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1. Let G be a kleinian group, Ω(G) the region of discontinuity of G
and A(G) the limit set of G. Let D(c:Ω(G)) be a simply connected in-
variant domain of a kleinian group G with more than two boundary
points. Here D is not necessarily a component of Ω(G). Then there is
a conformal bijection hD:U—»D, where U denotes the upper half plane.
The group ΓD = h^GhD is clearly a fuchsian group, which we call the
fuchsian equivalent of G corresponding to hD. The isomorphism χD: ΓD-+G,
which carries Ύ0eΓD into 7 = hD^Ύ0oh^eGf is called the canonical iso-
morphism corresponding to hD.

Let Γ be a non-elementary fuchsian group. We denote by B(L, Γ) the
Banach space consisting of all holomorphic bounded automorphic quadratic
forms in the lower half plane L with respect to Γ. We associate with
every feJ5(L, Γ) a solution W+ of the equation {W, z} = (W"/W)' -
(1/2)(W"/W'Y = ψ in L such that W+(z) = ft(*0/ft(s), where ft and ft are
holomorphic solutions of the equation 2η"(z) + ψ(z)i}(z) — 0 in L with the
initial conditions ft = $ = 1, $ = ft = 0 at 2 = — ί. Then TF^ is a
meromorphic function defined in L. For ψ e #(L, Γ) there is a homomor-
phism χ^:Γ—>SL' satisfying W+°Ύ = χ+(Ύ)°W+ for 7eΓ, where SL'
denotes the group of all the Mδbius transformations.

The Teichmϋller space T(Γ) of a non-elementary fuchsian group Γ
is the set of those ψ e B(L, Γ) for which W^ is the restriction, to L, of
a quasiconformal self-mapping w of the Riemann sphere C compatible
with Γ, that is, of a quasiconformal self-mapping w of C such that
wA/r1 c SL'.

Bers [2] proved that, for ψ edT(Γ), W^ is conformal in L and χ+(Γ) =
T7^Γ TΓ^1 is a kleinian group with an invariant component containing W+(L).

For ψedT(Γ), every group of the form χ+(Γ) or its conjugate in
SL' is called a boundary group of Γ. Also a point ψedT(Γ) is called
a cusp if there is a hyperbolic element 7 6 Γ such that χ^(7) is parabolic.

Bers [2] also showed that most points of dT(Γ) are not cusps and,
furthermore, he investigated boundary groups of a fuchsian group of
the first kind in detail and proved many important theorems, which we
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often refer to as Bers' theorems or as Bers' propositions with their
numbering in [2].

The purpose of this paper is to discuss some properties of boundary
groups of a fuchsian group of the second kind.

2. In this section, we state some of Bers' results in somewhat modi-
fied form as lemmas. These play important roles in the later discussions.

As to Propositions 1, 2 and 3 in Bers' paper [2], we can easily verify
that we may assume A in those Propositions to be a simply connected
invariant domain of the kleinian group G contained in Ω(G). In other
words, Bers' Propositions 1, 2 and 3 hold also for a simply connected
invariant domain Δ, which is not necessarily an invariant component of
G. Therefore we have the following Lemmas 1, 2 and 3.

LEMMA 1. Let D (cfi(G)) be a simply connected invariant domain
of a kleinian group G with more than two boundary points, hD: U-+D
a conformal bijection, ΓD a fuchsian equivalent corresponding to hD and
%D9 ΓD—>G the canonical isomorphism. Then hD: U-+D can be extended
to a mapping hD of the union of U with the set of non-elliptic fixed
points of ΓD onto the union of D with the set of non-elliptic fixed points
of G in such a way that for every 70 6 ΓD and for every terminal arc
CQ c U of 70, the restriction of hD to the closure C0 of C0 is a homeomor-
phism of CQ onto the closure C of the terminal arc C = hD(C0) of 7 =
XD(?O) e G.

LEMMA 2. Under the hypothesis of Lemma 1, if 70 e Γ0 is parabolic,
so is 7 = χD(70).

LEMMA 3. Under the hypothesis of Lemma 1, assume that d and ζ2

are two distinct fixed points of elements of ΓD with hD(ζ^ = hD(ζ^. Then
ζj. and ζz are the fixed points of the same element 70 e ΓD so that 70 is
hyperbolic and 3iz>(70) is parabolic.

It is easy to verify that the above lemmas imply the following.

LEMMA 4. Under the hypothesis of Lemma I, G is non-elementary
if and only if ΓD is non-elementary.

The following lemma is well-known.

LEMMA 5. Under the hypothesis of Lemma 1, assume that G is
finitely generated and that ΓD is of the first kind. Then D is a com-
ponent of G.

