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1. Introduction and preliminaries. Let G be a Kleinian group. A
component Δ of G is a connected component of the region of dis-
continuity Ω(G). As is well known, the boundary dΔ of Δ is included
in the limit set Λ(G) of G. A maximal subgroup GΔ of G, which makes
a component Δ of G invariant, is called a component subgroup of G.
Let Δ1 and Δ2 (φΔJ be two components of G. Then, as is easily seen,
inclusion relations

Λ{GΔι Π G,2) c Λ{Gdι) n Λ(GJt) c dΔ, n 3Λ

hold. In this article we shall discuss sufficient conditions in order that
A(Gjx Π Gj2) = <?Λ Π 3z/2. Maskit [6] treated the same problem and gave
a condition which always holds for a finitely generated Kleinian group G.
Results obtained here are extensions of Maskit's result. Further we
shall give some applications of our results to function groups.

Throughout this article, G denotes a Kleinian group. If Λ(G) = 0 ,
then G is a finite group. For a proper subdomain D of the Riemann sphere
C, we denote by SL'(D) the largest subgroup of all Mobius transformations
which leaves D fixed. For every component Δ of G, the component
subgroup Gj coincides with G Π SL'(Δ). If GΔ = G, then Δ is called an
invariant component of G, and, if G has such a component, G is called
a function group. Two components Δ and / (^z() of G are called con-
jugate to each other, if there is a g e G with g(Δ) = z/;, and in this
case they are called non-invariant components of G. For every component
Δ of G, the quotient Δ\GΔ gives a Riemann surface and, if the boundary
dΔ of Λ has at least three points, then the Poincare area of Δ/GΔ is
given by

Area (Δ/GΔ) = \ \ p(zfdxdy ,
)jΔ/GΔ

where p(z) is the Poincare metric on Δ. It follows from Ahlfors' finite-
ness theorem that if G is (non-elementary and) finitely generated, then
Area (Δ/GΔ) < °o for each component Δ of G.

2. Quasi-circles. A Kleinian group G is called quasi-Fuchsian with
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a fixed curve C if C is a directed Jordan curve in C and all elements
of G leave C fixed. In this case Λ(G) c C and G is called of the first
kind if Λ(G) = C. If G is a quasi-Fuchsian group of the first kind,
then G has two invariant components. A quasi-circle is the image of
a circle or a straight line under a quasiconformal mapping. When a
quasi-circle L passes through oo, it was shown by Ahlfors [2] that if
2i, £2, %z are any finite three points on L such that z3 separates zl9 z2, then

where C(K) is a numerical function of the maximal dilatation K of the
quasiconformal mapping. We need the following form of the above
inequality.

LEMMA 1. For any finite four points zu z2, zz, z4 which lie on a
quasi-circle L in this order, it holds that

I \^3 zi)l\z2 %i) I = yj\r±) \z4 zz)\\z4 z2) .

PROOF. We transform z4 to oo by a linear transformation T: z \-+
(z — z4)~x so that T(L) is a quasi-circle passing through oo. Then we
have

1/ /y \( /y \l( /y /y \( /y \ I

I / ΓΓΊ/ „ \ HΠ( r* Wlί ^T^ί /y \ ^T^i /y \\ <^~ f~*ί ~ΐf\

which implies the desired inequality.
Now, using Lemma 1 we can prove the following lemma.

LEMMA 2. Let L be a quasi-circle lying in U(= U\J R U {°°}) with
OeL and let I be the component, lying in U, of the complement of L.
If Γ is a finitely generated Fuchsian group of the first kind acting
on U, then for any r > 0, the set Ir = IΠ {z \ \ z | < r} is not contained
in any fundamental set of Γ.

PROOF. Assume that for some r > 0 there is a fundamental set
ΰ c U of Γ which includes Ir. Then L does not include any line segment
of R so that for a sufficiently small y > 0 it holds that {z \ Im z = y) n
L Π {z I I z I < r) Φ 0 . In fact, there are points zu z2 of {z \ Im z = y} Π L
such that they are separated by 0 as the points on L and such that
the open segment zλz2 lies in Ir. Therefore we have

Area (U/Γ) = \ \ y~~2dxdy ̂  1 \ y~2dxdy ^ 1 ° y~2dy \ * dx ,

where yQ(>0) is sufficiently small and zu z2 lie on L with I m ^ = Im22 =
y < yo We take and fix a point z4 Φ 0 on L such that points zlf zs = 0,
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z2 and z4 lie on L in this order. By Lemma 1 with z3 = 0 we have

dx = \z2-z1\^(2C(K))-ίy.

