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0. Introduction. Let G be a Chevalley-Demazure group scheme asso-
ciated with a connected complex semi-simple Lie group Gc (as for the
definition, see E. Abe [1], 1) and let R be a commutative ring with a
unit, α an ideal of R. Then the natural ring homomorphism f:R—+R/a
induces the group homomorphism (?(/): G{R) —• G(R/a). The kernel (resp.
the inverse image of the center of G(R/a)) of G(f) will be denoted by
G(R, α) (resp. G*(R, α)) and called the special (resp. general) congruence
subgroup modulo α of G(R). Any subgroup N of G{R) such that

G%R, a)iDN^G(R, a)

for an ideal α of R is a normal subgroup of G(R). Such a normal
subgroup of G{R) will be called a congruence subgroup of G(R).

Now let R be a local ring, m be the maximal ideal of R and
Jc = R/m and let G be simple. One of the authors (cf. E. Abe [1]) has
proved that the determination of the normal subgroups of G(R) is reduced
to the determination of certain submodules of R except some few cases
and that in particular, if G is simply connected, the only normal sub-
groups of G(R) are the congruence subgroups provided that the charac-
teristic of k is Φ 2 (resp. ΦZ) \ί G is of type Bn, Cn or F4 (resp. of
type G2), and that ch. k Φ 2 and k Φ F3 if G is of rank 1. This is a
generalization of a result given by W. Klingenberg (cf. [5], [6]) for the
groups SLn+1(R) and Sp2n(R).

In this note, we shall formulate the problem by some weaker con-
dition than that of the above result and solve the problem for certain
class of commutative rings which contains not only local or semi-local
rings but also noetherian rings. The main theorem is stated in § 1 with
some remarks. In § 2, we shall deal with some important subgroups of
G(R) for later use. To prove the theorem, in § 3, we shall first reduce
the problem to rings without radicals. Then, in § 4, reduce to m-complete
rings (as for the definition cf. § 1). These two reduction theorems lead
easily to our main theorem in § 5.
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The authors wish to express their thanks to the referee for his
careful reading of the original manuscript. By his comment, we can
generalize our original result to the present form.

1. Statement of the main theorem. We shall freely use the defi-
nitions and notations given in [1], § 1. Throughout the paper, G is a
simple Chevalley-Demazure group scheme of rank > 1 and R is a com-
mutative ring with 1. We denote by E(R) (resp. GQ(R)) the subgroup
of G(R) generated by xa(t) for all t e R and all root a e A (resp. by E(R)
and by h(χ) for all χ e Horn (Z[T], R)) (cf. [1], 1.5). As for the definition
of the subgroups E(R, alf ax) and E*(R, aίf aλ), see [1], 1.8. For a given
pair (G, R) of simple Chevalley-Demazure group scheme G and a com-
mutative ring R, we are going to find the condition for (G, R) to satisfy
the following property:

(N) For any subgroup N of G0(R) normalized by E(R), there exists a
uniquely determined ideal α of R and a special submodule aλ associated
with (G, R) such that

( i ) E*(B, a19 aλ) 3 JViD E(B, α lf aλ)

( ϋ ) G*(Bfa1)

(iii) E^B.aJ

or

(iv) G*(R, aJiDNz) E(R, a,) .

We don't know whether G(R) = G0(R) for any commutative ring.
However, if R is semi-local, then it is true (cf. 2.4). In this case, a
subgroup of G(R) normalized by E(R) is a normal subgroup of G(R)
and E{R) contains the commutator subgroup of G(R). If G is simply
connected and R is local, then for any ideal α of R, G(R, a) = E(R, a)
(cf. 2.3). Therefore, the conditions (N-iii) and (N-iv) are equivalent in
this case. It is an interesting problem to find the condition for R to
satisfy G(R, α) = E(R, α) for any ideal α of R. Condition (N-ii) is weaker
than (N-i). Therefore, it is desirable to characterize the subgroups N
by (N-i) rather than by (N-ii).

