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Introduction. D. L. Burkholder proved ([1] Theorem 5) that an
I/abounded martingale sequence is of bounded variation a.s. on every
atom of the basic probability space. This result was proved by the
general convergence theorem of martingale transforms. We shall give
in § 1 a direct simple proof of this theorem. In § 2 we shall give some
counter examples concerning the majoration inequalities. And in § 3 we
shall show that the conclusion of the Burkholder theorem is not necessarily
true on the atomless part of the probability space.

1. THEOREM (Burkholder). Let X = {Xn, ^n, n ̂  1} be a martingale
defined on a probability space (Ω, J^~, P), and denote its difference sequence
by {dn}> dn = Xn - Xn_19 n = 1, 2, •; X0 = 0. If X is L1 bounded:

supE I Xn\ = K < oo ,
n

and if A is an atom of the probability space, then Σn\dn\ < oo, a.s.
on A.

PROOF. Every random variable is constant a.s. on every atom, so
we can put Xn = an, a.s. (n = 1, 2, •) on the atom A where P(A) > 0
and an are real constants. The sequence {an} is bounded, say an\ ^ a
for all n, as we see easily from the inequalities:

I an P(A) ^ E I Xn\ ^ sup E | Xn =K.

•n+lPut An = {Xn = an} and A: = D?~ι Λ Clearly An, Al e^n, A* =>A
and A* ^> A for all n, since An e ̂ n and An D A. By the martingale
equality

I an = \ Xn = I Xn+1 = 1 αn+1 + I Xn+1 ,
J< J4, J< J<+ι J ^ -^ +i

hence easily

(an - αn+l)P(Aί+1) - [ (Xn+ί - an) .
J<-< + !

So that it follows from the submartingale inequality applied to {|-3Γ»|,
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(\Xn+1\ + a)
l

for any N > n. Summing up for n = 1, 2, , N — 1

(I-3M +α)
-<+!

£ (I ̂  ! + α) ̂  # + α ,
J^

hence ΣΓ I <2»| = ΣΓ αn+1 — αw | < oo on A a.s. q.e.d.

2. Let us suppose that the probability space is atomic, the Burkholder
theorem implies Σ \d»\ < °°> a s But, even in this case, the majoration
theorem of the type

(1) E[ΣI<ZJ]^c

where c is a universal constant, is not necessarily true. We shall give
two examples. Note that the expectation in the right hand side of (1)
can be replaced by the square function E[(Σ^)1/2]> because they are
comparable (Davis [2]).

EXAMPLE 1. Let N be a positive integer. Let Ω = (0, 1) and P be
the Lebesgue measure on Ω. Denote by rί9 , rN the first N Rademacher
functions and put J?~— σ(r19 •• ,r^). Clearly the probability space (Ω,

P) is atomic. Put, f or 1 ̂  n ^ N,

dn = rn, Xn = ΣΛrk,^Γ« = σ(rlf , rn) ,
fc=l

then {Xn, ^~n, 1 ̂  n ^ N} is a martingale, and \dn\ = 1, a.s., so evidently

( 2 ) E [Σ d. |] - N , E[(Σ^)1/2] - VN .

These equalities show that c in (1) could not be a universal constant.

EXAMPLE 2. We shall construct an atomic probability space and a
martingale such that E[Σ|ώ Λ | ] = oo and E [(Σ d£)1/2] < oo . Put fl =
Λ U A2 U where An is an atom with P(An) = l/(n(n + 1)) (n = l,2, •)>
and for simplicity we write \Jl=mAk = A(m, n).

Define f or 1 ̂  n ̂  N:
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n = σ\Ω - A(l, 2"),

((m - 1)| + 1, m|[), (!£»»<£ 2")} ,A

0 on Ω - A(l, 2N) ,

1 on A((2m - 2)|[ + 1, (2m - 1)|J

(1 ̂  m g 2*-1)

where

a = P{^((2m - 2)2*- + 1, (2m - 1)2*-)} π < m < 2*-1) .
P{A((2m — 1)2*-" + 1, 2m 2N~n)} ' ~~ ""

If we put JΓW = Σϊ=ι ^fc (1 ^ ̂  ̂  ̂ )> we &et a martingale {^ΓΛ, ̂ [, 1 ̂
^ ̂  JV} which we denote by MG{Ak(L ^k^ 2N)}.

Now, put δ = maXi^,tej^PίAJ/PCA/)}, then 1/δ ^ | αn,m | ̂  δ, hence
1/δ ^ I d J ^ δ (1 ̂  n ̂  N) on

Therefore

, (Σ diΓ ^ ( w (^δ2)"2 ̂  bVN P(A(1,
1,2^) \ίi = l / J^(l,2^)

For an integer N, consider MG{A2N+k(l ^ k ̂  2^)} defined as above, and
let its difference sequence be {d%, ^\N, 1 ̂  n ^ N}.