This implies Area (U/Γ) =+<*>, which is a contradiction. Thus we
have Lemma 2.

Let Γ be a Fuchsian group of the first kind which leaves the upper
half plane U fixed. A quasiconformal mapping W:CY-*C is called com-
patible with Γ if wΓw~x = G is a Kleinian group. In this case G is a
quasi-Fuchsian group of the first kind with a quasi-circle w{dU) as a
fixed curve and is called a quasiconformal deformation of Γ. From a
theorem in [5] we easily see that every finitely generated quasi-Fuchsian
group of the first kind is a quasiconformal deformation of a finitely
generated Fuchsian group of the first kind. For later use we restate
Lemma 2 in the following form.

LEMMA 2'. Let G be a finitely generated quasi-Fuchsian group of
the first kind with Δ as a component, L a closed Jordan curve lying in
Δ with L Π dΔ Φ 0 , la component, lying in Δ, of the complement of
L, and Ir the set /ΓΊ {z | | z — z0| < r} for a point zQ of L Π dΔ. If
g(Ir) Π Ir = 0 for some r > 0 and for each g e G not being the identity,
then L is not a quasi-circle.

PROOF. Since G is a quasiconformal deformation of a finitely gene-
rated Fuchsian group Γ of the first kind acting on U, there is a
quasiconformal mapping w of U onto Δ with w(0) = z0 and G = wΓw~ι.
Then w~\L) lies in Ό with 0 e w~\L). Since the action of Γ on the set
w~\I) is the same as that of G on /, there is an r > 0 such that
w~\I) Π {z I \z\ < r] is contained in a fundamental set of Γ. Hence the
closed Jordan curve w~\L) is not a quasi-circle by Lemma 2. Therefore
L is not a quasi-circle. Thus we have proved the lemma.

3. Auxiliary domains Δ* and Dt. Let Δx and Δ2 (ΦΔ^ be two
distinct components of a Kleinian group G. For i — 1, 2, let 4* be a
component of the complement of Δt such that J? z> 4 ^ and let Gj* be
the component subgroup of GΔ. which leaves Δ* fixed. Let Dt be a com-
ponent of the complement of Δ* such that J9, Z) 4 and let ί?^ be the
component subgroup of GΔ* which leaves Dt fixed. For these A and D2

we have

PROPOSITION 1. A n A = 0 α^d 3A Π 3A = 9Λ Π dΔ2.

PROOF. Clearly Δ? lies in the exterior of A and Δ2 lies in Jf, and
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hence the boundary of Δ2 lies in I*. Hence there is a component of the
complement of 4 which includes A This component is identical with
4*. Since A lies in the exterior of 4*, D2 lies in the exterior of A>
which implies the first assertion. For the second assertion we note that
3 A a 34 and dD2 c dA2. This implies dA Γ) 3 A c 34 n 34. Next we
show the converse inclusion. By definitions of A and D2, it holds that
4 c: A and 4 c: A These and the first assertion of the present pro-
position imply 3A Π 3 A => 34 Π 34. Thus Proposition 1 is proved.

PROPOSITION 2. If Λ(GDι n GD,) = 3 A n 3A, ίAβ^ Λ{GΔl n GJ2) =
34 n 34.

PROOF. This follows easily from Proposition 1 and from an obvious
inclusion relation Λ(GDl Π GD2) a Λ(GΔl (Ί Gj2).

Now we put the following assumptions on G:
i) GΔ* (i = 1, 2) is a quasi-Fuchsian group of the first kind,
ii) 34* (i = 1, 2) is a quasi-circle and
iii) GDz is finitely generated.
The conditions i), ii) imply that GΔ* has two invariant components At

and A with the common boundary 34* = 3A being a quasi-circle and
that G7* = GD.. This and iii) imply that GDz is a finitely generated
quasi-Fuchsian group of the first kind with A as a component. We
note that if G is a finitely generated Kleinian group or, more generally,
if Ai/Gά. is a finite Riemann surface, then i), ii) and iii) are satisfied.

