BOUNDARIES OF COMPONENTS OF KLEINIAN GROUPS

Takehiko Sasaki

(Received March 17, 1975)

1. Introduction and preliminaries. Let G be a Kleinian group. A component Δ of G is a connected component of the region of discontinuity $\Omega(G)$. As is well known, the boundary $\partial \Delta$ of Δ is included in the limit set $\Lambda(G)$ of G. A maximal subgroup G_{Δ} of G, which makes a component Δ of G invariant, is called a component subgroup of G. Let Δ_{1} and $\Delta_{2}\left(\neq \Delta_{1}\right)$ be two components of G. Then, as is easily seen, inclusion relations

$$
\Lambda\left(G_{\Lambda_{1}} \cap G_{\Lambda_{2}}\right) \subset \Lambda\left(G_{\Lambda_{1}}\right) \cap \Lambda\left(G_{\Lambda_{2}}\right) \subset \partial \Delta_{1} \cap \partial \Delta_{2}
$$

hold. In this article we shall discuss sufficient conditions in order that $\Lambda\left(G_{\Lambda_{1}} \cap G_{\Lambda_{2}}\right)=\partial \Delta_{1} \cap \partial \Delta_{2}$. Maskit [6] treated the same problem and gave a condition which always holds for a finitely generated Kleinian group G. Results obtained here are extensions of Maskit's result. Further we shall give some applications of our results to function groups.

Throughout this article, G denotes a Kleinian group. If $\Lambda(G)=\varnothing$, then G is a finite group. For a proper subdomain D of the Riemann sphere \hat{C}, we denote by $S L^{\prime}(D)$ the largest subgroup of all Möbius transformations which leaves D fixed. For every component Δ of G, the component subgroup G_{Δ} coincides with $G \cap S L^{\prime}(\Delta)$. If $G_{\Delta}=G$, then Δ is called an invariant component of G, and, if G has such a component, G is called a function group. Two components Δ and $\Delta^{\prime}(\neq \Delta)$ of G are called conjugate to each other, if there is a $g \in G$ with $g(\Delta)=\Delta^{\prime}$, and in this case they are called non-invariant components of G. For every component Δ of G, the quotient Δ / G_{Δ} gives a Riemann surface and, if the boundary $\partial \Delta$ of Δ has at least three points, then the Poincaré area of Δ / G_{Δ} is given by

$$
\operatorname{Area}\left(\Delta / G_{A}\right)=\iint_{\Delta / G_{A}} \rho(z)^{2} d x d y
$$

where $\rho(z)$ is the Poincare metric on Δ. It follows from Ahlfors' finiteness theorem that if G is (non-elementary and) finitely generated, then Area $\left(\Delta / G_{\Delta}\right)<\infty$ for each component Δ of G.
2. Quasi-circles. A Kleinian group G is called quasi-Fuchsian with
a fixed curve C if C is a directed Jordan curve in \widehat{C} and all elements of G leave C fixed. In this case $\Lambda(G) \subset C$ and G is called of the first kind if $\Lambda(G)=C$. If G is a quasi-Fuchsian group of the first kind, then G has two invariant components. A quasi-circle is the image of a circle or a straight line under a quasiconformal mapping. When a quasi-circle L passes through ∞, it was shown by Ahlfors [2] that if z_{1}, z_{2}, z_{3} are any finite three points on L such that z_{3} separates z_{1}, z_{2}, then

$$
\left|\left(z_{3}-z_{1}\right) /\left(z_{2}-z_{1}\right)\right| \leqq C(K)
$$

where $C(K)$ is a numerical function of the maximal dilatation K of the quasiconformal mapping. We need the following form of the above inequality.

Lemma 1. For any finite four points $z_{1}, z_{2}, z_{3}, z_{4}$ which lie on a quasi-circle L in this order, it holds that

$$
\left|\left(z_{3}-z_{1}\right) /\left(z_{2}-z_{1}\right)\right| \leqq C(K)\left|\left(z_{4}-z_{3}\right) /\left(z_{4}-z_{2}\right)\right|
$$

Proof. We transform z_{4} to ∞ by a linear transformation $T: z \mapsto$ $\left(z-z_{4}\right)^{-1}$ so that $T(L)$ is a quasi-circle passing through ∞. Then we have

$$
\begin{aligned}
& \left|\left(z_{2}-z_{4}\right)\left(z_{1}-z_{3}\right) /\left(z_{3}-z_{4}\right)\left(z_{1}-z_{2}\right)\right| \\
& \quad=\left|\left(T\left(z_{3}\right)-T\left(z_{1}\right)\right) /\left(T\left(z_{2}\right)-T\left(z_{1}\right)\right)\right| \leqq C(K)
\end{aligned}
$$

which implies the desired inequality.
Now, using Lemma 1 we can prove the following lemma.
Lemma 2. Let L be a quasi-circle lying in $\bar{U}(=U \cup R \cup\{\infty\}$) with $0 \in L$ and let I be the component, lying in U, of the complement of L. If Γ is a finitely generated Fuchsian group of the first kind acting on U, then for any $r>0$, the set $I_{r}=I \cap\{z| | z \mid<r\}$ is not contained in any fundamental set of Γ.