Then the corresponding 6, say 6^, can be estimated by

l) ^ 4 ,

and we have the following properties:

7 = σ{Ω - A(2N + 1, 2^+1), A2*+k(l ^k^ 2N)} =

= 0 on Ω- A(2» + 1, 2*+1) (1 ̂  n ̂  N) ,

" _

and d% (1 ̂  n ̂  JV) is ^immeasurable for l ^ A ^m, l ^ m ^ ^ S / " — 1.
Now we put ̂  = JTS, ^K(N^/M = ̂ κ U^ΓvίΓ1 (1 ^ k ̂  N; N =[2,
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3, •)» dN(N-v,2+k = aNdk (1 ̂  & <; N', N = 1, 2, •) where α^ is a positive
constant which will be determined later, and put Xn = Σί=ι ^* Then
{JΓ%, ̂ [, w ^ 1} is a martingale defined on an atomic probability space
(Ω, V«-^> P) and we get by the above properties:

oo ( ( N \ 1/2 o

[(Σ «Π = Σ , N+, <*„ Σ W ^ 4
tf=lj 4(2^+1,2^ + 1) U = l ) N

If we take aN = 2NN~2 we get E [Σ I d» II = °° and E [(Σ dl)1"! < <*>•

3. By the above theorem of Burkholder, if the probability space
(Ω, ̂  P) is purely atomic, then every I/1 bounded martingale sequence
is of bounded variation a.s. We shall show that the converse is also
true, that is, if the probability space is not purely atomic, there exists
an Ll bounded martingale sequence which is not of bounded variation
on the atomless part of the probability space.

To show this we shall construct a counter example. Suppose that
the probability space (Ω, ̂  P) is not purely atomic, then there is a
decomposition of Ω into disjoint ̂  measurable sets: Ω = fl0UflιUΛ2U
where each of the sets Ω^ β2, are either empty or an atom, and Ω0

is an atomless part with P(ΩQ) > 0. It is known that Ω0 has the inter-
mediate value property, that is, for every set B c ΩQ, B e ̂  and every
number 6, 0 < b < P(£) there exists a set CeJ^ such that CdB and
P(C) - 6 (Of. e.g. [3] p. 174(2)).

For this decomposition we define a sequence of random variables {dn}
inductively. Put d0 — dQ(ώ) = lΰo. By the intermediate value property
there are two sets E, and E2 such that El[jE2 = Ω0, E1f}E2= 0 , P(E1) =
P(E2) = (l/2)P(β0). We define dί = d,(ω) = 1/2 for ωeElt=-l/2 for
a)€E2 and = 0 for ω $ Ω0. By the same way each of the sets E19 E2 is
decomposed into two sets such that

Eltί U EltZ = E! , E2lί U E2,z — E2 ,

Eltl Π E1>2 = 0 , E2>1 Π E2>2 = 0

and P(Ei>j) = (1/2)P(E1) = (l/4)P(fl0) for i, j - 1, 2. We define d2 = d2(ω) = lβ
for ft) e Eltl U E2tl, = —1/3 for ω e E2>1 U ̂ 2f2, and =0 for ω ί Ω0. In general,
the sets Eiv...tiu(ilt...tin = 1 or 2; w = 1, 2, •• •) are defined such that

Eiv...,in_vl U Eiv...)in_1>2 = Eiv...iin^

EϊV .,in-vι Π Eh,...)in_v2 = 0

and P(#ίp..., J - (l/2)P(jBilf...f<llJ - (1/2*)P(£0); and we put dΛ -
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l/(n + 1) for ω e Eiv...,in_vl, = -l/(n + 1) for ωe Eiv...)in_v2 and -0 for
o)^ΩQ(ilf •••, in_, = 1 or 2).

Let ^̂  be the sub-σ-field generated by d19 , dn and write Xn =
Σ?=ι dj As we see easily JΓ = (Xn, ^~n} is a martingale and L2 bounded
since E(X2) = P(Λ0) ΣΓ=ι W + I)2 < -, but Σ. KI = Σ. V(^ + !)=«>
on ΩU9 that is, -X" is not of bounded variation on ΩQ.

We remark finally that, combining the above example and the
Burkholder theorem we get the following theorem which is of similar
form to a result of E. Marczewski [4] and Thomasian [5].

THEOREM. For a probability space (Ω, ̂  P), the following statements
are equivalent:

(1) Ω is a sum of disjoint atoms,
(2) Any ^-bounded martingale sequence is of bounded variation

a.s.
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