REMARK. There is a Kleinian group G with components Alf A2 satis-
fying i), ii) and Λ(GΔl Π GΔz) Φ 34 ΓΊ 34- Such a group is easily constructed
by applying Klein's Combination Theorem to two infinitely generated
Fuchsian groups of the first kind. Further, there is a Kleinian group G
with components A19 A2 satisfying i), iii) and Λ(GΔl Π GΔz) Φ dΔx Γi 34- Such
a group is constructed by applying Klein's Combination Theorem to the
following two groups Gγ and G2. Namely, Gx is a finitely generated
Fuchsian group of the first kind acting on the upper half plane and
containing a parabolic cyclic subgroup generated by a transformation
z h-> z + 1 and G2 is an infinitely generated quasi-Fuchsian group of the
first kind constructed as follows. Let Co (or Co) be a circle with center
1/3 + 2ί (or 2/3 + 2i) and radius 1/6 (or 1/6), and let Cά (or C'ά), j =
1, 2, , be a circle with center 1/3 + (2 + 1/42 + 2j/7)i (or 2/3 +
(2 + 1/42 + 2j/7)i) and radius 1/7 (or 1/7). Denoting by g0 a parabolic
transformation which maps the exterior of Co onto the interior of CO
and denoting by g3- a loxodromic transformation which maps the exterior
of Cj onto the interior of C'ό, j — 1, 2, , we represent by G2 the group
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generated by gά, j = 0, 1, 2, . One can easily see that the group
(Gu G2) generated by Gx and G2 has the desired properties.

Now we shall prove the following.

PROPOSITION 3. Assume i), ii) and iii). If the condition

(*) 0(A) Π A = 0 for each g e GDz\GDl

holds, then Λ(GDl Π GDz) = 3 A Π 3A

PROOF. It is sufficient to prove that zQ e d A Π 3A implies z0 e
Λ{GDι Π GDz). We assume that this is not true. Then z0 e Ω(GDl Π GDz)
and z0 is not a fixed point of an elliptic element of GDl Π GD2. For, fixed
points of elliptic elements of the common subgroup GDι Π GD2 lie in A and
A> respectively. Therefore there is an r > 0 such that Ir = {z | | z — z0 \ <
r} n A c Ω(GDl ΓΊ (? 2̂) and such that g(Ir) Π Ir = 0 for all ^ e G ^ ί l GDz

being not the identity. This and (*) imply that g(Ir) Π Ir = 0 for each
g e Gn2 being not the identity. By Lemma 2', we see that dD1 is not a
quasi-circle. This contradicts ii) and the proposition is proved.

4. Theorems. Let G be a Kleinian group and let Δx and J2 ( ^ 4 )
be two components of G. From Propositions 2 and 3, we see that the
conditions i), ii), iii) in the preceding section and the assumption (*) in
Proposition 3 imply Λ(GΔχ Π Gj2) = dΔγ ΓΊ dz/2. The conditions i), ii) and
iii) are natural ones. So our task is to give a simple sufficient condi-
tion in order that (*) holds. From this point of view, we can prove
the following three theorems.

THEOREM 1. If GΔl is a quasi-Fuchsian group of the first kind
with the quasi-circle dAι and if Gj* is a finitely generated quasi-Fuchsian
group of the first kind, then Λ(GΔχ Π Gj2) = dΔx Π dΔ2.

PROOF. Under the assumptions, the conditions i), ii) and iii) hold
clearly and we see Δx = D19 which is a component of G. Hence #(A) =
A or g(A) ΓΊ A = 0 Since g{A) = A is equivalent to g e GDί, the
condition (*) holds. From Propositions 2 and 3, we have our Theorem.

THEOREM 2. Let GΔ* be a quasi-Fuchsian group of the first kind
with the quasi-circle dΔ* and let GΔ* be a finitely generated quasi-
Fuchsian group of the first kind. If 3ΔX Π dΔ2 contains at least two
points, then Λ(GΔχ Π GΔ2) = dΔ1 Γl 3z/2.

PROOF. Obviously the conditions i), ii) and iii) are satisfied and it
is easy to see that dD1 Π dD2 contains at least two points. Assume that

D1^ 0 for some geGD2\GDl. Then g(Δ1)f]Δl= 0 . In fact, if
n Δ, Φ 0 , then g e GΔl and g(Δΐ) Π Δ* ZD g(D2) [\D2Φ 0, which implies
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g eGj* = GDι, a contradiction. Hence we see that g{ΔJ lies in a com-
ponent Δ* of the complement of Δγ and that d#(A) lies in J*. The last
fact follows from 3 A c dΔx. There occur two cases.

