, and D and (D) may be identified.

w; is the continuous extension of f onto D*. For a, be D*, a +# b,
there is an fe F'* with

ms(a) = 7,(0) ,

since for any point p € D* — (D) we have #(p) = 0 for each ¢¢€ C,.
We put

P= I (P} II W,

fert
and

D** =D* — P.
Let M be the set of all maximal ideals in F'*. Then

THEOREM 5. Elements of M and points of the space D** correspond
m a one-to-one way.

ProoF. Let z, be a point of D. It is easy to see that the set of
all functions f(z) e F'* with f(2,) = 0 forms a maximal ideal in F'*.

Let J be a maximal ideal in F'*. We suppose that there are no common
zeros in D for functions of J.

Let f,, + -+, fa, be functions of J. Thus, by Theorem 2, we have for
any o(r) e @,

(6.3) foi§11f< exp [0()/A = (S, @) [ + -+ + [ fe, &) ) = 0
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(r = |z]|) for any r, < 1. Thus, there is a sequence {z,} C D, r, = |2,|—1,
such that

lim inf exp [0()/(L — 7l fu@) | + ++ + | fay(@)) = 0 -

We denote by E(a, ---, @y; ®) the set of points of D* such that
(*e E(a,, -+, ay; ) if for any neighborhood U({*),
inf explw(z))/@ — 2Dl fe®) | + -+ + |foy(@]) =0.

zeU*)ND
E(a, -+, ay; w) is a closed non-void subset of the compact space D*, for
every w(r)€Q, by Theorem 2, since J is a proper ideal. If w(r), ---,
wy(r) € @, we have
E(al’ cee, Oy wl) Ne-N E(al, cee, Oy a)M)

DE(, «--, ay; @, + -« + @) # void .
Hence

E(alf Tt aN) = OQE(“u s, Ay (0)

is non-void. Since
E(alr %y aN) n E(a{y Tt a;() DE(au cee, &y, a:1 % a;{) # void ’

we have

is non-void.
Let {*e€ E and M({*) be the set of all functions fe F'* such that

(6.4) exp [.l‘"i_'zlgﬂ |f()| —0 for each w(r)e@,

as z—(* in D* ze D.
M(¢*) is obviously a proper ideal. Take a function feJ. For any
€ > 0 and o(r) e @, we choose a neighborhood U({*) as

T(UL*) = Urs(8*); ¢, 0, &, 1)
as defined in A(i) with suitable &, [{,| = 1, and 7 > 0. Thus, if ze U(Z*),
exp [@(|z))/1 — [z2)] | f(&) — 7| <e.

But, by the definition of the set E, we have 7,({*) = 0, hence f satisfies
(6.4) and Jc M(L*), hence J = M(L*).

We have that E c D**. FE contains only one point, since the extensions
of functions of F'* separate points of D*. Thus we obtain the proof of
our theorem.
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