Proof. Assume that for some $r>0$ there is a fundamental set $D \subset U$ of Γ which includes I_{r}. Then L does not include any line segment of R so that for a sufficiently small $y>0$ it holds that $\{z \mid \operatorname{Im} z=y\} \cap$ $L \cap\left\{z||z|<r\} \neq \varnothing\right.$. In fact, there are points z_{1}, z_{2} of $\{z \mid \operatorname{Im} z=y\} \cap L$ such that they are separated by 0 as the points on L and such that the open segment $z_{1} z_{2}$ lies in I_{r}. Therefore we have

$$
\operatorname{Area}(U / \Gamma)=\iint_{D} y^{-2} d x d y \geqq \iint_{I_{r}} y^{-2} d x d y \geqq \int_{0}^{y_{0}} y^{-2} d y \int_{z_{1}}^{z_{2}} d x
$$

where $y_{0}(>0)$ is sufficiently small and z_{1}, z_{2} lie on L with $\operatorname{Im} z_{1}=\operatorname{Im} z_{2}=$ $y<y_{0}$. We take and fix a point $z_{4} \neq 0$ on L such that points $z_{1}, z_{3}=0$,
z_{2} and z_{4} lie on L in this order. By Lemma 1 with $z_{3}=0$ we have

$$
\int_{z_{1}}^{z_{2}} d x=\left|z_{2}-z_{1}\right| \geqq(2 C(K))^{-1} y
$$

This implies Area $(U / \Gamma)=+\infty$, which is a contradiction. Thus we have Lemma 2.

Let Γ be a Fuchsian group of the first kind which leaves the upper half plane U fixed. A quasiconformal mapping $w: \widehat{C} \mapsto \widehat{C}$ is called compatible with Γ if $w \Gamma w^{-1}=G$ is a Kleinian group. In this case G is a quasi-Fuchsian group of the first kind with a quasi-circle $w(\partial U)$ as a fixed curve and is called a quasiconformal deformation of Γ. From a theorem in [5] we easily see that every finitely generated quasi-Fuchsian group of the first kind is a quasiconformal deformation of a finitely generated Fuchsian group of the first kind. For later use we restate Lemma 2 in the following form.

Lemma 2'. Let G be a finitely generated quasi-Fuchsian group of the first kind with Δ as a component, L a closed Jordan curve lying in $\bar{\Delta}$ with $L \cap \partial \Delta \neq \varnothing, I$ a component, lying in Δ, of the complement of L, and I_{r} the set $I \cap\left\{z\left|\left|z-z_{0}\right|<r\right\}\right.$ for a point z_{0} of $L \cap \partial \Delta$. If $g\left(I_{r}\right) \cap I_{r}=\varnothing$ for some $r>0$ and for each $g \in G$ not being the identity, then L is not a quasi-circle.

Proof. Since G is a quasiconformal deformation of a finitely generated Fuchsian group Γ of the first kind acting on U, there is a quasiconformal mapping w of U onto Δ with $w(0)=z_{0}$ and $G=w \Gamma w^{-1}$. Then $w^{-1}(L)$ lies in \bar{U} with $0 \in w^{-1}(L)$. Since the action of Γ on the set $w^{-1}(I)$ is the same as that of G on I, there is an $r>0$ such that $w^{-1}(I) \cap\{z| | z \mid<r\}$ is contained in a fundamental set of Γ. Hence the closed Jordan curve $w^{-1}(L)$ is not a quasi-circle by Lemma 2. Therefore L is not a quasi-circle. Thus we have proved the lemma.
3. Auxiliary domains Δ_{i}^{*} and D_{i}. Let Δ_{1} and $\Delta_{2}\left(\neq \Delta_{1}\right)$ be two distinct components of a Kleinian group G. For $i=1,2$, let Δ_{i}^{*} be a component of the complement of \bar{J}_{i} such that $\Delta_{i}^{*} \supset \Delta_{3-i}$ and let $G_{\Delta_{i}^{*}}$ be the component subgroup of $G_{\Lambda_{i}}$ which leaves Δ_{i}^{*} fixed. Let D_{i} be a component of the complement of $\bar{\Delta}_{i}^{*}$ such that $D_{i} \supset \Delta_{i}$ and let $G_{D_{i}}$ be the component subgroup of $G_{d_{i}^{*}}$ which leaves D_{i} fixed. For these D_{1} and D_{2} we have