Now, we shall first state some necessary conditions for (G, R) to
verify the condition (N). Let R be a commutative ring and Spm R =
{mμ; μeM} be the set of all maximal ideals of R, where M is the set of
indices corresponds bijectively to Spm R. For any μeM, we denote by
kμ the residue class field R/mμ.

( a ) If G is of type B2 or G2, then kμ Φ F2 for any μ e M, where F2

is a finite field with two elements.
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(b) The characteristic of kμ is different from the length λ of long
roots of Δ for any μeM.

From [1], 2.3, we see the following :

1.1. PROPOSITION. Assume (G, R) satisfies (a). If (G, R) verifies
(N-i) or (N-ii) and further satisfies (δ), then (G, R) verifies (N-iii) or
(N-iv) respectively.

Note that if (G, i?)N does not satisfy (b), Proposition 1.1 is not true
in general (cf. Example 5.3). Therefore, we restrict our attention to
the condition (N-i) or (N-ii).

We shall prove the following fundamental reduction theorem in § 3,
whose proof is analogous to that of the groups over local rings.

1.2. PROPOSITION. Let J be the Jacobson radical of R. If (G, R/J)
verifies the condition (a) and (N-i), then (G, R) verifies also (N-i).

Now, we shall introduce further conditions of R. Let ^ be the
family of ideals of R which are the intersection of finite numbers of
powers of maximal ideals. Namely, ^ is the set of the ideals

β« = Γj mίί , μt e M (1 ^ i ^ n)

for any finite set of maximal ideals m^, , mμn and of natural numbers
a = {e19 * ,en). We denote by A the set of all indices a which corre-
sponds bijectively to the ideals of ^ . We set up the following condition
for R.

(c ) For any ideal α of R, a = C[aeA (a + α«)

We denote by R — lim R/aa the completion of R with respect to the
a

family of the ideals of J?. We shall call an ideal in ^ an m-ideal and
R the m-completion of R. R is a topological ring by natural way and
the condition (c) means that any ideal of R is relatively closed in R.
We shall say that a ring R which satisfies the condition (c) is m-complete
if R = R. Note that any noetherian ring and the direct product of
arbitrary numbers of fields satisfy condition (c). Then, we shall prove
the following second reduction theorem in § 4.

1.3. PROPOSITION. Assume R satisfies (c) and let R be the m-com-
pletion of R. If G is simply connected and (G, R) verifies (N-ii)9 then
(G, R) also verifies (N-ii).

From these reduction theorems, we shall prove the following in the
last section.
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1.4. THEOREM. Let G be simple of rank > 1. Assume that R/J is
m-complete and (G, R/J) satisfies (a). Then (G, R) verifies {N-ϊ). In
particular, if R is a local or semi-local ring and (G, R) satisfies (a), then
(G, R) verifies (N-i).

1.5. THEOREM. Let G be simple, simply connected of rank > 1.
Assume (G, R/J) satisfies (a) and (c). Then (G, R) verifies (N-iί). In
particular, if R/J is a noetherian ring and (G, R/J) satisfies (a), then
(G, R) verifies (N-ii).

From 1.5 and 1.1, we have the following.

1.6. COROLLARY. Let G be simple, simply connected of rank > 1.
Assume (G, R/J) satisfies (a), (b) and (c). Then (G, R) verifies condition
(N-iv).

Recently, J. Wilson [9] has shown that for the general linear group
GLn(R) (n ^ 4) over a commutative ring R with a unit, the following
holds: For a normal subgroup N of GLn(R)f there exists a uniquely
determined ideal α of R such that

GL:(R, O)ZDNZ>E(R, a) .

It is a problem whether our result can be generalized for any commuta-
tive ring not necessarily noetherian and any normal subgroups of G(R).

Finally, in the case of Dedekind domain of arithmetic type, using
the Matsumoto's result [7] on a problem of congruence subgroups, we
can refine our theorem as follows.

