Tôhoku Math. Journ. 28 (1976), 57-66.

ON PARABOLIC SUBGROUPS OF CHEVALLEY GROUPS OVER LOCAL RINGS

KAZUO SUZUKI

(Received October 22, 1974)

Introduction. Let G be a Chevalley-Demazure group scheme associated with a connected complex semi-simple Lie group $G_{\mathcal{C}}$ (as for definition, see [1] 1.1), \varDelta be the root system associated with G and a maximal torus T of G, and R be a commutative ring with a unit. We shall fix a fundamental root system Π of \varDelta once for all. Denote by $x_{\alpha}(t)$ the unipotent element of G(R) associated with a root α of \varDelta and $t \in R$. Let V(R) be the subgroup of G(R) generated by $x_{\alpha}(t)$ for all negative roots α of \varDelta and all $t \in R$. Then a subgroup P of G(R) containing V(R)T(R) is called a parabolic subgroup of G(R) associated with Π . Following J. Tits, it is well known that if R is a field, then the set of parabolic subgroups of G(R) associated with Π is lattice isomorphic to the family of subsets of Π .

N. S. Romanovskii [4] has given a discription of parabolic subgroups of $GL_n(R)$ for a local ring R. In this note, for a simple Chevalley-Demazure group scheme G and a local ring R, we shall give a generalization of the Tits' theorem in the same situation as Romanovskii's result. The main theorem is stated in Section 1, and we shall prove our main theorem in Sections 2 and 3. The author wishes to express his hearty thanks to professor E. Abe for his many helpful comments and encouragement.

1. The statement of the main theorem.

1.1. Let G be a Chevalley-Demazure group scheme and R be a commutative ring with a unit. A collection of ideals $\{\mathfrak{A}_{\alpha}\}_{\alpha\in J}$ which corresponds bijectively to the set \varDelta of roots, is called a carpet of R associated with \varDelta . Furthermore, a carpet $\{\mathfrak{A}_{\alpha}\}_{\alpha\in J}$ is called a permissible (resp. semi-permissible) carpet associated with (\varDelta, Π) , if the following conditions (1) and (2) (resp. (1) and (2')) are satisfied,

(1) for any roots α and β of Δ such that $\alpha + \beta \in \Delta$

$$\mathfrak{A}_{\alpha}\mathfrak{A}_{\beta}\subset\mathfrak{A}_{lpha+eta}$$

(2) for each negative root α of \varDelta , $\mathfrak{A}_{\alpha} = R$,

K. SUZUKI

(2') if \mathfrak{A}_{α} is a proper ideal of R, then $\mathfrak{A}_{-\alpha} = R$.

1.2. Assume G is simple. Let R be a local ring, \mathfrak{M} be the maximal ideal of R, k be the residue class field R/\mathfrak{M} and ch(k) be the characteristic of k. We shall set up the following assumptions,

(a) $ch(k) \neq 2$ for any type of G,

(b) if G are of types A_3 , $B_m(m \ge 2)$, C_n , $D_n(n \ge 3)$ and F_4 , then $k \ne F_3$ where F_3 is a field with three elements and if G is of type G_2 , then $ch(k) \ne 3$. Then our main theorem is the following.

1.3. THEOREM. Let G be a simple Chevalley-Demazure group scheme and R be a local ring. Assume G and R satisfy (a) and (b) in 1.2. Let P be a parabolic subgroup of G(R) associated with Π and denote $\mathfrak{A}_{\alpha} = \{t \in R \mid x_{\alpha}(t) \in P\}$ for each root α of Δ . Then $\{\mathfrak{A}_{\alpha}\}_{\alpha \in \Delta}$ is a permissible carpet, and further, the mapping $\Psi: P \to \{\mathfrak{A}_{\alpha}\}_{\alpha \in \Delta}$ is a bijection of the set of parabolic subgroups of G(R) associated with Π onto the set of permissible carpets associated with (Δ, Π) .

REMARK. If G is not simple, examining the proof of lemma in 2.5, we can see that, if we assume $ch(k) \neq 2$ and $ch(k) \neq 3$ instead of (a) and (b) in 1.2, our main theorem also holds.

Throughout the following section, let G be a Chevalley-Demazure group scheme, and let R be a local ring and \mathfrak{M} be the maximal ideal of R. Denote by Δ the root system associated with G and a maximal torus Tof G, by Π a system of fundamental roots of Δ , by Δ^+ (resp. Δ^-) the set of positive (resp. negative) roots of Δ . Let S be a closed subset of Δ^+ and $\mathfrak{R} = {\mathfrak{A}_{\alpha}}_{\alpha \in \Delta}$ be a carpet of R associated with Δ . Then we denote by $U_s(\mathfrak{R})$ the subgroup of G(R) generated by $x_{\alpha}(t)$ for all $t \in \mathfrak{A}_{\alpha}, \alpha \in S$. In particular, if $\mathfrak{A}_{\alpha} = \mathfrak{A}$ for all $\alpha \in S$, we denote $U_s(\mathfrak{R})$ by $U_s(\mathfrak{A})$, and if $S = \Delta^+$, denote $U_s(\mathfrak{A})$ by $U(\mathfrak{A})$. In the above notation, replacing Δ^+ by Δ^- , we can construct $V_s(\mathfrak{R}), V_s(\mathfrak{A})$ and $V(\mathfrak{A})$ which are same as $U_s(\mathfrak{R})$, $U_s(\mathfrak{A})$ and $U(\mathfrak{A})$ respectively.