Proposition 1. $\quad D_{1} \cap D_{2}=\varnothing$ and $\partial D_{1} \cap \partial D_{2}=\partial \Delta_{1} \cap \partial \Delta_{2}$.
Proof. Clearly Δ_{1}^{*} lies in the exterior of D_{1} and Δ_{2} lies in Δ_{1}^{*}, and
hence the boundary of Δ_{2} lies in $\bar{J}_{1}{ }^{*}$. Hence there is a component of the complement of $\bar{\Delta}_{2}$ which includes D_{1}. This component is identical with Δ_{2}^{*}. Since D_{2} lies in the exterior of Δ_{2}^{*}, D_{2} lies in the exterior of D_{1}, which implies the first assertion. For the second assertion we note that $\partial D_{1} \subset \partial \Delta_{1}$ and $\partial D_{2} \subset \partial \Delta_{2}$. This implies $\partial D_{1} \cap \partial D_{2} \subset \partial \Delta_{1} \cap \partial \Delta_{2}$. Next we show the converse inclusion. By definitions of D_{1} and D_{2}, it holds that $\Delta_{1} \subset D_{1}$ and $\Delta_{2} \subset D_{2}$. These and the first assertion of the present proposition imply $\partial D_{1} \cap \partial D_{2} \supset \partial \Delta_{1} \cap \partial \Delta_{2}$. Thus Proposition 1 is proved.

Proposition 2. If $\Lambda\left(G_{D_{1}} \cap G_{D_{2}}\right)=\partial D_{1} \cap \partial D_{2}$, then $\Lambda\left(G_{\Lambda_{1}} \cap G_{\Lambda_{2}}\right)=$ $\partial \Delta_{1} \cap \partial \Delta_{2}$.

Proof. This follows easily from Proposition 1 and from an obvious inclusion relation $\Lambda\left(G_{D_{1}} \cap G_{D_{2}}\right) \subset \Lambda\left(G_{\Lambda_{1}} \cap G_{\Lambda_{2}}\right)$.

Now we put the following assumptions on G :
i) $G_{\Delta_{i}^{*}}(i=1,2)$ is a quasi-Fuchsian group of the first kind,
ii) $\partial \Delta_{i}^{*}(i=1,2)$ is a quasi-circle and
iii) $G_{D_{2}}$ is finitely generated.

The conditions i), ii) imply that $G_{\Delta_{i}^{*}}$ has two invariant components ${L_{i}^{*}}^{*}$ and D_{i} with the common boundary $\partial \Delta_{i}^{*}=\partial D_{i}$ being a quasi-circle and that $G_{i_{i}^{*}}=G_{D_{i}}$. This and iii) imply that $G_{D_{2}}$ is a finitely generated quasi-Fuchsian group of the first kind with D_{2} as a component. We note that if G is a finitely generated Kleinian group or, more generally, if $\Delta_{i} / G_{\Delta_{i}}$ is a finite Riemann surface, then i), ii) and iii) are satisfied.

Remark. There is a Kleinian group G with components Δ_{1}, Δ_{2} satisfying i), ii) and $\Lambda\left(G_{\Lambda_{1}} \cap G_{\Lambda_{2}}\right) \neq \partial \Delta_{1} \cap \partial \Delta_{2}$. Such a group is easily constructed by applying Klein's Combination Theorem to two infinitely generated Fuchsian groups of the first kind. Further, there is a Kleinian group G with components Δ_{1}, Δ_{2} satisfying i), iii) and $\Lambda\left(G_{\Delta_{1}} \cap G_{\Lambda_{2}}\right) \neq \partial \Delta_{1} \cap \partial \Delta_{2}$. Such a group is constructed by applying Klein's Combination Theorem to the following two groups G_{1} and G_{2}. Namely, G_{1} is a finitely generated Fuchsian group of the first kind acting on the upper half plane and containing a parabolic cyclic subgroup generated by a transformation $z \mapsto z+1$ and G_{2} is an infinitely generated quasi-Fuchsian group of the first kind constructed as follows. Let C_{0} (or C_{0}^{\prime}) be a circle with center $1 / 3+2 i$ (or $2 / 3+2 i$) and radius $1 / 6$ (or $1 / 6$), and let C_{j} (or C_{j}^{\prime}), $j=$ $1,2, \cdots$, be a circle with center $1 / 3+(2+1 / 42+2 j / 7) i$ (or $2 / 3+$ $(2+1 / 42+2 j / 7) i$) and radius $1 / 7$ (or $1 / 7$). Denoting by g_{0} a parabolic transformation which maps the exterior of C_{0} onto the interior of C_{0}^{\prime} and denoting by g_{j} a loxodromic transformation which maps the exterior of C_{j} onto the interior of $C_{j}^{\prime}, j=1,2, \cdots$, we represent by G_{2} the group
generated by $g_{j}, j=0,1,2, \cdots$. One can easily see that the group $\left\langle G_{1}, G_{2}\right\rangle$ generated by G_{1} and G_{2} has the desired properties.

