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Introduction. D. L. Burkholder proved ([1] Theorem 5) that an
L*-bounded martingale sequence is of bounded variation a.s. on every
atom of the basic probability space. This result was proved by the
general convergence theorem of martingale transforms. We shall give
in §1 a direct simple proof of this theorem. In §2 we shall give some
counter examples concerning the majoration inequalities. And in §3 we
shall show that the conclusion of the Burkholder theorem is not necessarily
true on the atomless part of the probability space.

1. THEOREM (Burkholder). Let X = {X,, &,, n = 1} be a martingale
defined on a probability space (2, F, P), and denote its difference sequence
by{dt), d, =X, —X,_,, n=L12,--+; X, =0. If X is L' bounded:

supE|X,|=K< o,

and if A is an atom of the probability space, then >,.|d,.| < =, a.s.
on A.

PrOOF. Every random variable is constant a.s. on every atom, so
we can put X, =a,, a.s. (n =1,2, ---) on the atom A where P(4) > 0
and a, are real constants. The sequence {a,} is bounded, say |a.| < a
for all n, as we see easily from the inequalities:

la.|P(A) = E[X,|<supE|X,| =K.

Put A, ={X,=a,} and A = N}, A;. Clearly 4,, A e #,, A} DAX,
and A¥*> A for all n, since 4,€.%, and A,D A. By the martingale
equality

¥

n

an = S Xn = S Xn+1 = S a’n+1 + S Xn+l ’
A;‘ A 4ar
hence easily

@ = 0 )PUL) = | (K —a).

—A*
no Cntl

So that it follows from the submartingale inequality applied to {| X,|,



124 T. TSUCHIKURA AND M. YAMASAKI

Fan =1},

|an = au P@ = |

n n+1

n n+1

(Lul+os|  (Xl+o
for any N> n. Summing up for n =1,2, .-, N—1

Sla -l P@sR]  (Xl+a

A;:._An+1

= (X+9sK+a,
1
hence >0 |d.| = X |@psy — @n| < o on A a.s. g.e.d.

2. Let us suppose that the probability space is atomic, the Burkholder
theorem implies > |d,| < «, a.s. But, even in this case, the majoration
theorem of the type

(1) E[Sd,]] S o B[ sup| X, ]

where ¢ is a universal constant, is not necessarily true. We shall give
two examples. Note that the expectation in the right hand side of (1)
can be replaced by the square function E[(C] d2)"?], because they are
comparable (Davis [2]).

ExAMPLE 1. Let N be a positive integer. Let 2 = (0,1) and P be
the Lebesgue measure on 2. Denote by », ---, ry the first N Rademacher

functions and put &# = o(r, -+, ry). Clearly the probability space (2,
“, P) is atomic. Put, for 1 <n < N,

Qo =T Xo = 3\75 Fr=0(ry o+, 70)
k=1
then {X,, #,, 1 < n < N} is a martingale, and |d,| = 1, a.s., so evidently
(2) E[Sldl]=~, E[(Za)]|-vF.
n=1 n=1

These equalities show that ¢ in (1) could not be a universal constant.

ExAMPLE 2. We shall construct an atomic probability space and a
martingale such that E[>)|d,|]] = « and E[3d})"!] < . Put 2=
A UA, U --- where 4, is an atom with P(4,) =1/(n(n +1)) »n=1,2, ---),

and for simplicity we write .4, = A(m, n).
Define for 1 <n £ N:
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= a{g — A(1, 2Y),
ol v
—1)4 4 < n
Al —nZ + 1, mE) = m= 2},

0  on 2— AQ, 2",
on o
1 on A((zm —2)2 +1,@2m — 1)5)

—®, . 0n A<(2m — 1)22; + 1, 2mz—1:> l=s=mg2r?

where

_ P{A(@Cm — 2)2" " + 1, 2m — 1)27 ")}
T P{A((Rm — 1)28 4+ 1, 2m - 28 )} ]
If we put X, =31 d, 1 =< n =< N), we get a martingale {X,, #,, 1 <
n < N} which we denote by MG{4,(1 = k < 2%)}.
Now, put b = max,, ;<.v{P(4,)/P(4;)}, then 1/b £ |, .| <b, hence
16 =]d.,] =b (1 =n = N) on A(L, 2Y).
Therefore

lsmg20),

SA(I 2N)'n2— Id l = NP(A(l 2N)) !

Lu,m(idi)m = Lw) (NB)"* < bV/N P(A(, 2Y)) .