2. Proof of injectivity.

2.1. LEMMA. Let R be a local ring in which 2 is invertible. Let N be a subgroup of G(R) normalized by the maximal torus T(R). Then, for each root α of Δ , $\mathfrak{A}_{\alpha} = \{t \in R \mid x_{\alpha}(t) \in N\}$ is an ideal of R.

PROOF. Assume $x_{\alpha}(t) \in N$, then it is sufficient to prove $x_{\alpha}(bt) \in N$ for any $b \in R$. Every element b of R can be written in the form

$$b = \left(\frac{b+1}{2}\right)^2 - \left(\frac{b-1}{2}\right)^2.$$

58

Thus it is sufficient to show that $x_{\alpha}(a^2t) \in N$ for any $a \in R$. If a is invertible, setting $w_{\alpha}(a) = x_{\alpha}(a)x_{-\alpha}(-a^{-1})x_{\alpha}(a)$ and $h_{\alpha}(a) = w_{\alpha}(a)w_{\alpha}(-1)$, we have $h_{\alpha}(a)x_{\alpha}(t)h_{\alpha}(a)^{-1} = x\alpha(a^2t) \in N$. If a is not invertible, then $a^2 + 1$, $a^2 - 1$ are invertible, and we have

$$x_{lpha}(a^2t)=x_{lpha}\Bigl(\Bigl(rac{a^2\,+\,1}{2}\Bigr)^{\!2}t\Bigr)x_{lpha}\Bigl(\,-\,\Bigl(rac{a^2\,-\,1}{2}\Bigr)^{\!2}t\Bigr)\,.$$

Thus our assertion can be reduced to the former (cf. [4] Lemma 1). q.e.d.

For roots α and β of Δ , write $\langle \alpha, \beta \rangle = 2(\alpha, \beta)/(\beta, \beta)$, and these are called Cartan integers where (α, β) is the scalar product of α and β . Then we have the following lemma.

2.2. LEMMA. Let Δ be of rank > 1. If α and β are any positive roots of Δ and $\alpha \neq \beta$, then there exists a root $\gamma \in \Delta$ such that

(a) $\langle lpha, \gamma
angle = \pm 2$, $\langle eta, \gamma
angle = 0$

or

(b)
$$\langle \alpha, \gamma \rangle \equiv 1$$
, $\langle \beta, \gamma \rangle \equiv 0 \pmod{2}$.

PROOF. If $(\alpha, \beta) = 0$, then taking $\gamma = \alpha$, we have $\langle \alpha, \gamma \rangle = 2$ and $\langle \beta, \gamma \rangle = 0$. Suppose $(\alpha, \beta) \neq 0$, then we have $\alpha + \beta \in \Delta$. Let Δ_2 be a subsystem of roots in Δ of rank 2 consisting of the roots $i\alpha + j\beta$, $i, j \in Z$, then our assurtion follows easily from the following tables of Cartan integers with respect to the roots of Δ_2 .

$$arDelta_2$$
: of type A_2 $arDelta_2^+ = \{ lpha_1, \, lpha_2, \, lpha_1 + lpha_2 \}$

	$lpha_{_1}$	$lpha_{2}$	$lpha_{_1}+lpha_{_2}$
$\alpha_{_1}$	2	-1	1
$lpha_{\scriptscriptstyle 2}$	-1	2	1
$lpha_{\scriptscriptstyle 1}+lpha_{\scriptscriptstyle 2}$	1	1	2

 $arDelta_2$: of type B_2 $arDelta_2^+=\{lpha_1,\,lpha_2,\,lpha_1+lpha_2,\,lpha_1+2lpha_2\}$

	$lpha_{_1}$	$lpha_{2}$	$lpha_{_1}+lpha_{_2}$	$lpha_{\scriptscriptstyle 1}+2lpha_{\scriptscriptstyle 2}$
α_1	2	-2	2	0
$lpha_{2}$	-1	2	0	1
$lpha_{_1}+lpha_{_2}$	1	0	2	1
$lpha_{_1}+2lpha_{_2}$	0	2	2	2