Now we shall prove the following.
Proposition 3. Assume i), ii) and iii). If the condition

$$
\begin{equation*}
g\left(D_{1}\right) \cap D_{1}=\varnothing \text { for each } g \in G_{D_{2}} \backslash G_{D_{1}} \tag{*}
\end{equation*}
$$

holds, then $\Lambda\left(G_{D_{1}} \cap G_{D_{2}}\right)=\partial D_{1} \cap \partial D_{2}$.
Proof. It is sufficient to prove that $z_{0} \in \partial D_{1} \cap \partial D_{2}$ implies $z_{0} \in$ $\Lambda\left(G_{D_{1}} \cap G_{D_{2}}\right)$. We assume that this is not true. Then $z_{0} \in \Omega\left(G_{D_{1}} \cap G_{D_{2}}\right)$ and z_{0} is not a fixed point of an elliptic element of $G_{D_{1}} \cap G_{D_{2}}$. For, fixed points of elliptic elements of the common subgroup $G_{D_{1}} \cap G_{D_{2}}$ lie in D_{1} and D_{2}, respectively. Therefore there is an $r>0$ such that $I_{r}=\left\{z| | z-z_{0} \mid<\right.$ $r\} \cap D_{1} \subset \Omega\left(G_{D_{1}} \cap G_{D_{2}}\right)$ and such that $g\left(I_{r}\right) \cap I_{r}=\varnothing$ for all $g \in G_{D_{1}} \cap G_{D_{2}}$ being not the identity. This and (*) imply that $g\left(I_{r}\right) \cap I_{r}=\varnothing$ for each $g \in G_{D_{2}}$ being not the identity. By Lemma 2^{\prime}, we see that ∂D_{1} is not a quasi-circle. This contradicts ii) and the proposition is proved.
4. Theorems. Let G be a Kleinian group and let Δ_{1} and $\Delta_{2}\left(\neq \Delta_{1}\right)$ be two components of G. From Propositions 2 and 3, we see that the conditions i), ii), iii) in the preceding section and the assumption (*) in Proposition 3 imply $\Lambda\left(G_{\Lambda_{1}} \cap G_{\Lambda_{2}}\right)=\partial \Delta_{1} \cap \partial \Delta_{2}$. The conditions i), ii) and iii) are natural ones. So our task is to give a simple sufficient condition in order that (*) holds. From this point of view, we can prove the following three theorems.

Theorem 1. If $G_{A_{1}}$ is a quasi-Fuchsian group of the first kind with the quasi-circle $\partial \Delta_{1}$ and if $G_{d_{2}^{*}}$ is a finitely generated quasi-Fuchsian group of the first kind, then $\Lambda\left(G_{\Lambda_{1}} \cap G_{\Lambda_{2}}\right)=\partial \Delta_{1} \cap \partial \Delta_{2}$.

Proof. Under the assumptions, the conditions i), ii) and iii) hold clearly and we see $\Lambda_{1}=D_{1}$, which is a component of G. Hence $g\left(D_{1}\right)=$ D_{1} or $g\left(D_{1}\right) \cap D_{1}=\varnothing$. Since $g\left(D_{1}\right)=D_{1}$ is equivalent to $g \in G_{D_{1}}$, the condition (*) holds. From Propositions 2 and 3, we have our Theorem.

Theorem 2. Let $G_{\Delta_{1}^{*}}$ be a quasi-Fuchsian group of the first kind with the quasi-circle $\partial \Delta_{1}^{*}$ and let $G_{\Delta_{2}^{*}}$ be a finitely generated quasiFuchsian group of the first kind. If $\partial \Delta_{1} \cap \partial \Delta_{2}$ contains at least two points, then $\Lambda\left(G_{A_{1}} \cap G_{A_{2}}\right)=\partial \Delta_{1} \cap \partial \Delta_{2}$.

Proof. Obviously the conditions i), ii) and iii) are satisfied and it is easy to see that $\partial D_{1} \cap \partial D_{2}$ contains at least two points. Assume that $g\left(D_{1}\right) \cap D_{1} \neq \varnothing$ for some $g \in G_{D_{2}} \backslash G_{D_{1}}$. Then $g\left(\Delta_{1}\right) \cap \Delta_{1}=\varnothing$. In fact, if $g\left(\Delta_{1}\right) \cap \Delta_{1} \neq \varnothing$, then $g \in G_{A_{1}}$ and $g\left(\Delta_{1}^{*}\right) \cap \Delta_{1}^{*} \supset g\left(D_{2}\right) \cap D_{2} \neq \varnothing$, which implies
$g \in G_{\Delta_{1}^{*}}=G_{D_{1}}$, a contradiction. Hence we see that $g\left(A_{1}\right)$ lies in a component Δ^{*} of the complement of $\bar{\Delta}_{1}$ and that $\partial g\left(D_{1}\right)$ lies in $\bar{\Delta}^{*}$. The last fact follows from $\partial D_{1} \subset \partial \Delta_{1}$. There occur two cases.

