Tôhoku Math. Journ. 28 (1976), 1-5.

ON KAEHLER METRICS ON A COMPACT HOMOGENEOUS COMPLEX MANIFOLD

MITSUHIRO ITOH

(Received April 15, 1974)

1. Introduction. It was shown by M. Berger [1] that an arbitrary Einstein Kaehler metric on a complex projective space is equivalent to the Fubini-Study metric. Moreover, Y. Matsushima proved in [3] that on a Kaehler C-space (i.e., a simply connected compact homogeneous complex manifold which admits a Kaehler metric), Einstein Kaehler metrics are mutually equivalent. Here the equivalency of Kaehler metrics g_1 and g_2 on a Kaehler manifold denotes that there exist a holomorphic transformation ϕ of the manifold and a positive constant c such that $cg_1 = \phi^*g_2$.

On a compact Kaehler manifold, the scalar multiple of the Ricci form by $1/(2\pi)$ represents the first Chern class of this manifold and the constancy of the scalar curvature means that the Ricci form is harmonic. On a Kaehler C-space M, we have a G_0 -invariant Einstein Kaehler metric \tilde{g} which is called the canonical Einstein metric, where G_0 is a compact group of holomorphic transformations of M ([3]). Then, Matsushima's theorem "any Einstein Kaehler metric g on a Kaehler C-space M is equivalent to the canonical metric \tilde{g} " is interpreted as the following "if any Kaehler metric on M satisfies that its Kaehler form is cohomologous to that of \tilde{g} and its scalar curvature is equal to that of \tilde{g} , then it is equivalent to the canonical metric \tilde{g} ".

The purpose of this paper is a generalization of Matsushima's theorem. In fact, we shall prove in Theorem B and Corollary C in §2 that any Kaehler metric on a Kaehler C-space satisfying a certain condition on curvature is equivalent to the canonical Einstein metric \tilde{g} .

The author is deeply indebted to Prof. T. Takahashi, Prof. H. Nakagawa and Dr. R. Takagi for generous help and valuable advice.

2. Results. Let g be a Kaehler metric on a Kaehler manifold of complex dimension n. Let S be the Ricci tensor of the metric g. The metric g is called an Einstein Kaehler metric if S is given by the scalar multiple of g. With respect to a local coordinate system z^1, \dots, z^n, g and S can be expressed as

$$(2.1) g = 2 \sum_{\alpha,\beta} g_{\alpha\overline{\beta}} dz^{\alpha} \cdot dz^{\overline{\beta}} ,$$

(2.2)
$$S = 2 \sum_{\alpha,\beta} S_{\alpha\overline{\beta}} dz^{\alpha} \cdot dz^{\overline{\beta}} .$$

We define 2-forms ω and σ , called the Kaehler form and the Ricci form by

(2.3)
$$\omega = i \sum_{\alpha,\beta} g_{\alpha\overline{\beta}} dz^{\alpha} \wedge dz^{\overline{\beta}} ,$$

(2.4)
$$\sigma = i \sum_{\alpha,\beta} S_{\alpha\overline{\beta}} dz^{\alpha} \wedge dz^{\overline{\beta}} .$$

The scalar curvature ho of g is given by

(2.5)
$$ho = 2 \sum_{\alpha,\beta} g^{\alpha \overline{\beta}} S_{\alpha \overline{\beta}}$$
 ,

where the matrix $(g^{\alpha\overline{\beta}})$ is the inverse of $(g_{\alpha\overline{\beta}})$.

LEMMA. Let g be a Kaehler metric on a Kaehler manifold of complex dimension n. Then we have

$$(2.6) \sigma \wedge \omega^{n-1} = \frac{1}{2n} \rho \cdot \omega^n .$$

PROOF. We may check (2.6) pointwise. For an arbitrary point p, we can choose a suitable local coordinate system around p such that $g_{\alpha\overline{\beta}}(p) = \delta_{\alpha\beta}, S_{\alpha\overline{\beta}}(p) = S_{\alpha} \cdot \delta_{\alpha\beta} \ \alpha, \beta = 1, \dots, n$, that is, at p

$$\omega = i\sum\limits_{lpha} dz^{lpha} \wedge dz^{\overline{lpha}} \,, \ \ \sigma = i\sum\limits_{lpha} S_{lpha} dz^{lpha} \wedge dz^{\overline{lpha}} \,.$$

Then we have

$$(2.7) \qquad \qquad \omega^n = i^n \cdot n! \cdot dz^1 \wedge dz^{\overline{1}} \wedge \cdots \wedge dz^n \wedge dz^{\overline{n}},$$