K. SUZUKI

$arDelta_2$: of type G_2 , $arDelta_2^+ = \{ lpha_1, lpha_2, lpha_1 + lpha_2, 2lpha_1 + lpha_2, 3lpha_1 + lpha_2, 3lpha_1 + 2lpha_2 \}$								
	$lpha_{_1}$	$lpha_{2}$	$lpha_{_1}+lpha_{_2}$	$2lpha_{_1}+lpha_{_2}$	$3lpha_{_1}+lpha_{_2}$	$3lpha_{_1}+2lpha_{_2}$		
$\alpha_{_1}$	2	-1	-1	1	1	0		
$lpha_{2}$	-3	2	3	0	-1	1		
$lpha_{\scriptscriptstyle 1}+lpha_{\scriptscriptstyle 2}$	1	1	2	1	0	1		
$2lpha_{\scriptscriptstyle 1}+lpha_{\scriptscriptstyle 2}$	1	0	1	2	1	1		
$3lpha_{\scriptscriptstyle 1}+lpha_{\scriptscriptstyle 2}$	3	-1	0	3	2	1		
$3lpha_{_1}+2lpha_{_2}$	0	1	3	0	1	2		
	I					q.e.d.		

2.3. COROLLARY. Let Δ be a simple root system of type A_l $l \geq 2$ $l \neq 3$, E_6 , E_7 or E_8 . Then for any positive root α and β of Δ , there exists a root $\gamma \in \Delta$ such that $\langle \alpha, \gamma \rangle \equiv 1$, $\langle \beta, \gamma \rangle \equiv 0 \pmod{2}$.

PROOF. Assume $(\alpha, \beta) \neq 0$, then the subsystem Δ_2 of Δ generated by α and β is of type A_2 . Thus our assertion can be checked by the table of Cartan integers of type A_2 . Suppose $(\alpha, \beta) = 0$. Since $\langle \alpha, \beta \rangle = (w\alpha, w\beta)$ for any element w of the Weyl group W, we may assume $\alpha = \alpha_1$ where $\Pi = \{\alpha_1, \dots, \alpha_l\}, l \geq 4.^{*}$ Thus $Z_0(\alpha_l) = \{\gamma \in \Delta \mid (\alpha_l, \gamma) = 0\}$ is a simple subsystem of type A_{l-2}, A_5, D_6 or E_7 , if Δ is of type A_l, E_6, E_7 or E_8 respectively (cf. M. R. Stein [5]). Therefore there exists an element w of W such that $w(\alpha) = \alpha_l, w(\beta) = \alpha_{l-2}$. Thus, there exists a subsystem Δ' of type A_4 in which we may assume $\alpha = \alpha_4, \beta = \alpha_2$, where $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ is a fundamental system of Δ' . Taking $\gamma = \alpha_1 + \alpha_2 + \alpha_3$, we have

 $\langle lpha, \gamma
angle \equiv 1$, $\langle eta, \gamma
angle \equiv 0 \pmod{2}$.

q.e.d.

2.4. LEMMA. Let $\Re = {\{\mathfrak{A}_{\alpha}\}_{\alpha \in J}}$ be a carpet of R associated with \varDelta such that $\mathfrak{A}_{\alpha}\mathfrak{A}_{\beta} \subset \mathfrak{A}_{\alpha+\beta}$ for α, β and $\alpha + \beta \in \varDelta$, and S be a closed subset of \varDelta^+ . Let β_1, \dots, β_M be any given ordering of S. Then each element

*) In the proof of above corollary, we shall set the fundamental root system as follows (A_l) ۰- α_1 α_2 $\alpha_{l-1} \alpha_l$ (D_l) $\circ \alpha_{l-1}$ α_1 α_2 α_{l-2} `°α, (E_l) α_1 α_2 α_4 α_5 $\alpha_{l-1} \alpha_l$

l = 6, 7, 8.

of $U_s(\Re)$ is expressed in the form

$$x_{\beta_1}(s_1)\cdots x_{\beta_M}(s_M)$$

where $s_i \in \mathfrak{A}_{\beta_i}$ $i = 1, \dots, M$.

PROOF. Let U' be the set of elements expressible in the form as stated in the lemma. To prove our assertion, it is sufficient to show that $x_{\alpha}(t)U' \subset U'$ for any $x_{\alpha}(t), t \in \mathfrak{A}_{\alpha}$ and $\alpha \in S$. By the same way as in [1] 2.7, we can show this easily. q.e.d.

2.5. LEMMA. Assume that G is simple, and G and R satisfy (a) and (b) in 1.2. Let N be a subgroup of U(R) normalized by T(R). If we express an element x of N in the form

$$x = x_{\beta_1}(s_1) \cdots x_{\beta_M}(s_M)$$

where $\beta_1 < \cdots < \beta_M$ be any regular ordering of Δ^+ , then $x_{\beta_i}(s_i) \in N$ for $i = 1, 2, \cdots, M$.