The case where zf* Φ z/*. Note that in this case ^ ( ΰ j c ^ c ΰ ^ .
We take and join two points in 3 A Π dD2 by Jordan arcs in Dί9 i = 1, 2,
respectively, and have a closed Jordan curve K passing through these
two points. Now g(K) is a closed Jordan curve with a property Δι Γl
g(K) = 0 . On the other hand, Dxΐ]g{K)Φ 0 and D2f]g(K)Φ 0 so
that 0r(lSΓ) Π dD1 Φ 0 . Hence both components of the complement of
g(K) include points of dDι which are also points of dJ19 This contradicts
connectedness of Δλ.

The case where z/* = Δf. Note that in this case #(A) 3 A Hence
g'XDJ £ A Therefore ^"r(A) and hence g~\Δ^ lies in another com-
ponent (^4*) of the complement of It. It also holds that g~1sGD2\GDl

and flΓ1^) Π Λ = 0 Thus we can reduce this case to the case stated
above.

Therefore, we see that (*) in Proposition 3 holds. By the same
way as in the proof of Theorem 1, we have our Theorem 2.

Further, we can prove the following.

THEOREM 3. // Gά*, i = 1, 2, is a finitely generated quasi-Fuchsίan
group of the first kind, then Λ(GΔl Π Gj2) = dΔt f] dΔ2.

PROOF. The conditions i), ii) and iii) are obviously satisfied. If
3A ΓΊ 3A contains two points, then the proof of Theorem 2 shows validity
of (*) in Proposition 3 and we have the desired. So we may assume
3AΓΊ3A = {Zo}. Contrary to (*) in Proposition 3, assume that #(A)Π A Φ
0 for some g e GD2\GDl. Then, by the same reasoning as in the proof
of Theorem 2, it holds that g{A^ Π 4 = 0 and that d#(A) lies in the
closure of a component Δ* of the complement of Δx.

We assert that g(z0) = z0. In the case Δ* Φ Δf9 we have g{D^)(Z
Δ* £ A and g(z0) = g{dD, Π dD2) = 3s<A) Π <?A c A Π 3A = z0. In the
case zί* = Δϊ, we have ^r(A) 3 A and flr(s0) = g{D, n 3A) = ff(A) Π Sf lp
3A Π 3A = «o I n both cases ey(z0) = ^0

Therefore, ^0 is a fixed point of a non-elliptic element of G^. By
the quite same reasoning as above, if g\D2) Π D2Φ 0 for some #' 6
GD\GD2, then #'(£0) = £o and ^' is a non-elliptic element of GDl. Since g
and #' have their fixed points on dD2 and dD19 respectively, they are
parabolic. For, otherwise G is not Kleinian. If they are not in the
same parabolic cyclic group, then an invariant curve in A under g'
intersects an invariant curve in D2 under g, which is impossible. Since
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g φ g\ there are integers m, n (φm) such that gm = (g')n and #m(A) =
(#')*( A) = A As was shown already, either g(Dx) £ A or #(A) 5 A
holds. So we have #m(A) ^ A> a contradiction. Thus, for at least one
of i = 1 and 2, we have #(A) Π A = 0 for each # e GDfi_t\GDt. By the
same way as in the proof of Theorem 1, we have the required.

By using Theorem 3, Ahlfors' finiteness theorem and Maskit's
theorem [Theorem 2; 5], we have immediately the following.

COROLLARY ([6]). // Δi\GΔi is a finite Riemann surface, i = 1, 2,
then Λ(GΔl Π GΔz) = dΔ, Π dΔ2.

REMARK. It is not known whether or not the conclusion of Theorem
2 holds without the condition on the number of points of the set
dΔ, Π dΔ2.

5. The case of function groups. In this section we restrict our-
selves to function groups. Let G be a function group with an invariant
component ΔQ. Obviously GJo = G and dΔ0 = Λ(G). Hence, for any
other component Δ of G, it holds that GΔ(. Π GΔ = GΔ and dΔ0 Π dΔ = dΔ.