Before stating Lemma 6, we recall definitions of type and of signature
of a fuchsian group.
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Let Γ be a non-elementary finitely generated fuchsian group. Then
U/Γ = S is a Riemann surface and the covering map U—*S is holomor-
phic. It is well known that S is obtained from a compact Riemann surface
of genus g by removing ri points and m holes, where g, n' and m are
finite. The mapping U—+S is unramified except over finitely many
points P19 P2, , PΛ//, the mapping near a pre-image of Py being Vy-to-one.
We arrange {PyJylΊ so that 2 <^ ^ <^ v2 ^ <; iv, and we set ^ = nf + n"
and Vy = oo, j = n" +1, n" + 2, , w. Under these circumstances, we say
that, if m > 0, Γ or U/Γ is of type (#; n, m) and of signature (0; vlf ,
IV, m) over Z7 and that, if m = 0, Γ or U/Γ is of finite type (g, n) and
of signature (g; ul9 , VΛ) over U. For a non-elementary finitely generat-
ed fuchsian group Γ, Γ is of finite type if and only if Γ is of the first
kind. The following is due to Bers [2].

LEMMA 6. Let Γ be a non-elementary finitely generated fuchsian
group. Assume that Γ is of the first kind. Then Γ is of finite type
(g, n) and of signature (g] ulf , yw) over U if and only if Γ is generated
by 2g + n "standard generators" aί9 βl9 az, •••,&» Ά, •••,?» with the
defining relations [alf &]°[αa, /S2]° °[ag, βg]^^- °Ύn — id and 7^ — id
(1 ^ j ^ n and vs < oo), where [a, β] = a°βoa~^°β~l and aί9 , βg are
hyperbolic, 7y is elliptic and of order v$ if Vy < <^> and Ty is parabolic
if v3 = oo and έ/^esβ Ty (1 ̂  j» ^ %) /orm a complete set of non-conjugate
elliptic and parabolic elements of Γ. If Γ is of the second kind, then
Γ is of type (g', n, m) and of signature (g', »19 , vn\ m) over U if and
only if Γ is generated by 2g + m + n "standard generators" <xl9 βί9 ,
ag> βg, TH ' Ίn, 319 , dm with the defining relations [alf /Sjo[^2, β2]0... 0

lag> βg]°^ι° ' °^0<5ι° °^m = id, 7^ = id (1 ̂  j ^ n and v, < oo). Here
(Xj, βj are hyperbolic, 7y with Vj < co are elliptic and of order vj9 7y with
V3 = oo are parabolic and these Ύ3 (1 <; j ^ n) form a complete set of
non-conjugate elliptic and parabolic elements of Γ, and <5y (1 ̂  j ^ m)
form a complete set of non-conjugate primitive hyperbolic elements of
Γ whose axis do not intersect the axis of any other hyperbolic element
of Γ except for the multiples of δ/s.

3. After preparing two more lemmas, we shall prove a theorem.

LEMMA 7. Let G be a non-elementary finitely generated kleinian
group with a simply connected invariant component Δ. Assume that
there exists a simply connected invariant domain D of G, which is con-
tained in Δ properly, and let hD: U-+D be a conformal bijection, ΓD

the fuchsian equivalent of G corresponding to hD, and χD: ΓD—+G the
canonical isomorphism. Then G has a parabolic element 7 such that



102 K. SAKAN

7,~Dl(Ύ) is hyperbolic.