1.7. COROLLARY. Let G be a simply connected, simple Chevalley-
Demazure group scheme of rank > 1, R a Dedekind domain of arithmetic
type and k the quotient field of R. Assume (G, R) satisfies (a) and (b)
and k is not totally imaginary, then for any subgroup N of G0(R)
normalized by E(R), there exists a uniquely determined ideal a of R
such that

G*(R,a)z)Nz)G(R,a).

2. Certain subgroups of G(R). Let R be a commutative ring with
a unit and with the Jacobson radical J. We shall deal with the structure
of certain sub-groups of G(R) with respect to J which are analogous to
those of the group over a local ring with respect to its maximal ideal
given in [1], 2. We shall use the same definitions and notations as in
[1], 2.

2.1. PROPOSITION. Let αL be an ideal of R contained in J and aλ



NORMAL SUBGROUPS OF CHEVALLEY GROUPS 189

be a special submodule of R associated with (G, αx). Then

E{R, αlf aλ) = U(R, aίf ax)T\R, alf aλ)V(R, au aλ) .

PROOF. For convenience, denote by UT' V the set in the right side
of the above equation. First, we claim that UT'V is normalized by
E{R). By the same way as [1], 2.13, 2.14, 2.15, we can prove that UT'V
is normalized by x±a(t) for any root a^Π and any t e R. Therefore, it
is normalized by wa. = xα.(l)#_α.( —l)#α.(l), and then also by E(R). Next,
we claim that xa(t)UT'Ve UT'V for all xa(t)eE(R, a19 ax). If a > 0, it
is obvious and if a = —au a^Π, then it is proved by the same way
as [1], 2.13. Now, let — a be any negative root. Since there is an
element w of E{R) such that wx^a{t)w~x — w_a.(t') for some at e Π, we
have

x_a{t)UT'V= w-'x^.it'XwUT'Vw'^w = w-1(x_a.(tf)UT'V)w
= UT'V.

Thus UT'V is a normal sub-group of E(R). It is the minimal normal
subgroup of E(R) containing xa(t) for all root ae/l and all teaλ{a) and
therefore we have UT'V = E(R, alf α^).*) q.e.d.

2.2. COROLLARY. P(R) = U(R, J)T{R)V{R) is a subgroup of G(R).

PROOF. E{R, J) = U(R, J)T'(R, J)V(R, J) is normalized by E(R) and
by T(R). If we set B(R) = T(R)V(R), then we have

P(R) = E(R, J)B(R) = B(R)E(R, J) .

Therefore, P(R) is a subgroup of G(R).

2.3. PROPOSITION. Let a be an ideal of R contained in J. Then we
have

G(R, α) = U(R, a)T(R, a)V(R, a) c G0(R) .

In particular, if G is simply connected, then G(R, a) = E(R, a).

PROOF. In the same way as [1], 3.2, if aczJ, then we have that
G(R, a) c G0(R), and any element g of G(R, a) is uniquely expressed by
g = utv for some u e U(R, α), t e T(R, a) and v e V(R, a). If G is simply
connected, then T(R, a) = T'(R, a) c E(R, α). Thus G(R, a) = E(R, a).

2.4. COROLLARY. Let R be semi-local. Then G(R) = GQ(R) and in
particular, if G is simply connected, then G(R) — E(R).

* } In Lemma 2.14 of [1], the condition with respect to y fails, and the proof of 2.18
must be corrected as this proof.
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PROOF. Since R is semi-local, G(R/J) = Y[μeMG(kμ) where M is a
finite set. We have G(R/J) = G0(R/J) for G(kμ) = G0(kμ). On the other
hand, from Proposition 2.3, G{R, J) c GQ(R). Therefore, we have G(R) =
G0(R). If G is simply connected, then T(R) = T\R) c #(#), and so
G(R) = E{R). q.e.d.