(2.8)
$$\omega^{n-1} = i^{n-1} \cdot (n-1)! \sum_{\alpha=1}^{n} dz^{1} \wedge dz^{\overline{1}} \wedge d\overline{z^{1}} \wedge d\overline{z^{1}}$$

$$\wedge \widetilde{dz^{lpha} \wedge dz^{\overline{lpha}}} \wedge \cdots \wedge dz^{n} \wedge dz^{\overline{n}}$$

. . .

which, together with $\rho = 2 \sum_{\alpha,\beta} g^{\alpha \overline{\beta}} S_{\alpha \overline{\beta}} = 2 \sum_{\alpha} S_{\alpha}$, imply

$$\sigma \wedge \omega^{n-1} = i^n (n-1)! \left(\sum_{lpha} S_{lpha} dz^{lpha} \wedge dz^{\overline{lpha}}
ight) \ \wedge \left(\sum_{eta} dz^1 \wedge dz^{\overline{1}} \wedge \cdots \wedge dz^{eta} \wedge dz^{\overline{eta}} \wedge \cdots \wedge dz^n \wedge dz^{\overline{n}}
ight) \ = i^n (n-1)! \left(\sum_{lpha} S_{lpha}
ight) dz^1 \wedge dz^{\overline{1}} \wedge \cdots \wedge dz^n \wedge dz^{\overline{n}} \ = rac{1}{n} \left(\sum_{lpha} S_{lpha}
ight) \omega^n = rac{1}{2n}
ho \cdot \omega^n \ .$$
q.e.d

2

ON KAEHLER METRICS

Making use of Lemma, we have the following.

THEOREM A. Let g and \tilde{g} be two Kaehler metrics on a compact Kaehler manifold M such that their Kaehler forms are mutually cohomologous. If the scalar curvature $\tilde{\rho}$ of \tilde{g} is constant and the scalar curvature ρ of g satisfies $\rho \leq \tilde{\rho}$ (or $\rho \geq \tilde{\rho}$) everywhere on M, then ρ must be constant and equal to $\tilde{\rho}$.

PROOF. Let ω and $\tilde{\omega}$ be the Kaehler forms of g and \tilde{g} . We shall write $\phi \sim \psi$ symbolically if ϕ is cohomologous to ψ . Then we have $\omega \sim \tilde{\omega}$ from the condition. If we denote by σ and $\tilde{\sigma}$ the Ricci forms of g and \tilde{g} respectively, then we obtain $\sigma \wedge \omega^{n-1} \sim \tilde{\sigma} \wedge \tilde{\omega}^{n-1}$ where $n = \dim_{\sigma} M$, since both $(1/2\pi)\sigma$ and $(1/2\pi)\tilde{\sigma}$ represent the first Chern class of M([2]). On the other hand $\tilde{\rho} \cdot \omega^n \sim \tilde{\rho} \cdot \tilde{\omega}^n$ since $\tilde{\rho}$ is constant. By the aid of (2.6) in Lemma, $\rho \cdot \omega^n - \tilde{\rho} \cdot \omega^n \sim \rho \cdot \omega^n - \tilde{\rho} \cdot \tilde{\omega}^n = 2n(\sigma \wedge \omega^{n-1} - \tilde{\sigma} \wedge \tilde{\omega}^{n-1}) \sim 0$. Then we have $\int_{M} (\rho - \tilde{\rho})\omega^n = 0$. By the condition on ρ , we can conclude that ρ is constant and equal to $\tilde{\rho}$.

Now we are in a position to prove the following theorem.

THEOREM B. Let M be a Kaehler C-space with the canonical Einstein Kaehler metric \tilde{g} . Let g be another Kaehler metric on M whose Kaehler form is cohomologous to that of \tilde{g} . If the scalar curvatures ρ and $\tilde{\rho}$ of g and \tilde{g} satisfy $\rho \leq \tilde{\rho}$ or else $\rho \geq \tilde{\rho}$ everywhere on M, then there exists a holomorphic transformation ϕ of M such that $g = \phi^* \tilde{g}$, that is, g is equivalent to \tilde{g} .

