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1. Introduction. Let S be a semigroup. B(S) will denote the space
of all bounded real-valued functions on S. A linear functional @ on B(S)
is called a left invariant mean on S if for any fe B(S) and any a € S,

inf{f(s); s€ S} = P(f) = sup {f(s); s€ S}

and

Pf) = 2(f) »

where ,f is defined by .f(s) = f(as) for se S. The semigroup S is said
to be left amenable if it has a left invariant mean. In what follows we
shall always assume that S is left amenable. LIM will denote the set of
all left invariant means on S. If fe B(S), we define

M(f) = sup {¢(f); p € LIM} .

Let (X, _#, m) be a probability space and L,(X) = L,(X, #Z m),1 =
» < oo, the usual Banach spaces. Let $°= {T,; s€ S} be a representation
of S as a semigroup of positive linear operators on L,(X) for some fixed
p with 1 = p £ 0. Thus T, T,, = T,,, for s, s,€S. Hereif p = «, we
shall assume, throughout this paper, that each T, is countably additive,
i.e., T(lim, f,) = lim, Tf, provided (f.) is an increasing sequence of non-
negative functions in L.(X) such that lim, f, € L..(X); hence T, is the
adjoint of an operator on L,(X) and T, restricted to L,(X) is an L-
operator. A function f in L,(X) is called ~invariant if T,f = f for all
s€S. In the case of p = 1, the problem of finding necessary and sufficient
conditions for the existence of a strictly positive .5~invariant function has
been studied by many authors (see, for example, [1], [2], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [18]). It is known that if || T,||, =<1 for allse S,
then the following conditions are equivalent:

(0) There exists a function f,€ L(X) with f, > 0 a.e. and T.f, = f,
for all seS.

(i) Ae_z and m(4)>0 imply inf{S Tsldm;seS} >0.
A
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(ii) Ae_# and m(4) > 0 imply M(SAT,I dm> >0.

The purpose of the present paper is to prove similar results for L,-
operator semigroups .&4 without the restriction of norm condition.

In the last section we assume that sup {|| T.||,; s€ S} < « and also that
there exists a strictly positive function e in LX), where p™' + ¢* =1,
such that T,*e¢ < e a.e. for each s€ S. Under these assumptions we obtain
a generalization of Neveu’s decomposition theorem [9] for the particular
semigroup generated by a single positive linear contraction on L, (X).

2. Existence of positive invariant functions.

THEOREM 1. Let & = {T,; s€ S} be a representation of S as a semi-
group of positive linear operators on L(X). Then the following conditions

are equivalent.
(0) There exists a function f,€ L(X) with f, > 0 a.e. and T.f, = f,

for all seS.
(i) There exists a non-negative function h in L,(X) such that the

set {T,h; s € S} is weakly sequentially compact in L(X) and for any 0 <
ue L. (X) with ||u|l. > 0,

inf {S (T.h)udm;seS} >0.

PRrROOF. Since the implication (0) = (i) is obvious, we prove here only
the converse implication (i) = (0).

Suppose (i) holds. It follows that sup {|| T.h||; s€ S} < . Hence if
@ e LIM, we can define, for Ae_#,

(4) = @(SA T.h dm> .

The condition (i) implies that p is a finite measure on (X, .#) equivalent
with m. Let f, = dg/dm. Then, clearly, f, > 0 a.e., and T.f, = f, for
all se S, since @ is a left invariant mean. This completes the proof.

COROLLARY 1. Let &¥ ={T,; s€ S} be a representation of S as a semi-
group of positive linear operators on L(X). Supposesup{|| T,|l;; s€S} <
co. Then the following conditions are equivalent.

(0) There exists a function f,€ L(X) with f, > 0 a.e. and T,f, = f,
for all s€8S.

(i) Ae.# and m(A) >0 imply inf {SA T.1dm; ses} > 0.

PRrROOF. The implication (0) = (i) is easy (cf. [2] or [9]), so we prove
only the implication (i) = (0).
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Suppose (i) holds. By Theorem 1 it suffices to prove that the set
{T.1; se€ S} is weakly sequentially compact in L,(X). If this is not the
case, then there exists an € >0, a sequence (4,) in _#; and a sequence (s,) in
S such that 4,54, -+, (2 4, = @, and S T, 1dm = ¢ for all n = 1.

4y
But a slight modification of the proof of Lemma 9 of Hajian and Ito [5]
demonstrates that this is impossible, and hence {T.1; s € S} must be weakly
sequentially compact in L,(X). The proof is complete.