3. Reduction to rings without radicals. To prove the theorem, we
shall reformulate the condition (N-i) (resp. (N-ii)) as follows:

3.1. PROPOSITION. (N-i) (resp. (N-ii)) is equivalent to the following
(N') Let N be a subgroup of G0(R) normalized by E(R) such that

( i ) E*(R, αlf aλ) 2 N 3 E(R, alf aλ)

resp.

( ϋ ) G*(B,aι)^Nz>E(R,aL,ax).

Then N contains a unipotent element xa(t) such that xa(t) 0 E(R, aL, aλ).

This can be proved in the same way as [1], 3.20. Thus, in § 3 and
§ 4, we shall prove (N'-i) or (N'-ii) instead of (N-i) or (N-ii) in each
cases.

In the present section, we shall prove 1.2. Let J be the Jacobson
radical of R. Assume R/J satisfies (a) and (G, R/J) verifies (N-i). We
shall prove that (G, R) also satisfies (N-i). Let N be a sub-group of
G0(R) normalized by E(R) with the condition (N'-i). For convenience,
we denote by E? = E*(R, alf ax), Eί - E(R, alf a2) and Nf = N - Eΐ. Then
1.2 follows immediately from the following two Propositions 3.2 and 3.3.

3.2. PROPOSITION. We set P(R) = U(R, J)T(R)V(R). Then

N' n P(R) Φ 0 .

PROOF. Let π: R —> R/J be the natural homomorphism and denote
by R, αx and aλ the images of R, αx and α̂  respectively. If N =
NG(R, J)/G(R, J) is a central subgroup of G(R), then

N c NG(R, J) c G*(R, J) c P(R) .

Therefore, we may assume that N is not a central subgroup of G(R).
First, assume

then by the condition (N'-i) for (G, R), we can conclude that there exists
a unipotent element xa(t) of N G(R, J) such that xa(t)$E? E(R, J).
Without loss of generality, we may assume a is negative. If we write
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xa(t) = g-h f o r s o m e geNand he G(R, J ) , t h e n g = xa(t) h~ι eN' Π
Next, assume EX{R, alf άλ) z> Λf. Then ( ^ E(R, Jψ i) N and there

are g e GQ(R) and heN such that (#, h) = ^^2 g £Ί where ^ e 2^ and
g2 e E(R, J). Since G0(R) = E(R)T(R), we can choose such an element #
from #(#) or T(i2). If g e T(R), then ft g Γ(i2). Therefore, #2 £ T{R) and
so g20E*. Now, assume geE(R) and claim g2gE*. Then, we have
0Γ1 (0, h)eN' f) E(R, J) c iSP Π P(^). This shall complete the proof of
Proposition in this case. We shall first give a lemma.

LEMMA. Let A be a group such that A = (A, A) and B be a normal
subgroup of A. If {A, B) is a central subgroup of A, then (A, B) = {1}.

PROOF. Let x, y be any elements of A, z be any element of B and
denote zx = zxz~\ Then

(% (v, *))("*, (x, v))(xy, (*, *)) = 1 .

Thus (yz, (x, y)) = 1 for any x, y e A and zeB. Since {A, A) = A, we
have (A, B) = 1. Lemma q.e.d.

We set A = EiR^E, and B = N/Eίf then {A, A) = A. Applying the
above lemma, we have (A, B) = {1}, namely (E(R), N) c Eλ. This is a
contradiction and it must be g2ίE*. q.e.d.

We shall use here the notations and definitions of [1], 3 and prove
the following.

3.3. PROPOSITION. Assume that (G, R) satisfies (a). Let N be a
subgroup of G0(R) normalized by E(R).

( i ) If N' n P(R) Φ 0 , then N' Π xβ(R)xβ(R) Φ 0 where β, βf are
dominant roots of A.

(ii) If N' f] Xβ{R)Xβ>{R) Φ 0 where /3, β' are dominant roots of A,
then Nr ΓΊ xa(R) Φ 0 for some root a of A. (Definition of dominant
roots is given in [1] 3.5.)