PROOF. Let hΔ\U-+Δ be a conformal Injection, ΓΔ the fuchsian
equivalent of G corresponding to hΔ and χΔ the canonical isomorphism
corresponding to hΔ. From Ahlfors' finiteness theorem, Δ\G is of finite
type, so is UjΓΔ. Hence ΓΔ is a finitely generated fuchsian group of the
first kind. Clearly hj\D) is a simply connected invariant domain of ΓΔ,
which is contained in U properly. The map h^°hD: U-^hj^D) is a con-
formal bijection and we see that the fuchsian equivalent of ΓΔ correspond-
ing to h^°hD is ΓD and that the canonical isomorphism corresponding to
hjl°hD is χ = %Jlo%z>. As D is not a component of G, we see from Lemma
5 that ΓD is of the second kind. Obviously ΓD is finitely generated, and
Lemma 4 implies that ΓD is non-elementary. Therefore ΓD is a non-
elementary finitely generated fuchsian group of the second kind. Now
we may assume that ΓΔ is of type (g, n) and of signature (#; vlf , vn)
over U. Then we see from Lemma 6 that ΓΔ is generated by 2g + n
"standard generators" al9 βl9 , aff, βg, Ύί9 , 7n with the defining rela-
tions K /3jo[α:2, &]o. - o[ag, βg}°Ίs 07.= id, 7J' = id (1 ̂  j ̂  n, yy < oo),
where αy, /3, are hyperbolic and 7y with Uy = oo are parabolic. Since
% = %7l°'X,D ΓD--+ΓΔ is isomorphic, Γp is also generated by 2g + n gen-
erators α; = χ-W, # - χ-'GSy) (1 ^ j ^ ff), rj - χ-1(7, ) (1 ^ j ^ n) with
the defining relations [a[, β[]°[a'2, ^8ί]° o[αi, ^il0^!0- °X = id, vj^' = id
(1 ̂  J ^ w, Vy < oo). We see from Lemma 2 that a], β'j (1 ̂  j ^ ^r) are
hyperbolic. As χ is isomorphic and 7y (1 ̂  ̂  ̂  n, v3 < oo) form a complete
set of non-conjugate elliptic elements of ΓΔ, 7j (1 ̂  ̂  ̂  n, Vj < oo) also
form that of ΓD. Similarly, if all 7} (1 ̂  j ^ w, Vy = oo) are parabolic,
these elements form a complete set of non-conjugate parabolic elements
of ΓD, and hence from Lemma 6, ΓD is of the first kind. This contradic-
tion shows that there exists a parabolic element 7y € ΓΔ such that 7j =
χ 'CryJeΓ* is hyperbolic. From Lemma 2, 3 (̂7;) - Zz) '̂1^) - χ4(7y) is
parabolic. Thus we have our Lemma 7.

LEMMA 8. Under the hypothesis of Lemma 1, assume that G is non-
elementary finitely generated and has a non-invariant component Δ^.
Let GΔl( c G) be the subgroup of G that leaves Al invariant. Then the
index of GΔl in G is infinite, and GΔl contains a parabolic element 7
such that %ίlCy) is hyperbolic, where χD: ΓD—*G is the canonical isomor-
phism corresponding to a conformal bijection hD: U-+D and ΓD is the
fuchsian equivalent corresponding to hD.

PROOF. Clearly G has an invariant component containing the in-
variant domain D of G. In his paper [2], Bers proved Proposition 7 by
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using Propositions 2 and 5 (both in [2]). So, in a completely similar
manner to that in [2], we can verify our Lemma 8 by using Lemma 2
in stead of Proposition 2 in [2].

Now we can prove the following.

THEOREM. Let Γ be a non-elementary finitely generated fuchsian
group of the second kind and let ψedT(Γ). Then %^(Γ) is a non-
elementary finitely generated kleinian group with an invariant com-
ponent Δ which contains Wψ(L) properly. Moreover, let ψedT(Γ) be not
a cusp. Then the region Ω(χ^(Γ}) of discontinuity of χ^(Γ) is only one
invariant component of ^(Γ) and is not simply connected.

PROOF. It has been proved by Bers [2] that, for f edT(Γ), χ^(Γ)
is a kleinian group with an invariant component Δ which contains W+(L).
Since W+i L —> TTV(L) is conformal, W^(L) is a simply connected, χ^(Γ)-
invariant domain and the fuchsian equivalent of χ^(Γ) corresponding to
W+ is Γ — W+ltχf+(Γ)W+. As Γ is non-elementary and finitely generated,
Lemma 4 implies that χ^(Γ) is also non-elementary and finitely generated.
Hence A/χ+(Γ) is of finite type. On the other hand, WV(L)/χ^(Γ) is con-
formally equivalent to L/Γ which is not of finite type. Therefore
Wir(L) £ A. Now assume that Δ is simply connected. Then, χ^(Γ) is a
non-elementary finitely generated kleinian group with a simply connected
invariant component Δ, and Δ contains a simply connected invariant
domain W^(L) of χ ̂ CO properly. Hence we see from Lemma 7 that
α^edT(Γ) is a cusp. Therefore, if ^edT(Γ) is not a cusp, then A is
not simply connected. In this case, from Accola's theorem [1], %^(Γ) has
no invariant components of Z^(Γ) other than A. From Lemma 8, for
α/r e 3 T(Γ) which is not a cusp, χ^(Γ) has no non-invariant components of
%+(Γ). Thus, for ψedT(Γ) which is not a cusp, we have A = Ω(χ^(Γ)).
The proof of Theorem is complete.

4. Example. According to a result of Maskit [3], a non-elementary
finitely generated kleinian group G is a Schottky group if and only if G
is free and every element of G other than the identity is loxodromic.
Now let Γ be a non-elementary finitely generated fuchsian Schottky
group. Then the above Maskit's result yields that, for ^edT(Γ) which
is not a cusp, χ^(Γ) is a Schottky group. Thus β(χ^(Γ)) is only one
invariant component of ^(Γ) and is not simply connected.
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