THEOREM 2. Let 1 < p =< o, and let .&¥ = {T,;s€ S} be a represen-
tation of S as a semigroup of positive linear operators on L,(X). Then
the following conditions are equivalent.

(0) There exists a function f,€ L,(X) with f,> 0 a.e. and T,f, =
fo for all seS.

(i) There exists a mon-negative function h in L,(X) such that for
any 0 < we LX) with ||u|, > 0,

0 < inf {S (T.hyu dm; ses} < sup{S (T h)u dm; ses} <o,

where p~* + q7' = 1.
(ii) There exists a non-negative function h in L, (X) such that for
any 0 < ue L(X) with ||u]|l; > 0,

sup{S(T,h)udm; ses} < o and M(S (T,h)udm) >0.

If Ae_ then 1, is the indicator function of A and L,(4) denotes
the Banach space of all L,(X)-functions that vanish a.e. on X — A. For
the proof of Theorem 2 we need the following

LEMMA. Let 1 <p =< oo, and let & = {T,; s€ S} be a representation
of S as a semigroup of positive linear operators on L,(X). Then the
space X is uniquely decomposed into two sets Y and Z in _# such that

(a) there exists a function g€ L,(Y) withg > 0 a.e. on Y and T.9 =
g for all se S,

(b) if 0 <heLyX) satisfies sup {S (T.hyu dm; s € s} < o for any
0 = u€ L(X), then

M<§ (T k) dm) ~0

for any 0 < ve L(Z).

PrOOF. Since the T, are positive, there exists a non-negative .-
invariant function g in L,(X) such that for any non-negative .“-invariant
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function f in L,(X), supp fCsuppg. Let us denote Y = suppg and Z =
X — Y. To prove (b), let 0 < he L,(X) and sup {S (T.hyudm; s s} < oo
for any 0 S ue€ L(X). If pe LIM and u e L(X), define
O(u) = @(S (T, h)u dm) .

Then @ is a positive linear functional on L,(X) and, since the dual space
of LX) is the space of L,(X), there exists a non-negative function f in
L,(X) such that O(u) = S fudm for any we L(X). Since &(T*u) = O(u)
for any s€ S and any wu € L,(X), it follows that T,f = f for all s€ S, and
hence supp fC suppg = Y. Consequently we have @(v) = S fvdm = 0 for
any ve L,(Z). This proves (b), and the uniqueness of such a decomposi-
tion is easily checked. The proof is complete.

Proor OoF THEOREM 2. The implications (0) = (i) = (ii) are obvious,
hence we prove only the implication (ii) = (0).

Suppose (ii) holds. By Lemma it is sufficient to prove that m(Z) = 0.
To see this, let v =1,. Then, since M(S (T.h)v dm) = 0, the condition (ii)
implies that ||v |, = 0 and hence m(Z) = 0. The proof is complete.

COROLLARY 2. Let 1 < p < oo, and let &¥ = {T,; s€ S} be a represen-
tation of S as a positive linear operators on L,(X). Suppose sup{|| T ||,
s€ S} < . Then the following conditions are equivalent.

(0) There exists a function f,€ L,(X) with f, > 0 a.e. and T, f, = f,
for all seS.

(i) Ae # and m(4) > 0 imply inf{g T,1dm;ses}> 0.
A

(ii) Ae 2 and m(4)> 0 imply M(S T.1 dm) > 0.
A

ProoF. Immediate from Theorem 2.

3. Decomposition theorem. Let 1 < p < «, and let & = {T,; s€ S}
be a representation of S as a semigroup of positive linear operators on
L,(X). Throughout this section we shall assume that

(1) Sup{”Ta”p;seS}<°°;
and that there exists a strictly positive function e¢ in L,(X) such that
(2) TXe < e a.e. for each seS.

PRrOPOSITION 1. The following conditions are equivalent.
(0) There exists a function f,€ L,(X) with f, > 0 a.e. and T,f, = f,
for all se€S.
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(i) Ae._# and m(A) > 0 imply inf {S T,ldm;seS} > 0.
A

(ii) Ae.Z and m(A) > 0 imply M(S T,1 dm) > 0.
A

(ili) fe Ly (X)and f>0a.e. imply >, T, f = oo a.e. for any sequence
(s,) in S.

(iv) 0=ueL(X) and 37, TXu <  a.e. for some sequence (s,) in
S imply u = 0.