As for the proof of (ii), see [1] 3.18. To prove (i), we follow the
same way as [1] 3.13 and it is sufficient to prove the following.

(PJ Assume that the rank of G is > 1. If there exists an element
z = xhy of JV' Π P(R) such that x e U(Δ') n U(R, J), h e T(R), y e V(A')
and that x £ E(R, au aλ) or y £ E(R, al9 aλ) where A' is a subsystem of A
of rank n. Then starting from z9 by a finite process of taking its reduced
form, taking a conjugate in G(A') or taking a commutator with an
element of G{A'), we obtain an element of the form xr(s)xr{s') in N' where
7, 7' are dominant roots of A'.

We proceed by induction on n. As for the proof of (P2) see [1],
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3.14, 3.15 and 3.17. We shall give here a proof of ( P ^ J ^ ί P J (n ^ 3)
for the proof given in [1] 3.16 has some gaps.

Without loss of generality, we may assume n — I. Denote z = xLxQhyoy1

where x, e 0(4), x0 e 17(4), h = h(x) e T(R), yQ e F(Λ) and y, e V{ΔX).
( i ) First, we shall show to be able to assume without loss of

generality that z = xγyγ.
Suppose that z0 = xohyo £ E? and xQ g Ex or y0 ί 2£lβ We note that

17(4) and F(Λ) are normalized by G0(Δ0). Therefore, by (P»_i), we obtain
an element z' = x[xr{s)xr,(s')y[ of N' such that x[ e U(Δ^), y[ e V(A^, xΌ =
xr(s)xr,(s') e U(ΔQ) where 7, 7' are dominant roots of Δo and xr(s) g Έγ or
ί»r(s')ί^i We set z/(#ί) (resp. ^(#0) the set of roots β in Λ (resp. —4)
such that $[ (resp. τ/I) is a product of XβifyίE^ If z/(̂ /J) = 0 , then 2;
has already required property. So that we may assume Δ(y[) Φ 0 . We
note that 7 — aγ $ Δ, 7 + ax e Δ, 7' — ax £ Δ and Ύ' + ^ e Δ, and we shall
treat two cases separately. Case 1. x[ = ίcr(s) where 7 is ίfeβ highest
root of Δo. Suppose that there are roots β e Δ(x[) and a^U (ί > 1) such
that β -\- ate Δ, β — at g z/ or that there are roots —/3 e J(?/ί) and a^Π
(ί > 1) such that — β + α* g zί, —β — a^ Δ. Then, since 7 + α, M for
any «< (i > 1), a conjugate of (z', a?αi(l)) has a form xγy^ Otherwise, if
β e J(αί), then β - a^Δ, β + axeΔ and if -/9 e 4^/ί), then -β + a.i Δ,
—β — a±eΔ and further 7 — a^Δ. Thus (2', #_αi(l)) has a form x[ y[.
Case 2. #J = xr(s)ίcr(s'). In this case, Δo is of type B%_γ or C3. If z/0 is
of type 5n_ l f then 7 = α2 + 2α3 + + 2an, Y == α:2 + as + + a^."0

If 2s' G alf then the assertion is obvious and otherwise a conjugate of
(zf, xai+...+aJl)) is reduced to the Case 1.

(ii) We may suppose that z = Xβ(t)Xβ(t')Xβ,,(t")y[ where /3, β' are
dominant roots of Δ such that β" e Δ+ and aι + β" = /9' is the highest
root of Δ.