The case where $\Delta^{*} \neq \Delta_{1}^{*}$. Note that in this case $g\left(D_{1}\right) \subset \Delta^{*} \subset D_{1} \backslash \Delta_{1}$. We take and join two points in $\partial D_{1} \cap \partial D_{2}$ by Jordan arcs in $D_{i}, i=1,2$, respectively, and have a closed Jordan curve K passing through these two points. Now $g(K)$ is a closed Jordan curve with a property $\Delta_{1} \cap$ $g(K)=\varnothing$. On the other hand, $D_{1} \cap g(K) \neq \varnothing$ and $D_{2} \cap g(K) \neq \varnothing$ so that $g(K) \cap \partial D_{1} \neq \varnothing$. Hence both components of the complement of $g(K)$ include points of ∂D_{1} which are also points of $\partial \Delta_{1}$. This contradicts connectedness of Δ_{1}.

The case where $\Delta^{*}=\Delta_{1}^{*}$. Note that in this case $g\left(D_{1}\right) \supsetneqq D_{1}$. Hence $g^{-1}\left(D_{1}\right) \varsubsetneqq D_{1}$. Therefore $g^{-1}\left(D_{1}\right)$ and hence $g^{-1}\left(\Lambda_{1}\right)$ lies in another component $\left(\neq \Delta_{1}^{*}\right)$ of the complement of $\bar{\Delta}_{1}$. It also holds that $g^{-1} \in G_{D_{2}} \backslash G_{D_{1}}$ and $g^{-1}\left(\Delta_{1}\right) \cap \Delta_{1}=\varnothing$. Thus we can reduce this case to the case stated above.

Therefore, we see that (*) in Proposition 3 holds. By the same way as in the proof of Theorem 1, we have our Theorem 2.

Further, we can prove the following.
ThEOREM 3. If $G_{\Delta_{i}^{*}}, i=1,2$, is a finitely generated quasi-Fuchsian group of the first kind, then $\Lambda\left(G_{\Lambda_{1}} \cap G_{A_{2}}\right)=\partial \Delta_{1} \cap \partial \Delta_{2}$.

Proof. The conditions i), ii) and iii) are obviously satisfied. If $\partial D_{1} \cap \partial D_{2}$ contains two points, then the proof of Theorem 2 shows validity of (*) in Proposition 3 and we have the desired. So we may assume $\partial D_{1} \cap \partial D_{2}=\left\{z_{0}\right\}$. Contrary to (*) in Proposition 3, assume that $g\left(D_{1}\right) \cap D_{1} \neq$ \varnothing for some $g \in G_{D_{2}} \backslash G_{D_{1}}$. Then, by the same reasoning as in the proof of Theorem 2, it holds that $g\left(\Delta_{1}\right) \cap \Delta_{1}=\varnothing$ and that $\partial g\left(D_{1}\right)$ lies in the closure of a component Δ^{*} of the complement of $\bar{\Delta}_{1}$.

We assert that $g\left(z_{0}\right)=z_{0}$. In the case $\Delta^{*} \neq \Delta_{1}^{*}$, we have $g\left(D_{1}\right) \subset$ $\Delta^{*} \varsubsetneqq D_{1}$ and $g\left(z_{0}\right)=g\left(\partial D_{1} \cap \partial D_{2}\right)=\partial g\left(D_{1}\right) \cap \partial D_{2} \subset \bar{D}_{1} \cap \partial D_{2}=z_{0}$. In the case $\Delta^{*}=\Delta_{1}^{*}$, we have $g\left(D_{1}\right) \supsetneqq D_{1}$ and $g\left(z_{0}\right)=g\left(\bar{D}_{1} \cap \partial D_{2}\right)=g\left(\bar{D}_{1}\right) \cap \partial D_{2} \supset$ $\partial D_{1} \cap \partial D_{2}=z_{0} . \quad$ In both cases $g\left(z_{0}\right)=z_{0}$.