(v) 0=ueLl(X) and 37, Tue LX) for some sequence (s,) in S
imply u = 0.

Proor. By Corollaries 1 and 2, it is sufficient to prove that (i) =
(iii) = (iv) = (v) = (i) and (i) = (ii) = (v).
(i) = (iii): If se S and fe LX), define
Vi(ef) = e(T.f) .

Since {ef; fe L,(X)}is dense in L,(X) in the L;-norm topology and || V,(ef) ||.=
| (Txe)f |l < ||ef|l;, V. may be considered to be a positive linear operator
on L,(X) such that || V.||, =1. It isclear that V, V,, = V,,, for s, s,€S.
Thus {V,; s€ S} is a representation of S as a semigroup of positive linear
contractions on L,(X). By using an argument analogous to that of Fong
[3, p. 79], it may be readily seen that (i) implies that

(i)Y Ae_# and m(A) > 0 imply inf{S V.ldm; seS}> 0.
A

Let feL,(X), f>0 a.e., and let £€ L (X), £> 0 a.e.. Then define,
as in Neveu [9],

h= 5/(1 +3 V,n(ef))
where (s,) is an arbitrary sequence in S. It follows that 0 < ke L.(X) and

S| vemnan = { (£ v.en)him < = .

n=1

Hence inf {S (Vi(ef)h dm; ses} = 0. But since ¢f > 0a.e.and | V.||, < 1
for all se S, it follows that

inf {S (V.Ohdm; s e s} ~0,
and hence & = 0 a.e. by (i)’. This demonstrates that
,,Z:‘; T, f= % ?:,‘1 V..(ef) = ~ a.e..

(ili) = (iv): If 0 = ue LX) and 37, T*u < - a.e. for some sequence
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(s,) in S, define
r=¢f(1+ 3 Taw).

It follows that fe L,(X), f> 0 a.e., and 2:;;18 F(Truydm < . Since
ST, f =  a.e. by (iii), we observe that » = 0 a.e..

(iv) = (v): Obvious.

(v)=(): Let 0 < heL.(X) and 37, V.*h e L.(X) for some sequence
(s,) in S. Since V*h = (1/e)T.*(eh) for each n = 1, it follows that

g T)*(eh) € Ly(X) .

Since ¢ > 0 a.e., (v) implies that ~ =0 a.e.. This and Theorem 3.3 of
Sachdeva [10] imply that (i)’ holds. Hence an argument analogous to that
of Fong [3, p. 79] implies that (i) holds too.

(i) = (ii): Obvious.

(ii))= (v): If e LIM and 0 < uec LX), define

O(u) = ;o(S (T.Lyu dm) .

Here if 37, Tiu € L(X) for some sequence (s,) in S, then for each k¥ = 1
we have

ko) = 0( 33 Tew) 5 05 Taw) < oo

since @ is a left invariant mean. Thus @(u) = 0, and so M (S (T.Du dm) =

0. Consequently (ii) implies that 4 = 0 a.e.. This completes the proof of
Proposition 1.

The following proposition is a counterpart to Proposition 1.

PROPOSITION 2. The following conditions are equivalent.
(0) The only ge L,(X) such that T.g = g for all s€S is 0.
(i) There exists a strictly positive function w in LX) such that

inf{s (T, )udm; seS} =0.

(ii) For each strictly positive function f in L, (X) there exists a
sequence (s,) in S, dependent on f, such that >o T, f < o a.e..

(iii) There exists a strictly positive function u in LX) and a
sequence (s,) in S such that 37_, Tru < o« a.e..

(iv) There exists a strictly positive function u in LX) and a
sequence (s,) in S such that 3.7, Tku € L(X).
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Proor. (0)= (i): Let {V,;seS} be the same as in the proof of
Proposition 1. It follows from (0) and Proposition 1 that the only ¢ in
L(X) such that V,g =g for all seS is 0. Let @€ LIM and define, for

he L.(X), 0(h) = 7’(8 (V.o)h dm>. Since @(V,k) = ®(k) for any se S and
any he L.(X), and since || V.||, =1 for any s€ S, it follows from Lemma
1 of Neveu [9] that for some strictly positive function % in L. (X),

inf {S (Vio)hdm; s € s} ~0.