PROOF. Let ω and $\tilde{\omega}$ be the Kaehler forms, σ and $\tilde{\sigma}$ the Ricci forms of g and \tilde{g} . Since $\omega \sim \tilde{\omega}$, $\sigma \sim \tilde{\sigma}$ and $\tilde{\sigma} = c\tilde{\omega}$ for a positive constant c, we have $\sigma \sim c\omega$. The constancy of $\tilde{\rho}$ means that ρ is constant from Theorem A, hence σ is harmonic (see [2]). We can conclude that $\sigma = c\omega$, i.e., g is an Einstein Kaehler metric. Then from Matsushima's theorem ([3]), there exist $\phi \in G$ and a positive constant α such that $g = \alpha \phi^* \tilde{g}$ where G is the identity component of the group of all holomorphic transformations of M. Since $\omega \sim \tilde{\omega}$ and ϕ is a transformation homotopic to the identity transformation, we have $\alpha = 1$, that is, $g = \phi^* \tilde{g}$. q.e.d.

Let ρ , S and K be the scalar curvature, the Ricci tensor and the sectional curvature of a Kaehler metric g on a manifold of complex dimension n. By the definition of ρ , S and K, we obtain the following formulas (see [1]):

(2.9)
$$\rho = 2 \sum_{i=1}^{n} S(V_i, V_i)$$
 ,

MITSUHIRO ITOH

$$(2.10) \quad \rho = 2 \left[\sum_{i=1}^{n} K(\{V_i, JV_i\}) + 2 \sum_{i < j} (K(\{V_i, V_j\}) + K(\{V_i, JV_j\})) \right],$$

where $\{V_i, JV_i\}_{i=1,...,n}$ is an orthonormal frame at a point p and $\{X, Y\}$ is the plane spanned by tangent vectors X and Y at p and

(2.11)
$$\rho = \frac{n(n+1)}{\operatorname{vol}(S^{2n-1})} \int_{X \in U_p} K(\{X, JX\}) dX,$$

where U_p , which denotes the set of all unit tangent vectors at p, is identified with S^{2n-1} , the volume element dX and the volume of S^{2n-1} are canonical. From Theorem B, the following is easily obtained.

COROLLARY C. Let M, \tilde{g} and $\tilde{\rho}$ be as in Theorem B. Let g be another Kaehler metric on M whose Kaehler form is cohomologous to that of \tilde{g} . If the metric g satisfies one of the following conditions, then the metric g is equivalent to the canonical metric \tilde{g} .

I) The Ricci tensor S of g satisfies either $S(V, V) \leq (1/2n)\tilde{\rho}$ or $S(V, V) \geq (1/2n)\tilde{\rho}$ for any unit vector V.

II) The sectional curvature of any plane with respect to g is not greater (or not smaller) than $(1/2n^2)\tilde{\rho}$.

III) The sectional curvature of any holomorphic plane with respect to g is not greater (or not smaller) than $(1/n(n+1))\tilde{\rho}$.

An *n*-dimensional complex projective space $P_n(C)$ admits the Fubini-Study metric of positive constant holomorphic sectional curvature c. It is well known that $P_n(C)$ is a Kaehler C-space and the scalar curvature of the metric is equal to n(n + 1)c. Therefore we have:

COROLLARY D. Let \tilde{g} be Fubini-Study metric on $P_n(C)$ of constant holomorphic curvature c and g be a Kaehler metric on $P_n(C)$ whose Kaehler form is cohomologous to that of \tilde{g} . If g satisfies one of the following, then g is equivalent to \tilde{g} .

I) The scalar curvature of g is not greater (or not smaller) than n(n + 1)c everywhere on $P_n(C)$.

II) The Ricci tensor S of g satisfies either $S(V, V) \leq ((n+1)/2)c$ or else $S(V, V) \geq ((n+1)/2)c$ for any unit vector V.

III) The sectional curvature of any plane with respect to g is not greater (or not smaller) than (1/2 + 1/2n)c.

IV) The sectional curvature of any holomorphic plane with respect to g is not greater (or not smaller) than c.

REMARK. If the second Betti number of a Kaehler C-space M is equal to one (for example, an irreducible Hermitian symmetric space of compact type), there can not exist any Kaehler metric on M such that

ON KAEHLER METRICS

the volumes of M take the same value with respect to it and the canonical metric, and its scalar curvature is not equal to the scalar curvature of the canonical metric anywhere on M.

BIBLIOGRAPHY

- M. BERGER, Sur les variétés d'Einstein compactes, C. R. III^o Reunion Math. Expression latine, Namur (1965), 35-55.
- [2] S. KOBAYASHI, Hypersurfaces of complex projective space with constant scalar curvature, J. Diff. Geometry, vol. 1 (1967), 369-370.
- [3] Y. MATSUSHIMA, Remarks on Kähler-Einstein manifolds, Nagoya Math. J. vol. 46 (1972), 161-173.

DEPARTMENT OF THE FOUNDATIONS OF MATHEMATICAL SCIENCES TOKYO UNIVERSITY OF EDUCATION TOKYO, JAPAN