Therefore, z_{0} is a fixed point of a non-elliptic element of $G_{D_{2}}$. By the quite same reasoning as above, if $g^{\prime}\left(D_{2}\right) \cap D_{2} \neq \varnothing$ for some $g^{\prime} \in$ $G_{D_{1}} \backslash G_{D_{2}}$, then $g^{\prime}\left(z_{0}\right)=z_{0}$ and g^{\prime} is a non-elliptic element of $G_{D_{1}}$. Since g and g^{\prime} have their fixed points on ∂D_{2} and ∂D_{1}, respectively, they are parabolic. For, otherwise G is not Kleinian. If they are not in the same parabolic cyclic group, then an invariant curve in D_{1} under g^{\prime} intersects an invariant curve in D_{2} under g, which is impossible. Since
$g \neq g^{\prime}$, there are integers $m, n(\neq m)$ such that $g^{m}=\left(g^{\prime}\right)^{n}$ and $g^{m}\left(D_{1}\right)=$ $\left(g^{\prime}\right)^{n}\left(D_{1}\right)=D_{1}$. As was shown already, either $g\left(D_{1}\right) \varsubsetneqq D_{1}$ or $g\left(D_{1}\right) \supsetneqq D_{1}$ holds. So we have $g^{m}\left(D_{1}\right) \neq D_{1}$, a contradiction. Thus, for at least one of $i=1$ and 2, we have $g\left(D_{i}\right) \cap D_{i}=\varnothing$ for each $g \in G_{D_{3-i}} \backslash G_{D_{i}}$. By the same way as in the proof of Theorem 1, we have the required.

By using Theorem 3, Ahlfors' finiteness theorem and Maskit's theorem [Theorem 2; 5], we have immediately the following.

Corollary ([6]). If $\Delta_{i} / G_{\Delta_{i}}$ is a finite Riemann surface, $i=1,2$, then $\Lambda\left(G_{\Lambda_{1}} \cap G_{A_{2}}\right)=\partial \Delta_{1} \cap \partial \Delta_{2}$.

Remark. It is not known whether or not the conclusion of Theorem 2 holds without the condition on the number of points of the set $\partial \Delta_{1} \cap \partial \Delta_{2}$.
5. The case of function groups. In this section we restrict ourselves to function groups. Let G be a function group with an invariant component Δ_{0}. Obviously $G_{\Lambda_{0}}=G$ and $\partial \Delta_{0}=\Lambda(G)$. Hence, for any other component Δ of G, it holds that $G_{\Delta_{0}} \cap G_{\Delta}=G_{\Delta}$ and $\partial \Delta_{0} \cap \partial \Delta=\partial \Delta$. So $\Lambda\left(G_{\Delta_{0}} \cap G_{\Delta}\right)=\partial \Delta_{0} \cap \partial \Delta$ if and only if Δ is a component of G_{Δ}. Thus, in what follows, we consider only non-invariant components of G. Let Δ be a non-invariant component of G. By Accola's theorem [1], Δ is simply connected. Hence there is a conformal bijection h_{Δ} of the upper half plane U onto Δ and $\Gamma_{\Delta}=h_{\Delta}^{-1} G_{\Delta} h_{\Delta}$ is a Fuchsian group which is called a Fuchsian equivalent of G_{Δ}. The isomorphism $\chi_{\Delta}: \Gamma_{\Delta} \rightarrow G$ which carries $\gamma \in \Gamma_{\Delta}$ into $g=h_{\Delta} \circ \gamma \circ h_{\Delta}^{-1} \in G_{\Delta}$, is called the cannonical isomorphism. If $\gamma \in \Gamma_{\Delta}$ is elliptic of order ν, so is $g=\chi_{\Delta}(\gamma)$ and vice versa, and g has precisely one fixed point in Δ which is the image of the fixed point of γ in U under h_{Δ}. The mapping h_{Δ} can be extended to a mapping \widetilde{h}_{Δ} of the union of U and the set of non-elliptic fixed points of Γ_{Δ} onto the union of Δ and the set of non-elliptic fixed points of G_{Δ}. Bers [3] showed this fact by using the notion of the terminal arcs, which is defined as follows: Let $\gamma \in S L^{\prime}$ be parabolic or loxodromic and let C be a simple open Jordan arc with definite endpoints. Then the curve C is called a terminal arc of γ if $\gamma(C) \subset C$ and if exactly one of the endpoints of C is fixed under γ.

Now let Δ_{1} and $\Delta_{2}\left(\neq \Delta_{1}\right)$ be non-invariant components of a function group G. For the common subgroup of $G_{\Lambda_{1}}$ and $G_{\Lambda_{2}}$, we can prove the following.

Proposition 4. The common subgroup $G_{\Lambda_{1}} \cap G_{\Lambda_{2}}$ of $G_{\Lambda_{1}}$ and $G_{\Lambda_{2}}$ is either finite or parabolic cyclic.