PROOF. For a unit element u of R, we have

$$[h_{\tau}(u), x_{\beta}(t)] = x_{\beta}((u^{\langle \beta, \gamma
angle} - 1)t)$$

where $[a, b] = aba^{-1}b^{-1}$ for $a, b \in G(R)$. If there exists $\gamma \in \Delta$ such that $\langle \beta_1, \gamma \rangle \equiv 1, \langle \beta_2, \gamma \rangle \equiv 0 \pmod{2}$, then by 2.4, we obtain the following,

$$egin{aligned} [h_{7}(-1),\,x] &= [h_{7}(-1),\,x_{eta_{1}}(s_{1})]^{x_{eta_{1}}(s_{1})}[h_{7}(-1),\,x_{eta_{2}}(s_{2})] \ &\cdots^{x_{eta_{1}}(s_{1})\cdots x_{eta_{M}-1}(s_{M-1})}[h_{7}(-1),\,x_{eta_{M}}(s_{M})] \ &= x_{eta_{1}}(-2s_{1})x_{eta_{2}}(s_{2}')\,\cdots\,x_{eta_{M}}(s_{M}')\in N \end{aligned}$$

where ${}^{a}y = aya^{-1}$. If u and $u^{2} - 1$ are units of R and there exists a root $\gamma \in \Delta$ such that $\langle \beta_{1}, \gamma \rangle = \pm 2$, $\langle \beta_{2}, \gamma \rangle = 0$, then we have the following,

$$egin{aligned} &[h_{ au}(u),\,x] = [h_{ au}(u),\,x_{eta_1}(s_1)]^{x_{eta_1}(s_1)}[h_{ au}(u),\,x_{eta_2}(s_2)] \ &\cdots^{x_{eta_1}(s_1)\cdots x_{eta_{M-1}}(s_{M-1})}[h_{ au}(u),\,x_{eta_M}(s_M)] \ &= x_{eta_1}((u^{\pm 2}-1)s_1)x_{eta_3}(s_3')\,\cdots\,x_{eta_M}(s_M')\in N \ . \end{aligned}$$

By Lemma 2.2, its Corollary 2.3 and the assumptions (a) and (b) in 1.2, we can see easily that, repeating the above process, we obtain $x_{\beta_1}(vs_1) \in N$ for some unit element v of R. Thus by 2.1, we have $x_{\beta_i}(s_1) \in N$. By induction on the indices i of roots β_i , we have $x_{\beta_i}(s_i) \in N$ for $i = 1, 2, \dots, M$. q.e.d.

2.6. PROPOSITION. Let P be a parabolic subgroup of G(R). Then P is generated by the elements of B(R) and $P \cap U(R)$ where B(R) = V(R)T(R).

PROOF. Let $\tilde{\phi}$ be a group homomorphism $G(R) \to G(k)$ induced by the natural ring homomorphism $\phi: R \to k = R/\mathfrak{M}$, then $\tilde{\phi}(P) = P'$ is a parabolic subgroup of G(R) and by Tits' theorem, we have that P' is generated by B(k) and $x_{\alpha}(1)$ for all root $\alpha \in I$ where I is a subset of Π . On the other hand, since Ker $\phi = V(\mathfrak{M})T(\mathfrak{M})U(\mathfrak{M})$ (cf. [1] 3.3), we can choose generators of P among the elements of B(R) and U(R). q.e.d.

2.7. Proof of injectivity. Let P be a parabolic subgroup and set up $\mathfrak{A}_{\alpha} = \{t \in R \mid x_{\alpha}(t) \in P\}$ for each root α of Δ . By 2.1 and the definition of P, it is clear that \mathfrak{A}_{α} is an ideal of R for each $\alpha \in \Delta$, and $\mathfrak{A}_{\alpha} = R$ for each negative roots α of Δ . On the other hand, let α and β be roots of Δ such that $\alpha + \beta \in \Delta$, and Δ_{z} be the subsystem of Δ of rank = 2 generated by α and β . If $\alpha > 0$ and $\beta < 0$, then there is an element w of the Weyl group W_{2} of Δ_{z} such that $w(\alpha) > 0$ and $w(\beta) > 0$. Thus, by the commutator relations for $x_{\alpha}(t), t \in \mathfrak{A}_{\alpha}, \alpha \in \Delta^{+}$ (cf. [1] 2.2) and by 2.5, we see easily $\mathfrak{A}_{\alpha}\mathfrak{A}_{\beta} \subset \mathfrak{A}_{\alpha+\beta}$ for any roots α and β of Δ . That is, $\{\mathfrak{A}_{\alpha}\}_{\alpha\in \Delta}$ is a permissible carpet. From 2.4, 2.5 and 2.6, it is clear that P is generated by $x_{\alpha}(t), t \in \mathfrak{A}_{\alpha}, \alpha \in \Delta$ and T(R). Namely, the mapping $\Psi: \{P\} \rightarrow \{\{\mathfrak{A}_{\alpha}\}_{\alpha\in \Delta}\}$ is injective. q.e.d.