0

So Λ(GΔQ Π GΔ) = dΔ0 n dΔ if and only if Δ is a component of GΔ. Thus,
in what follows, we consider only non-invariant components of G. Let
Δ be a non-invariant component of (?. By Accola's theorem [1], Δ is
simply connected. Hence there is a conformal bisection hΔ of the upper
half plane U onto Δ and Γj = h'Δ~

1GΔhΔ is a Fuchsian group which is
called a Fuchsian equivalent of GΔ. The isomorphism χΔ: ΓΔ-+G which
carries 7 e Γ Δ into g = hΔoj ohj1 e GΔ, is called the cannonical isomor-
phism. If 7 eΓΔ is elliptic of order v, so is # = χΔ(Ί) and vice versa,
and g has precisely one fixed point in Δ which is the image of the fixed
point of 7 in U under hΔ. The mapping hΔ can be extended to a
mapping kΔ of the union of U and the set of non-elliptic fixed points of
ΓΔ onto the union of Δ and the set of non-elliptic fixed points of GΔ.
Bers [3] showed this fact by using the notion of the terminal arcs,
which is defined as follows: Let 7 e SL' be parabolic or loxodromic and
let C be a simple open Jordan arc with definite endpoints. Then the
curve C is called a terminal arc of 7 if 7(C) c C and if exactly one of
the endpoints of C is fixed under 7.

Now let Δλ and Δ2 (φΔJ be non-invariant components of a function
group G. For the common subgroup of GΔl and Gj2, we can prove the
following.

PROPOSITION 4. The common subgroup GΔl n GΔz of GΔl and GH is
either finite or parabolic cyclic.
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PROOF. We assume that GΔl Π GΔz is not finite. Then it contains
non-elliptic elements. It is obvious that if there is a loxodromic element
g e GΔl D GΔ%9 then both fixed points zι and z2 of g lie on dΔt n dΔ2. Let
Ci and C2 (or Cί and CO be terminal arcs of g in Δx (or in zf2) such that
Ci (or Cί) has an endpoint zγ and C2 (or C2') has an endpoint z2. We
may assume that endpoints of C1 and C2 (or C[ and C2) different from
z1 and 22 are identical. Thus C19 C2, Cί, C2 and two points zγ and z2

form a closed Jordan curve K and K Π 4> = 0 > where z/0 is an invariant
component of G. Both the interior and the exterior of K include points
of Λ(G). Since dΔ0 = A(G), the interior and the exterior of K also
include points of Δo. This contradicts connectedness of Δo. Hence there
is no loxodromic element in GJt ΓΊ GJa. Next we assume that in GΔl ΓΊ Crj2
there are two parabolic elements g and g' with the different fixed
points. We are also able to draw a closed Jordan curve lying in
Δx Π Δ2 Π Λ(G) such that both complements of this curve with respect to
C include points of Δo. The same argument as used just above leads
us to a contradiction.

Thus we see that there exists one and only one fixed point of the
parabolic elements in GΔί Π Gj2. This fact implies that there is no
elliptic element in G4ί Π GΔz. For, Δγ and Δ2 are simply connected and
a conjugation of a parabolic element by an elliptic element gives another
parabolic element with the different fixed point.

To complete the proof it suffices to show that if there are two
parabolic elements in GΔl Π GΔ<ί with the same fixed point, then they are
powers of some parabolic element. This follows at once from the fact
that Δγ is conformally equivalent to the upper half plane and Fuchsian
equivalent ΓΔl of GΔl makes the upper half plane invariant. Thus we
have our proposition.

On the common boundary dΔγ n dΔ2 of non-invariant components Δt

and Δ2 of G, we have the following.

PROPOSITION 5. // each boundary of Δx and Δ2 consists of a closed
Jordan curve, then dΔγ ΓΊ dΔ2 consists of at most one point.

PROOF. First we note that G has an invariant component Δo. We
assume that dΔγ n 3J2 contains two points. Connect them by a simple
arc Cγ in Δ1 and by a simple arc C2 in Δ2, respectively. Then we have
a closed Jordan curve K consisting of Cγ and C2 such that both the
interior and the exterior of K contains points of Δo. This contradicts
connectedness of Δo.

REMARK. Accola [1] gave an example of a function group G which
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has two invariant components Ao, Δ[ and an infinite number of atoms
At, % — 1, 2, . We can see that dΔ[ Π dΔ1 is not finite set. It seems
to be open whether or not there is a function group G with exactly one
invariant component such that the number of points of dΔ1 Π dΔ2 is
greater than 1, where Δx and Δ2 are non-invariant components of G.

Now we can prove the following.