Proof. We assume that $G_{\Lambda_{1}} \cap G_{\Lambda_{2}}$ is not finite. Then it contains non-elliptic elements. It is obvious that if there is a loxodromic element $g \in G_{A_{1}} \cap G_{A_{2}}$, then both fixed points z_{1} and z_{2} of g lie on $\partial \Lambda_{1} \cap \partial \Delta_{2}$. Let C_{1} and C_{2} (or C_{1}^{\prime} and C_{2}^{\prime}) be terminal arcs of g in Δ_{1} (or in Δ_{2}) such that C_{1} (or $C_{1}^{\prime \prime}$) has an endpoint z_{1} and C_{2} (or C_{2}^{\prime}) has an endpoint z_{2}. We may assume that endpoints of C_{1} and C_{2} (or C_{1}^{\prime} and C_{2}^{\prime}) different from z_{1} and z_{2} are identical. Thus $C_{1}, C_{2}, C_{1}^{\prime}, C_{2}^{\prime}$ and two points z_{1} and z_{2} form a closed Jordan curve K and $K \cap \Delta_{0}=\varnothing$, where Δ_{0} is an invariant component of G. Both the interior and the exterior of K include points of $\Lambda(G)$. Since $\partial \Lambda_{0}=\Lambda(G)$, the interior and the exterior of K also include points of Δ_{0}. This contradicts connectedness of Δ_{0}. Hence there is no loxodromic element in $G_{\Delta_{1}} \cap G_{d_{2}}$. Next we assume that in $G_{\Lambda_{1}} \cap G_{\Lambda_{2}}$ there are two parabolic elements g and g^{\prime} with the different fixed points. We are also able to draw a closed Jordan curve lying in $\Delta_{1} \cap \Delta_{2} \cap \Lambda(G)$ such that both complements of this curve with respect to \hat{C} include points of Δ_{0}. The same argument as used just above leads us to a contradiction.

Thus we see that there exists one and only one fixed point of the parabolic elements in $G_{\Lambda_{1}} \cap G_{\Lambda_{2}}$. This fact implies that there is no elliptic element in $G_{A_{1}} \cap G_{\Delta_{2}}$. For, Δ_{1} and Δ_{2} are simply connected and a conjugation of a parabolic element by an elliptic element gives another parabolic element with the different fixed point.

To complete the proof it suffices to show that if there are two parabolic elements in $G_{A_{1}} \cap G_{A_{2}}$ with the same fixed point, then they are powers of some parabolic element. This follows at once from the fact that Δ_{1} is conformally equivalent to the upper half plane and Fuchsian equivalent $\Gamma_{\Lambda_{1}}$ of $G_{\Lambda_{1}}$ makes the upper half plane invariant. Thus we have our proposition.

On the common boundary $\partial \Lambda_{1} \cap \partial \Lambda_{2}$ of non-invariant components Δ_{1} and Δ_{2} of G, we have the following.

Proposition 5. If each boundary of Δ_{1} and Δ_{2} consists of a closed Jordan curve, then $\partial \Delta_{1} \cap \partial \Delta_{2}$ consists of at most one point.

Proof. First we note that G has an invariant component Δ_{0}. We assume that $\partial \Delta_{1} \cap \partial \Delta_{2}$ contains two points. Connect them by a simple $\operatorname{arc} C_{1}$ in Λ_{1} and by a simple $\operatorname{arc} C_{2}$ in Δ_{2}, respectively. Then we have a closed Jordan curve K consisting of C_{1} and C_{2} such that both the interior and the exterior of K contains points of Δ_{0}. This contradicts connectedness of Δ_{0}.

Remark. Accola [1] gave an example of a function group G which
has two invariant components $\Delta_{0}, \Delta_{0}^{\prime}$ and an infinite number of atoms $\Delta_{i}, i=1,2, \cdots$. We can see that $\partial \Delta_{0}^{\prime} \cap \partial \Delta_{1}$ is not finite set. It seems to be open whether or not there is a function group G with exactly one invariant component such that the number of points of $\partial \Delta_{1} \cap \partial \Delta_{2}$ is greater than 1, where Δ_{1} and Δ_{2} are non-invariant components of G.

Now we can prove the following.
Theorem 4. Let G be a function group and let Δ_{1} and $\Delta_{2}\left(\neq \Delta_{1}\right)$ be non-invariant components of G. Suppose that $G_{A_{1}}$ is a quasi-Fuchsian group of the first kind with the quasi-circle $\partial \Delta_{1}$ and that $G_{A_{2}}$ is a finitely generated quasi-Fuchsian group of the first kind. Then $G_{A_{1}} \cap G_{A_{2}}$ is a parabolic cyclic group if and only if $\partial \Delta_{1} \cap \partial \Delta_{2}$ consists of only one point.