3. Proof of surjectivity. Now in order to prove that the mapping Ψ in 2.7 is surjective, we shall first prove the following lemmas.

3.1. Let $\Re = {\{\mathfrak{A}_{\alpha}\}_{\alpha \in \mathcal{A}}}$ be a permissible carpet of R with respect to (\mathcal{A}, Π) . Setting $\mathcal{A}'_{\mathfrak{R}} = {\alpha \in \mathcal{A} \mid \mathfrak{A}_{\alpha} = R}$ and $\mathcal{A}''_{\mathfrak{R}} = {\alpha \in \mathcal{A} \mid \mathfrak{A}_{\alpha} \neq R}$, we have that i) $\mathcal{A}'_{\mathfrak{R}} \supset \mathcal{A}^-$ and $\mathcal{A}''_{\mathfrak{R}} \subset \mathcal{A}^+$, ii) $\mathcal{A}'_{\mathfrak{R}}$ and $\mathcal{A}''_{\mathfrak{R}}$ are closed, iii) $\mathcal{A}''_{\mathfrak{R}}$ is an ideal of \mathcal{A}^+ , that is, if $\alpha \in \mathcal{A}''_{\mathfrak{R}}, \beta \in \mathcal{A}^+$ and $\alpha + \beta \in \mathcal{A}$, then $\alpha + \beta \in \mathcal{A}''_{\mathfrak{R}}$. Thus we can see easily the following lemma.

3.2. LEMMA. Using the same notation as in 3.1, we have the following.

i) Let α be a positive root, then $\alpha \in \Delta_{\mathfrak{g}}^{"}$ if and only if there exists a root $\alpha_i \in \Delta_{\mathfrak{g}}^{"} \cap \Pi$ such that $n_i \neq 0$ for $\alpha = n_1\alpha_1 + \cdots + n_l\alpha_l$ where $\Pi = \{\alpha_1, \ldots, \alpha_l\},$

ii) we set $Z^+ \Delta'_{\mathfrak{g}} = \{n_1\beta_1 + \cdots + n_s\beta_s \mid n_i \in Z^+, \beta_i \in \Delta'_{\mathfrak{g}}\}$ and $Z^+ \Delta''_{\mathfrak{g}} = \{m_1\gamma_1 + \cdots + m_t\gamma_t \mid m_j \in Z^+, \gamma_j \in \Delta''_{\mathfrak{g}}\}$ where Z^+ is the set of positive rational integers. Then we have $Z^+ \Delta'_{\mathfrak{g}} \cap Z^+ \Delta''_{\mathfrak{g}} = \emptyset$.

3.3. LEMMA. Let $\Re = \{\mathfrak{A}_{\alpha}\}_{\alpha \in \mathcal{A}}$ be a permissible carpet of R associated with (\mathcal{A}, Π) and $\mathcal{A}'_{\mathfrak{R}}, \mathcal{A}''_{\mathfrak{R}}$ be the same as in 3.1. Let Q be a subgroup of G(R) generated by $x_{\alpha}(t)$ for all $t \in R, \alpha \in \mathcal{A}'_{\mathfrak{R}}$ and elements of T(R). Then we have $Q \cap U_{\mathcal{A}''_{\mathfrak{R}}}(R) = \{1\}$.

PROOF. Let \mathfrak{G}_c be a simple Lie algebra over the complex field C,

 $(d\rho, V)$ be a faithful representation of \mathfrak{G}_c with \mathfrak{G}_c -module V over C, $\{H_{\alpha_1}, \dots, H_{\alpha_l}, X_{\alpha}, \alpha \in \Delta\}$ be a Chevalley basis of \mathfrak{G}_c and V_z be an admissible lattice of V, then for any root α and $t \in R$, we can construct a unipotent automorphism $x_{\alpha}(t) = \exp td\rho(X_{\alpha})$ of $V_z \otimes R$. Let $\{\lambda\}$ be the set of weights of $d\rho$ and denote by V^{λ} a weight space associated with a weight λ , then we have $V_z = \sum_{\lambda} \bigoplus V_z^{\lambda}$ where $V_z^{\lambda} = V_z \cap V^{\lambda}$. For any element $v \in V_z^{\lambda}, d\rho(X_{\alpha})v \in V_z^{\lambda+\alpha}$ (cf. Steinberg [6]). Therefore, for each $x_{\alpha}(t)$,

$$egin{aligned} x_lpha(t)v &= v + td
ho(X_lpha)v + t^2rac{1}{2}d
ho(X)v + \cdots \ &= v + u \end{aligned}$$

where $u \in \sum_{i=1} \bigoplus V_z^{\lambda+i\alpha} \otimes R$. On the other hand, for any $h(\chi) \in T(R)$ and $v \in V_z^{\lambda}$, $h(\chi)v = c_{\lambda,\chi}v$ for some $c_{\lambda,\chi} \in R$. Thus for any $x \in Q \cap U_{d'_{\mathbf{x}}}(R)$ and $v \in V_z^{\lambda}$, we have $xv \in cv + \sum_{\mu \in Z^+ d'_{\mathbf{x}}} \bigoplus V_z^{\lambda+\mu} \otimes R$ and $xv \in v + \sum_{\nu \in Z^+ d'_{\mathbf{x}}} \bigoplus V_z^{\lambda+\nu} \otimes R$, thus by 3.2 ii), xv = v. Since λ can be chosen arbitrary, we have x = 1.