Here if we let u = eh, then inf{\| (T.1)udm; seS} = 0.
()= (0): By (2), if T.g =g for all s€S, then T,|g| =]g]| for all
s€S. Thus (i) and (1) imply that

Slgludm=inf{S(T,|g|)udm;seS}=:O,

and hence g = 0 a.e..
(i) = (ii): Let feL,(X)and f> 0 a.e.. Since the || T,||, are bounded,

(i) implies that inf {S (T.fludm; se S } = 0, and so there exists a sequence
(s,) in S such that 33, S (T..f)udm < . Since u >0 a.e., it follows

that 3o, T, f < o a.e..

(if) = (i): Let (s,) be a sequence in S such that >,7., T, 1 < o a.e..
Let ée L.(X) and £>0a.e.. Define w = &/(1+3, T, 1). Then u e L(X),
% > 0 a.e., and inf {S (T1)udm;se S} = 0.

(i) = (iv): Since, by (i), the only g in L,(X) such that V,g =g for
all se S is 0, there exists a strictly positive function % in L. (X) with
h <1 such that inf {S (V.1)hdm; s S} = 0. Then, as in Sachdeva [10,
p. 203] (see also Takahashi [12, Lemma 4]), we can choose s,€S, » =1,
2, ..., such that

(Zve - vd)nam < L.
i=1 on
For 7 = 0, define
=[-8 (S0 v
n=j+1 \i=1

It is clear that 0 < h; < h, and

S(h _hydm = S Sz";(v.,n e Vo) hdm < L.
a=j+1 ) i=1 * 27

It follows that m(Ni {xe€ X; hi(x) = 0}) = 0. Next we prove that for
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each 7 =0,
(3) S (Vi eee Vo)hie LX) .
To see this, define the operators S;;, where 7 = 7 = 0, as follows:
S, = Vi; oo Vi if j>7=20,
Y if j=¢20.

It follows, as in [10, p. 204], that
i (Smj)*h] é 1 a.e. .

m=j+1
Thus
i Ve oo Vb = (VX .. V:;)( i (Sm,-)*hj>eLw(X) ,
m=j+1 m=j+1
from which (3) follows easily. Since T*(eh;) = e(V;*h;) for any se€ S, we
have

(4) S (T, - T)"(eh) € LX) -
Let a; = |leh; |l + |12 (T, « -+ Tu)*(ehs) [l + 1, and put
v = i (ehi/2a;) .
Then v € Ly(X), v> 0 a.e., and >, (T, --- T,)*v € L(X).
(iv) = (iii): Obvious.
(iii) = (i): Let w be a strictly positive function in L,(X) and (s.) a

sequence in S such that 37, Tfu < o a.e.. Let e L.(X) and £>0 a.e..
Define

f=§/<1+§Tsju>.

Then fe L,(X)and f>0 a.e.. Since S(z:;;, T, fyudm = Sf(z:;l Tru)dm <
ooy, Sy Ty f < oo a.e.. Thus if we let

h=¢f(1+ S V.e),
then he L(X)and &> 0 a.e.. Moreover, since fo=x§ V. (efhdm < oo,
inf {S Vief)hdm; s e s} 0.

Therefore, it follows that
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inf {S (T.1)ehdm; s € s} — inf {S (V.e)hdm; s € s} 0.
This completes the proof of Proposition 2.

Combining Propositions 1 and 2, we have the following decomposition
of the space X.

THEOREM 3. The space X is the disjoint union of two uniquely
determined sets P and N in _# such that

(a) there exists a function g in L,(P) with g > 0 a.e. on P and
T.g =g for all s€S,

(b) if T.f=f for all s€ S, then fe L,(P),

(¢) if f is a strictly positive function in L,(X), then for any se-
quence (s,) in S,

iT,nf= ~ a.e. on P,
and for some sequence (s;) in S,
f:,T,;Lf< ~ a.e. on N=X—P.
n=1

A positive operator T on L,(X) is called conservative if >.7_,T"f = 0
or « a.e. for any 0 < fe L,(X). The following proposition is an exten-
sion of results due to Sachdeva [10] and Fong [3].

PROPOSITION 3. If there exists a strictly positive function f, in L,(X)
such that T,f, = f, for all se€ S, then the T, are conservative and for each

A€ _#, the left invariant means of \ T.ldm coincide. Conversely, if S
18 countably generated, if the T, are 2onservative, and if for each A€ _#,
the left invariant means of S T.1dm cotncide, then there exists a strictly
positive function f, in L,(X) Asuch that T,f, = f, for all se8S.

Proor. Using techniques given in Sachdeva [10] and Fong [3], it is
now easy to prove the proposition, and hence we omit the details.
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