This follows from (i) and Lemma 3.11, [1],
(iii) We shall show to be able to assume that z' e U(R) Π N'.
Case 1. Δ(x[) = {&}, {β"} or {/S;, β"}. If there exist - 7 6 ^ 1 ) and

at e Π {%>!) such that -Ί + ateΔ and - T - α ^ J , then (z\ xa.(l)) e
V(R)f)N', for β' + at$ Δ, β" + at £ Δ for any ΐ > 1. Otherwise, we may
assume that if —7 e z/(?/[), then —7 — — ^ or —7 + α̂  e J and —7 — α̂  ί Δ.
Therefore,

In this paper, we shall set the fundamental root system as follows:
(Bn) ° ° ° o = > o

Oil <*2 Oίn-1 <*n

(Cn) ° :' ° ° ' * ' ° °
»i a2 an-ι an
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^ , if β'eA{x[)

and

(*', s_,,(l)) = x.ai(t) G V(R) f]N' , if £' e zί(x ) .

2. /3 e J(xί). In this case, A is of type !?„, Cn or .F4. Let
be of type Bn or Cn. Then we have

/2' = a, + 2a2 + + 2an , β = a, + a2 + + an

or

/3' = a, + 2a2 + + 2an , β = a, + 2a2 + - + 2an^ + αw

respectively. If 2t e alf then a conjugate of (z\ xai+...+(Xn(l)) or (zf, xajl))
is reduced to the Case 1. If 2t e aly then we may assume that an is
orthogonal to β, β\ β" and to A(y[). Thus, z' is reduced to the case
(P^i) . Now, let A be of type F4. Then we have

β = aλ + 2a2 + 3a, + 2α4 , β' = 2aλ + Sa2 + ίa, + 2α4 ,

β" = αx + 3α2 + 4α3 + 2α4 .

These are orthogonal to a3 and ^ ' is reduced to the case (P3).
From (iii), again applying Lemma 3.11 [1], we have completed the

proof (P..,) - (Pn).

4. Reduction to m-complete rings. In this section, we shall prove
1.3. Let R be a commutative ring with condition (c) and R be its
m-completion of R, and G be simply connected. Assume (G, R) verifies
(N-ii) and we shall show that (G, R) also verifies (N-ii). From (c),
ΠaeΛ

aa = 0. Therefore R is imbedded in R as a dense subring.

4.1. LEMMA. Let Rμ be the mμ-adic completion of R. Then

R — Π Rμ
μeM

PROOF. Let α = ΠJ-i^ί* f ° r α G ^"> a n ( i w e s e t ^ , « — R>lmn- Then

i?/αα = Π Rμί,a

The natural homomorphism

faβ: R/aβ -> i2/αα for aβ c αα

gives a natural local homomorphism

fϋβ' Rμ,β~+Rμ,a for aa c tπ^ .

We write f£β = 0 if aβamμ but aaςtmμ. We set
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/ = {(μ, a)eM x A; aa c mμ]

and consider the product Π </*,«> e/i2/ι,α. Each R/aa is identified with the
subalgebra of that product consisting of the partial product of Rμ>a for
all μ such that (μ, a) el. If a <̂  /3, then for any μeM such that
(μ, β)el the diagram

j J
Rμ,β fμ

 > ^ , α
•'α/9

is commutative. Now, by the above identification, we have

R=\z = (za) e Π (B/aa); faβ(Zβ) = za,a^ β
( aeA

= (^,α) e Π Rμ,*\ faβ(χμ,β) = ^,«, α
(μ,a)el

But for each μeM, the set /̂  = {α: e ilί, (^, a) e 1} is confinal to M and
we see Rμ = limαi2^>α. Since we may write

Π #,,«= Π (lLRμ,a),
(μ,a) el μeM \ael /

R is identified with the product Π ^ e ^ ^ . q.e.d.

4.2. COROLLARY. The Jacobson radical J(R) of R is isomorphic to
TlμeMWμ and R/J(R) is m-complete.

PROOF. We set & = JJμeMmμ, then α is an ideal of R = YlμeMRμ-
If m = (mμ) eα, then 1 + m is invertible in Rμ for each μeM which
implies that 1 + m is invertible in R. Thus we have J(R) = a. Further,
RjJ(R) = TlμeM kμ shows that R/J(R) is m-complete. q.e.d.