THEOREM 4. Let G be a function group and let Δ1 and Δ2 (ΦAJ) be
non-invariant components of G. Suppose that GΔl is a quasi-Fuchsian
group of the first kind with the quasi-circle dΔ± and that GΔ2 is a finitely
generated quasi-Fuchsian group of the first kind. Then GΔl Π Gj2 is a
parabolic cyclic group if and only if dΔί f] dΔ2 consists of only one
point.

PROOF. Note that A* is the complement of A2 and GΔ*2 = GΔ2. Hence
by Theorem 1, it holds that Λ(GΔl Π GU2) = dΔι Π dΔ2. By this equality
and Proposition 4, if part of the theorem is obvious. Conversely, if
GΔl Π Gj2 is parabolic cyclic, then Λ(GΔl Π GΔ2) Φ 0 , so dΔ1f]dΔ2Φ 0 . By
Proposition 5, BΔ^ Π dA2 consists of only one point. Thus the proof is
completed.

The fixed point z0 of a parabolic element g of GΔ is called a cusp
on A if there is a circle C passing through z0 such that the interior /
of C is included in A and the action of GΔ on / is equivalent to the
action of g. The domain I is called a half plane of g belonging to zQ.
Clearly there are no more than two disjoint half planes of g belonging
to the cusp zQ. It is well known that for Fuchsian groups every fixed
point of parabolic elements is a cusp, (see, for example, [4], p. 61). It
is also true for quasi-Fuchsian groups of the first kind. Using the
above fact and Theorem 4, we can prove following two theorems.

THEOREM 5. Let G be a function group and let Au Δ2, Δ3 be non-
invariant components of G. If GΔi (i = 1, 2, 3) are quasi-Fuchsian
groups of the first kind with quasi-circle dAt and if one of them is
finitely generated, then dΔγ Π dΔ2 f] 3Δ5 = 0 .

PROOF. Let GΔl be finitely generated and assume z0 e dΔγ Π 9Δ2 n
dzί3. Then, by Proposition 5 and by Theorem 4, dΔ1 Π dΔ2 consists of
only a fixed point z0 of the common parabolic cyclic subgroup of Gάι

and Gj2. Therefore there are two disjoint half planes belonging to z0,
one lies in Δγ and the other lies in Δ2. The same is also true for Δγ

and As. Hence there would be three disjoint half planes belonging to
zQ. Thus we have a contradiction and the theorem is proved.
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THEOREM 6. Let G be a B-group, that is, a finitely generated
(non-elementary) Kleinian group with a simply connected invariant
component. Let Δ1 and Δ2 be non-invariant components of G. If
dΔ1 Π dΔ2 Φ 0 , then Δί and A2 are attached at the fixed point of an
accidental parabolic transformation of G.

PROOF. An accidental parabolic transformation g is a parabolic
transformation of G such that hj^ghJo is hyperbolic, where Δo is an
invariant component of G and hJo is a conformal mapping of the upper
half plane onto Δo. Since G is finitely generated, the conditions on GΔl

and Gj2 in Theorem 4 is clearly satisfied. Hence by Theorem 4, 3Δλ n dΔ2 =
z0 is a fixed point of a parabolic element g of G. If g is not accidental
parabolic, then hj^ghJo is parabolic. Considering the image of a half
plane belonging to a cusp hj*(z0) on the upper half plane, we can easily
find a half plane, in Δo, belonging to z0. Thus there would be three
disjoint half planes belonging to z0. This contradiction proves our
theorem.

REFERENCES

[1] R. D. M. ACCOLA, Invariant domains for Kleinian groups, Amer. J. Math., 88 (1966),
329-336.

[2] L. V. AHLFORS, Quasiconformal reflections, Acta Math., 109 (1963), 291-301.
[3] L. BERS, On boundaries of Teichmuller spaces and on Kleinian groups: I, Ann. of

Math., 91 (1970), 570-600.
[4] I. KRA, Automorphic Forms and Kleinian Groups, W. A. Benjamin, 1972.
[5] B. MASKIT, On boundaries of Teichmuller spaces and on Kleinian groups: II, Ann. of

Math., 91 (1970), 607-639.
[6] B. MASKIT, Intersections of component subgroups of Kleinian groups, Ann. of Math.

Studies, 79 (1974), 349-367.

YAMAGATA UNIVERSITY

YAMAGATA, JAPAN