Proof. Note that Δ_{2}^{*} is the complement of \bar{U}_{2} and $G_{\Delta_{2}^{*}}=G_{\Lambda_{2}}$. Hence by Theorem 1, it holds that $\Lambda\left(G_{\Lambda_{1}} \cap G_{\Lambda_{2}}\right)=\partial \Delta_{1} \cap \partial \Delta_{2}$. By this equality and Proposition 4, if part of the theorem is obvious. Conversely, if $G_{\Lambda_{1}} \cap G_{\Lambda_{2}}$ is parabolic cyclic, then $\Lambda\left(G_{\Lambda_{1}} \cap G_{\Lambda_{2}}\right) \neq \varnothing$, so $\partial \Delta_{1} \cap \partial \Delta_{2} \neq \varnothing$. By Proposition 5, $\partial \Delta_{1} \cap \partial \Delta_{2}$ consists of only one point. Thus the proof is completed.

The fixed point z_{0} of a parabolic element g of G_{Δ} is called a cusp on Δ if there is a circle C passing through z_{0} such that the interior I of C is included in Δ and the action of G_{Δ} on I is equivalent to the action of g. The domain I is called a half plane of g belonging to z_{0}. Clearly there are no more than two disjoint half planes of g belonging to the cusp z_{0}. It is well known that for Fuchsian groups every fixed point of parabolic elements is a cusp. (see, for example, [4], p. 61). It is also true for quasi-Fuchsian groups of the first kind. Using the above fact and Theorem 4, we can prove following two theorems.

Theorem 5. Let G be a function group and let $\Delta_{1}, \Delta_{2}, \Delta_{3}$ be noninvariant components of G. If $G_{A_{i}}(i=1,2,3)$ are quasi-Fuchsian groups of the first kind with quasi-circle $\partial \Delta_{i}$ and if one of them is finitely generated, then $\partial \Delta_{1} \cap \partial \Delta_{2} \cap \partial \Delta_{3}=\varnothing$.

Proof. Let $G_{A_{1}}$ be finitely generated and assume $z_{0} \in \partial \Delta_{1} \cap \partial \Delta_{2} \cap$ $\partial \Delta_{3}$. Then, by Proposition 5 and by Theorem 4, $\partial \Delta_{1} \cap \partial \Delta_{2}$ consists of only a fixed point z_{0} of the common parabolic cyclic subgroup of $G_{J_{1}}$ and $G_{A_{2}}$. Therefore there are two disjoint half planes belonging to z_{0}, one lies in Δ_{1} and the other lies in Δ_{2}. The same is also true for Δ_{1} and Δ_{3}. Hence there would be three disjoint half planes belonging to z_{0}. Thus we have a contradiction and the theorem is proved.

Theorem 6. Let G be a B-group, that is, a finitely generated (non-elementary) Kleinian group with a simply connected invariant component. Let Δ_{1} and Δ_{2} be non-invariant components of G. If $\partial \Delta_{1} \cap \partial \Delta_{2} \neq \varnothing$, then Δ_{1} and Δ_{2} are attached at the fixed point of an accidental parabolic transformation of G.

Proof. An accidental parabolic transformation g is a parabolic transformation of G such that $h_{\Delta_{0}}^{-1} g h_{\Delta_{0}}$ is hyperbolic, where Δ_{0} is an invariant component of G and $h_{د_{0}}$ is a conformal mapping of the upper half plane onto Δ_{0}. Since G is finitely generated, the conditions on $G_{\Lambda_{1}}$ and $G_{\Lambda_{2}}$ in Theorem 4 is clearly satisfied. Hence by Theorem 4, $\partial \Delta_{1} \cap \partial \Delta_{2}=$ z_{0} is a fixed point of a parabolic element g of G. If g is not accidental parabolic, then $h_{\Delta_{0}}^{-1} g h_{\Lambda_{0}}$ is parabolic. Considering the image of a half plane belonging to a cusp $\widetilde{h}_{0}^{-1}\left(z_{0}\right)$ on the upper half plane, we can easily find a half plane, in Δ_{0}, belonging to z_{0}. Thus there would be three disjoint half planes belonging to z_{0}. This contradiction proves our theorem.

References

[1] R. D. M. Accola, Invariant domains for Kleinian groups, Amer. J. Math., 88 (1966), 329-336.
[2] L. V. Ahlfors, Quasiconformal reflections, Acta Math., 109 (1963), 291-301.
[3] L. Bers, On boundaries of Teichmüller spaces and on Kleinian groups: I, Ann. of Math., 91 (1970), 570-600.
[4] I. Kra, Automorphic Forms and Kleinian Groups, W. A. Benjamin, 1972.
[5] B. Maskit, On boundaries of Teichmüller spaces and on Kleinian groups: II, Ann. of Math., 91 (1970), 607-639.
[6] B. Maskit, Intersections of component subgroups of Kleinian groups, Ann. of Math. Studies, 79 (1974), 349-367.

Yamagata University
Yamagata, Japan