4.3. PROOF OF 1.3. Let N be a subgroup of G0(R) normalized by
E(R) such that

We must show that there exists a unipotent element xa(t) e N such that
xa(t) 0 E(R, alf aλ). By definition, G(R) = lhnα G(R/aa). Since G is simply
connected and Rjaa is semi-local for all aeA, we have G(R/aa) = E(R/aa)
from 2.4. Therefore, the natural homomorphism G(R)-^G(R/aa) is onto
for all aeA and we see

G(R) = lim G(R)/G(R9 aa) .
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Denote by α (resp. JV) the closure of α in R (resp. of N in G(R)). Then

G{R, α) = lim G{R, a + aa)/G(R, aa)
a

and we claim that

E*(R,alf άλ)?>Nz)E(R, alf άλ) .

In fact, NIDE(R, alf aλ) is obvious. Suppose E*(R, alf aλ)uN. Then

(NfG(R))dE(Rfάίfaλ)

which implies for any ideal aa of ^ ,

(N, G(R)) c (E(R, α1? aλ) n G(R)) G(R, aa) .

Therefore, (N, G(R))cG(R, a, + aa) for any ideal aa e J?. Thus, we have

(N, G(R)) <= Π G(R, a, + αα) = G(J2f αt) .
aeM

This contradicts to our assumption, namely, we have £r*(i2, άlf aλ) ~t> N.
Now, from the condition (N'-i) for m-complete rings with 1.2 and 4.2,
we have R also verifies (N'-i), and since N is normalized by E(R), there
exists a unipotent element xa(t) e N such that xa(t) g ̂ (Λ, αx, αA) for some
ί e β . We set N' = N - E(R, άu aλ) and N' = N - #(#, αly α;). Since

xa(R) = QR), we see xa(R) Π G(i2)- xJiB). Therefore, xa(R) f]N' = xa(R) Π JSΓf

is a dense subset of xa(R) Π iV' Φ 0 which is not empty as shown above.
Thus we have xa{R) Π N' Φ 0 which completes the proof. q.e.d.

5. Conclusion of the proof and an example.

5.1. PROOF OF 1.4. Assume that R/J is m-complete and (G, R/J)
satisfies (a). We shall show that ((?, R) verifies (N-i). From 1.2, we
may assume that J = 0. Since R is m-complete, R = R = Y[μ&M kμ
Therefore G(R) = Y[μ&MG{kμ). Now, let N be a non-central subgroup of
GQ(R) normalized by E(R) such that

E*(R, aL,aλ)

For any μeM, we have the natural homomorphism

Let Z(R) (resp. Z{kμ)) be the center of G(R) (resp. G{kμ)). Then Z(R) ~
T[μeMZ(kμ). The images by ψμ of JV, E*(R, al9 aλ) and E(R, alf aλ) are
normal subgroups of G(kμ) and either contained in Z(kμ) or contain E(kμ)f

in fact -E^) is simple over its center, (cf. J. Tits [8])
Now, we set
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K = {μ e M fμ{E{R, α1? aλ)) =) E(kμ)}

Then we have L^KΦ 0 . In fact, KΦ.Q follows from the fact that
N is not central and L^K follows from E*(R, alf aλ) t> N.

If we take an index μeL — K, we have

Nz)(N, E{kμ)) D (E(kμ), E(kμ)) = E(kμ) .

Therefore, there exists an element xa(t) e E(kμ) in N which is not contained
in E*(R, al9 aλ). q.e.d.

5.2. PROOF OF 1.5. Assume G is simply connected and (G, R/J)
satisfies (a) and (c). We shall show that ((?, R) verifies (N-ii). From
1.2, we may assume / = 0. Let R be m-completion of R. Then from
1.4, ((?, R) verifies (N-i) and in particular (N-ii). Since R satisfies (c),
from 1.3, (G, R) also verifies (N-ii). q.e.d.