3.4. PROPOSITION. Let $\Re = {\{\mathfrak{A}_{\alpha}\}_{\alpha \in \Delta}}$ be a permissible carpet, and use the same notation as in 3.3. Then $U_{\mathcal{A}_{\alpha}'}(\Re)Q$ is a subgroup of G(R).

PROOF. To prove the proposition, it is sufficient to show the following,

(a)
$$x_{\alpha}(t)U_{\mathcal{A}_{\alpha}'}(\mathfrak{K}) \subset U_{\mathcal{A}_{\alpha}'}(\mathfrak{K})Q$$

for all $t \in \mathfrak{A}_{\alpha}$, $\alpha \in \Delta$. Assume $\alpha \in \Delta^+$. Since $\Delta''_{\mathfrak{g}}$ is an ideal of Δ^+ , $U_{\Delta'_{\mathfrak{g}}}(\mathfrak{R})$ is a normal subgroup of U(R), thus (a) holds. For a negative root α of Δ , (a) follows from the following two lemmas.

3.5. LEMMA. Let $\Re = {\{\mathfrak{A}_{\alpha}\}_{\alpha \in \mathcal{A}}}$ be a semi-permissible carpet. Set $\mathcal{A}'_{\mathfrak{g}}^{+} = \mathcal{A}^{+} \cap \mathcal{A}'_{\mathfrak{g}}$ and $\mathcal{A}''_{\mathfrak{g}}^{+} = \mathcal{A}^{+} \cap \mathcal{A}''_{\mathfrak{g}}$. Then we have

(b)
$$x_{-\alpha}(t)U_{\mathcal{A}_{\mathfrak{K}}^{\prime\prime}}(\mathfrak{K}) \subset U_{\mathcal{A}_{\mathfrak{K}}^{\prime\prime}}(\mathfrak{K})U_{\mathcal{A}_{\mathfrak{K}}^{\prime}}(\mathfrak{M})x_{-\alpha}(R)T(R)$$

for any $\alpha \in \Pi$ and $t \in \mathfrak{A}_{-\alpha}$.

PROOF. By 2.4, any element x of $U_{d_{w}^{(*)}}(\Re)$ is expressed by the form

$$x = x_{\beta_1}(s_1) \cdots x_{\beta_M}(s_M)$$

where $\{\beta_1, \dots, \beta_M\} = \mathcal{A}_{\mathfrak{g}}^{\prime\prime+}$ and $s_i \in \mathfrak{A}_{\beta_i}$, $i = 1, \dots, M$. Set up $x_i = x_{\beta_i}(s_i)$ $\cdots x_{\beta_M}(s_M)$. Then we shall prove (b) by induction on i. If $\beta_{i-1} \neq \alpha$, we have K. SUZUKI

$$egin{aligned} &x_{-lpha}(t)x_{i-1} \,=\, x_{-lpha}(t)x_{eta_{i-1}}(s_{i-1})x_i \ &=\, x_{eta_{i-1}}(s_{i-1})\prod_{j,\,k>0} x_{-jlpha+keta_{i-1}}(c_{j,\,k}t^js_{\,i-1}^k)x_{-lpha}(t)x_i \end{aligned}$$

where $-j\alpha + k\beta_{i-1} > 0$ and $c_{j,k}t^j s_{i-1}^k \in \mathfrak{A}_{-j\alpha+k\beta_{i-1}} \cap \mathfrak{M}$. If $\beta_{i-1} = \alpha$ then

$$x_{-lpha}(t)x_{i-1}=x_{-lpha}(t)x_{lpha}(s_{i-1})x_i=x_{lpha}(v)x_{-lpha}(w)x_iz$$

where $v \in \mathfrak{A}_{\alpha}$ and $z \in T(R)$. Therefore by 2.4 and the assumption of the induction, we have

$$x_{-lpha}(t)x_{i-1} \in U_{{}^{d'_{\mathfrak{g}}+}}(\mathfrak{R})U_{{}^{d'_{\mathfrak{g}}+}}(\mathfrak{M})x_{-lpha}(R)T(R)$$
 .
q.e.d.