For an integer N, consider MG{A,v,.(1 <k < 2")} defined as above, and
let its difference sequence be {d¥, #,”,1 < n < N}.
Then the corresponding b, say by, can be estimated by

by = P(Aw ) /P(An+) £ 4,
and we have the following properties:
U = 0@ — A@Y + 1, 2™), Aol S k < 2) = 777,
n=1
dy=0 on 2— A"+ 1,2"") 1=<n=N),

N 1N
N>z N v+1)) > L
§A<2N+1 oN+1) 3 2 ld] = P(A(2 +1,2™) 2 162"’
el < N Iy N+1)) < 2V N
SA(2N+1 2N +1) {Z (d ) } «'N P(A(2 +1,2 )) ="5¥ ’

and dY 1 £n £ N) is F;"measurable for 1<k <m,1<m<N-1.
Now we put .7‘ y‘l y %(N—-l)/2+k ﬂ‘MU%N_l (1 = k = N; N=:2y



126 T. TSUCHIKURA AND M. YAMASAKI

)y Qyvenyprr = €y A EZE N; N=1,2, ---) where «a, is a positive
constant which will be determined later, and put X, = 3., d,. Then
{X,, Z#., n =1} is a martingale defined on an atomic probability space
(2, V., P) and we get by the above properties:

E[S|d)=3 | a3 ldY| =

AN 41,28 +1) - 16

oo

Blayl=5]  adlS@r] s i ay VA

=1 N=1 oN
If we take ay = 2"N2 we get E[>)|d.|] = = and E[(C] d2)"*] < .

3. By the above theorem of Burkholder, if the probability space
(2, &#, P) is purely atomic, then every L' bounded martingale sequence
is of bounded variation a.s. We shall show that the converse is also
true, that is, if the probability space is not purely atomic, there exists
an L' bounded martingale sequence which is not of bounded variation
on the atomless part of the probability space.

To show this we shall construct a counter example. Suppose that
the probability space (2, %, P) is not purely atomic, then there is a
decomposition of 2 into disjoint .# measurable sets: 2 = 2, U2, U2,U---
where each of the sets 2, 2,, --- are either empty or an atom, and 2,
is an atomless part with P(2,) > 0. It is known that £, has the inter-
mediate value property, that is, for every set Bc 2,, Be # and every
number b, 0 < b < P(B) there exists a set Ce.# such that Cc B and
P(C) = b (Cf. e.g. [3] p. 174(2)).

For this decomposition we define a sequence of random variables {d,}
inductively. Put d, = d(®) = 1o,. By the intermediate value property
there are two sets E, and E, such that E,UFE,= 2,, EENE,= g, P(F) =
P(E,) = 1/2)P(2,). We define d, =d,(w)=1/2 for weE,=-1/2 for
weckE, and =0 for w¢ 2,, By the same way each of the sets FE, E, is
decomposed into two sets such that

E1,1 U E1,2 = L, E2,1 U Ez,z = Ez ’
E110E1z:@y E2ln-E22:®
and P(®, ;) = (1/2)P(E,) = (1/4)P(2,) for ¢, 7 =1, 2. We define d,=d,(w)=1/3
for w e E,1 URE,,, =-—1/83 for we E,,UE,,, and =0 for w ¢ 2,. In general,
the sets E; ... (¢,,...%, =1 or 2; » =1,2, ---) are defined such that
EH Sin—1l U Eﬁ ig—p2 T Ef
Ei Yig—prl n Ez g2 %,

and P(E,,,....,) = 1/2)P(E;,...;, ) = 1/2")P(2,); and we put d, = d.(w) =

10000 Tp—1
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1/(n + 1) for we E,,...;, .
¢ 2ty 2+, 1,., =1 or 2).

Let &, be the sub-o-field generated by d,, ---, d, and write X, =
Sor.dj. As we see easily X = {X,, #,} is a martingale and L* bounded
since E(X7) = P(2) 252, 1/(J + 1)) < o0, but 3,(d,| =3,.1/(n +1) = oo
on 2, that is, X is not of bounded variation on Q,.

We remark finally that, combining the above example and the
Burkholder theorem we get the following theorem which is of similar
form to a result of E. Marczewski [4] and Thomasian [5].

=—1/(n +1) for weE,, ., and =0 for

(LTI RPN

THEOREM. For a probability space (2, Z, P), the following statements
are equivalent:

(1) 9 is a sum of disjoint atoms,

(2) Any L'-bounded martingale sequence ts of bounded variation
a.s.
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