5.3. EXAMPLE. A normal subgroup of symplectίc modular groups.
We shall give an example of a normal subgroup of Sp2n(Z) for which
the condition (N-iv) does not hold when (G, R) does not satisfy (b).
Sp2n(Z) is by definition, the group of all 2n x 2n matrices x with entries

in Z such that *xJx = J, where J = ( τ Λ ) , / being the unit matrix of
(a b\ ^ '

degree n. An element x = ί A of GL2n(Z) is contained in Sp2n(Z) if

and only if ιad — *cb — I/ac = *ca and *db = *b d, where a = (aί3), b =
(bi:i)f c = (Cij) and d = (di3') are n x n matrices with entries in Z. For
an integer q ^ 1, define Sp2n(Z, qZ) and Sp2n(Zf qZ) as in introduction.

Now, let n ^ 2 and let JV be the set of all elements of Sp2n(Z, 2Z)
such that

( * ) bu Ξ= cu = 0 (mod 4) (1 ^ i ^ w) .

We shall show that N is a normal subgroup of Sp2n(Z) and it contains
the subgroup Sp2n(Z, AZ) but not contained in Spίn(Zf AZ). We denote

by a? = (J f) or x, - ( £ £ ) (i - 1, 2) elements of Sp2n(Z). We claim

that if xt e Sp2n(Z, 2Z) (i = 1, 2) and α = xxx2 then

6 Ξ bλ + δ2 , c Ξ d + c2 (mod 4) .

We set at = I+ 2< d< = I + 2d\ (i = 1, 2), then

b = αA + &A = &! + 62 + 2(αίδ2 + b,d2).

Since 6X = b2 = 0 (mod 2), we see δ = bx + b2 (mod 4). Similarly, we have
c = d + c2 (mod 4). This shows that if xί9 x2 e N, then xtx2 e N and if
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xeN, then x^eN, i.e., N is a subgroup of Sp2n(Z). Next, we claim
that N is normal. We note that Sp2n(Z) is generated by the matrices

n 0 \ (1 v\ , , A 0

where u e GLn(Z) and v, v' are symmetric w x ^-matrices with entries
in Z (cf. for example, J. Mennicke: Zur Theorie der Siegelishen Module
Gruppe, Math. Ann. 159, 1965, p. 115-p. 129). Therefore, to prove that
N is normal, it is enough to show that yxy~\ zxz'1 and z'xz'~ιeN for
any xeN. Let first xeN and xι = yxy~\ Since *b = b (mod4), (ΐ, i)-
component of b, = ub'u is Σ i * UikhjUts = 2 Σ f c < i uikbkύui5 + uίlcbkkuik = 0
(mod 4). Thus, δi and also cx have the property (*) and we have xxeN.
Next, let α e iV and #2 = ^ ̂ " 1 . Denote a = I + 2a', d = I + 2d'. Then
W + dr = 0 (mod 2), for 'a - d = / + 2('d' + d') Ξ / + fc 6 = / (mod 4).
Now, we have

bι = — av — vci; + δ + vd = —2(a'v — vdf) — vcv + b .

Here, a'v — vd' = a'v + v*a' (mod 2) and α'v + /y*α/ is symmetric. Further,
vcv is symmetric mod 4 and its (i, ί)-component is

Σ vi3'Cjkvki = 2 Σ vi5cikvki + vikckkvki = 0 (mod4) .

Thus, δi and also ^ have the property (*) and xteN. Similary, we see
z'xz'^1 eN for any xeN. Thus we have proved that N is a normal
subgroup of Sp2n(Z).

It is easy to see that N contains Sp2n{Z, AZ) but not contained in
Spϊn(Z, AZ). Moreover, if g is a multiple of 4, then Spt{Z, qZ) φ N and
if # is not a multiple of 4, then N35Sp2n(Z, qZ). Therefore, there exists
no integer g ^ 0 such that Sp?n(Z, qZ)z> NZD Sp2n(Z, qZ).
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