3.6. LEMMA. We use the same notation as in 3.5. For a given negative root $-\alpha$, we assume that

$$x_{-lpha}(t) U_{{\scriptscriptstyle\mathcal{A}}_{\mathbf{b}}^{\prime\prime}+}(\Re) \subset U_{{\scriptscriptstyle\mathcal{A}}_{\mathbf{b}}^{\prime\prime}+}(\Re) U_{{\scriptscriptstyle\mathcal{A}}_{\mathbf{b}}^{\prime}+}(\Re) V(\Re) T(R) x_{-lpha}(R)$$

for all semi-permissible carpet $\Re = {\{\mathfrak{A}_{\alpha}\}_{\alpha \in \mathcal{A}}}$. Then, for any element w of the Weyl group associated with Δ such that $w(\alpha) > 0$, we have

$$x_{w^{(-lpha)}}(t)U_{{\mathscr A}_{ullets'}^{\prime+}}(\Re') \subset U_{{\mathscr A}_{ullets'}^{\prime+}}(\Re')U_{{\mathscr A}_{ullets'}^{\prime+}}}(\mathfrak{M})V(\mathfrak{M})x_{w^{(-lpha)}}(R)T(R) \in {\mathcal A}_{\mathcal A}$$

where $\Re' = \{\mathfrak{A}'_{\alpha}\}_{\alpha \in \varDelta}$ is any semi-permissible carpet.

PROOF. Denote by w_{σ} the reflection with respect to hyperplane orthogonal to a root σ , then for any element w of the Weyl group Wsuch that $w(\alpha) > 0$, we can choose an element w' of W as follows i) $w(\alpha) = w'(\alpha)$ ii) $w' = w_{\alpha_1} w_{\alpha_2} \cdots w_{\alpha_L}$ where $\alpha_i \in \Pi$, $i = 1, 2, \dots, L$, and $w_{\alpha_j} w_{\alpha_{j+1}} \cdots w_{\alpha_L}(\alpha) > 0$ for $1 \leq j \leq L$. Therefore, without-loss of generality, we may assume $w = w_{\sigma}$ for some $\sigma \in \Pi$. Let $\Re' = \{\mathfrak{A}'_{\alpha}\}_{\alpha \in \mathcal{A}}$ be any semi-permissible carpet. For each element x of $U_{\mathcal{A}'_{\mathfrak{g}'}}(\mathfrak{K}')$ we write $x = x_{\beta_1}(s_1) \cdots x_{\beta_N}(s_N)$ where $\{\beta_1, \dots, \beta_N\} = \mathcal{A}''_{\mathfrak{K}'}, s_i \in \mathfrak{A}'_{\beta_i}$ $(i = 1, \dots, N)$ and $\beta_i \neq \sigma$, $i = 1, \dots, N-1$. Now, taking the conjugation of $x_{w(\alpha)}(t)x$ with w(1), we have

$$(*) \quad x_{-\alpha}(\pm t)w(1)xw(1)^{-1} = x_{-\alpha}(\pm t)x_{w(\beta_1)}(\pm s_1)\cdots x_{w(\beta_N)}(\pm s_N)$$

where $w(\beta_j) > 0$ for $i = 1, \dots, N-1$ and $w(\beta_N) < 0$ (resp. > 0) if $\beta_N = \sigma$ (resp. $\beta_N \neq \sigma$). Setting $\mathfrak{A}'_{\beta} = \mathfrak{A}_{w(\beta)}$, we have semi-permissible carpet $\{\mathfrak{A}_r\}_{r \in \mathcal{A}}$. First assume $\beta_N = \sigma$. Then, using the assumption of this lemma, (*) is equal to

$$(**) \quad x_{w(\beta_1)}(v_1) \cdots x_{w(\beta_{N-1})}(v_{N-1})x_{\tau_1}(u_1) \cdots x_{\tau_M}(u_M)x_{\tau_{M+1}}(u_{M+1}) \\ \cdots x_{\tau_T}(u_T)x_{-\alpha}(t')x_{-\alpha}(s'_N)z$$

64

where $\gamma_1, \dots, \gamma_m$ are positive, $\gamma_{M+1}, \dots, \gamma_T$ are negative, $v_i \in \mathfrak{A}_{w(\beta_i)}$ $i = 1, \dots, N-1, u_j \in \mathfrak{A}_{r_j} \cap \mathfrak{M}, j = 1, \dots, T, s'_N \in \mathfrak{M} \cap \mathfrak{A}_{w(\beta_N)}$ and $z \in T(R)$. By 2.4, we may assume $\gamma_M = \sigma$ and $\gamma_{M+1} = -\sigma$, and (**) is equal to

$$\begin{array}{ccc} (***) & x_{w(\beta_{1})}(v_{1}) \cdots x_{w(\beta_{N-1})}(v_{N-1}) x_{\tau_{1}}(u_{1}) \cdots x_{-\sigma}(v) x_{\sigma}(y) x_{\tau_{M+2}}(u_{M+2}') \\ & \cdots x_{\tau_{T}}(u_{T}') x_{-\alpha}(t'') z' \end{array}$$

where $v \in \mathfrak{A}_{-\sigma} \cap \mathfrak{M}$, $y \in \mathfrak{A}_{\sigma} \cap \mathfrak{M}$, $u'_j \in \mathfrak{A}_{r_j}$ $j = M + 2, \dots, T$, and $z' \in T(R)$. Taking the conjugation of the above form with w(1) again, and using 2.4, we have

$$x_{w(-lpha)}(t)x\in U_{\mathcal{A}_{lpha}^{\prime++}}(\mathfrak{R})U_{\mathcal{A}_{lpha}^{\prime++}}(\mathfrak{M})V(\mathfrak{M})x_{w(-lpha)}(R)T(R)\;.$$

If $\beta_N \neq \sigma$, we can prove our assertion by the same way as above without calculation (***). q.e.d.

3.7. LEMMA. Let $\{\mathfrak{A}_{\alpha}\}_{\alpha \in \Delta}$ be a permissible carpet of R with respect to (Δ, Π) , and let $\Delta'_{\mathfrak{s}}, \Delta''_{\mathfrak{s}}$ and Q be same as in 3.1 and 3.3 respectively. Then we have $Q \cap U(R) = U_{d'_{\mathfrak{s}}^+}(R)$.

PROOF. To prove our lemma, it is sufficient to show $Q \cap U(R) \subset U_{d'_{\mathbb{R}}^+}(R)$. If $x \in Q \cap U(R)$, then by 2.4, we have x = yz where $y \in U_{d'_{\mathbb{R}}}(R)$, $z \in U_{d'_{\mathbb{R}}^+}(R)$. Since $z \in Q$, we have $y \in Q \cap U_{d'_{\mathbb{R}}}(R)$, and by 3.3, y = 1. Therefore we have $x \in U_{d'_{\mathbb{R}}^+}(R)$.

3.8. PROOF OF SURJECTIVITY. Let $\Re = \{\mathfrak{A}_{\alpha}\}_{\alpha \in J}$ be any permissible carpet of R associated with (\mathcal{A}, Π) , and P be a parabolic subgroup of G(R) generated by $x_{\alpha}(t)$ for all $t \in \mathfrak{A}_{\alpha}$, $\alpha \in \mathcal{A}$ and elements of T(R). Set $\mathfrak{A}'_{\alpha} = \{t \in R \mid x_{\alpha}(t) \in P\}$. Then, to show our assertion, it is sufficient to prove that $\mathfrak{A}_{\alpha} = \mathfrak{A}'_{\alpha}$ for all roots $\alpha \in \mathcal{A}$. It is clear $\mathfrak{A}_{\alpha} \subset \mathfrak{A}'_{\alpha}$. If $\alpha < 0$, then $\mathfrak{A}_{\alpha} = \mathfrak{A}'_{\alpha} = R$. In order to prove $\mathfrak{A}_{\alpha} \supset \mathfrak{A}'_{\alpha}$ for $\alpha > 0$, from 2.5, it is sufficient to show $P \cap U(R) = U_{\mathcal{A}^+}(\mathfrak{R})$. By 3.4, we have $P = U_{\mathcal{A}'_{\mathfrak{R}}}(\mathfrak{R})Q$, thus, for any $x \in P \cap U(R)$, x = yz where $y \in U_{\mathcal{A}'_{\mathfrak{R}}}(\mathfrak{R})$, $z \in Q$, and from 3.7, $z \in U(R) \cap Q \subset U_{\mathcal{A}^+}(\mathfrak{R})$, therefore $x \in U_{\mathcal{A}^+}(\mathfrak{R})$, that is $P \cap U(R) \subset U_{\mathcal{A}^+}(\mathfrak{R})$. On the other hand, it is clear that $P \cap U(R) \supset U_{\mathcal{A}^+}(\mathfrak{R})$. Thus we have $P \cap U(R) = U_{\mathcal{A}^+}(\mathfrak{R})$.

References

- [1] E. ABE, Chevalley groups over local rings, Tôhoku Math. J. 21 (1969), 474-494.
- [2] N. BOURBAKI, Groupes et algèbres de Lie, IV, V et VI, Hermann Paris 1968.
- [3] C. CHEVALLEY, Sur certain groupes simples, Tôhoku Math. J. 7 (1955), 14-66.
- [4] N. S. ROMANIVSKII, Subgroups of general and special linear groups over a ring, Trans. from Math. Zametki Voll. 9 (1971), 699-708.

K. SUZUKI

- [5] M. R. STEIN, Generators, relations and coverings of Chevalley group over commutative rings, Amer. J. Math. 95 (1973), 965-1004.
- [6] R. STEINBERG, Lectures on Chevalley groups, Yale Univ. (1967).

DEPARTMENT OF MATHEMATICS FACULTY OF GENERAL EDUCATION KUMAMOTO UNIVERSITY KUROKAMI-CHO, KUMAMOTO JAPAN

66