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1. Introduction. In the present paper, we shall introduce a notion
of the weakly continuous constant fields of a Hilbert space over a hy-
perstonean space. We have defined in [10] the continuous fields of Hilbert
spaces which give a characterization of AW*-modules, where the follow-
ing property has an important role in our definition: Let H = C,(2, H(w))
be a continuous field of Hilbert spaces introduced in [10] and & = {&(w)},
7N = {9(w)} be two elements of H, then the function w — (&(w)|N(®)) is
continuous. But we. can not expect, in general, the existence of the
continuous constant fields of an infinite dimensional Hilbert space satisfy-
ing the conditions in [10; Definition 3.1]. Thus, replacing the condition
(4) of [10; Definition 3.1], we define another continuous constant fields
of a Hilbert space. Namely, we shall introduce a new notion of the
weakly continuous constant field of a Hilbert space.

Let K be a Hilbert space and £2 a hyperstonean space. We set F'=
C(2, K) and consider the set H = Wy(2, K) of all weakly continuous
vector fields with respect to F, where C(2, K) is the space of all K-
valued continuous functions on 2. Then, even if & and 7 are two ele-
ments of H = Wy(£2, K), the function @ — (&(w)|7n(w)) is not necessarily
continuous, and so H does not necessarily become an AW*-module in-
troduced by Kaplansky [4]. However, the space H = W (2, K) turns
out to be a C(2)-moduled Banach space with respect to the norm ||&|| =
sup {||&(w)||: w € 2} and we can show that the set B(H) of all bounded
C(2)-module homomorphisms of H into H becomes a von Neumann algebra
of type I with the center *-isomorphic to C(2). As an application of
the above result, if 2 is a hyperstonean space, we can show that, if A
is a von Neumann algebra acting on K and .% = C(f2), then the tensor
product AR . of A and & is *-isomorphic to the algebra W(2, K, )
where W(2, K, %) means the set of all elements A = {A(w)} of B(H) such
that A(w)e N for all w e 2 (Definition 17). In general, let C(2, %) be the
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set of all A-valued continuous functions on 2, then C(2, A) becomes a
C*-algebra under the pointwise multiplication defined by AB = {A(w)B(w)}
for every A and BeC(2, ). But, since our algebra W(2, K, %) is a
von Neumann algebra, we can not define the same multiplication in
W(2, K, ) by our result [8] and [9]. Nevertheless, we can fortunately
define the multiplication in W(®2, K, ¥) as a subalgebra of B(H).

The above mentioned second result is closely related to the Sakai’s
theorem [6] and [7; Theorem 1.22.13] which is given as follows: Let .o =
L>(2,, tt) be an abelian von Neumann algebra and U a von Neumann
algebra acting on a separable Hilbert space, then the tensor product
AR® . of A and &7 is represented as the algebra L=(2, y, A) of all
essentially bounded weak *-measurable ¥-valued functions on 2,. The
Sakai’s theorem contains naturally the assumption of separability for o
as a measure theoretic result, whereas our result is free from the sep-
arability assumption.

2. The weakly continuous constant fields of Hilbert spaces. In this
paper, we use the following notations: 2 is a hyperstonean space and
F = (C(2, K) is the set of all K-valued continuous functions on 2 where
K is a Hilbert space. Then, if £ is a hyperstonean space; any first
category subset of 2 is a nowhere dense set in 2 [2; Corollary of Pro-
position 5].

We introduce first the following notion which says the weakly con-
tinuous constant field of Hilbert space over 2.

DEFINITION 1. Let 2 be a hyperstonean space, K a Hilbert space
and H(w) = K for all we 2; then a vector field ¢ = {&(®)} € [1o. H(w) is
called a weakly continuous vector field with respect to F' if, for every
7e F, the function @ — (&w)|7(w)) is continuous on 2. We denote the
set of all weakly continuous vector fields with respect to F' by H =
W2, K) or simply W(2, K), and call the weakly continuous constant
field of Hilbert space K over £.

Under Definition 1, we give the norm by the form; for every éc H =
W2, K), ||&]|| = sup{||&(w)]|: w € 2}, then we can show by an elementary
computation that H = W(Q, K) becomes a C(2)-moduled Banach space
with respect to the above defined norm ||-|.

We have, in [10], introduced the notion of continuous vector field
in which we have the following fact: If & = {£é(w)} is a continuous vector
field, then the function @ — ||&(w)|| is continuous on £. But, under De-
finition 1, even if ¢ is an element of W(2, K), the function w — ||&(w)||
is not necessarily continuous. If £ is an element of F, then the function
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o —||&(w)|| is continuous on 2. Conversely, if & is an element of H =
W(2, K) such that the function w — ||&w)|| is continuous on £, then
we can show that £ is an element of F. This fact is useful for the later
part in this paper and so we give the proof.

For the above fact, we have the following considerations. Let .#Z
be a closed submodule of H = W(R2, K), then we can show by a similar
way to [11; Proposition 1.3] that (.#Z N F)(w) is a closed subspace of K
for every we 2 where (Z N F)(w) = {&(w): £e .# N F}. Then, we have
the following result.

PROPOSITION 2. Let .# be a closed submodule of H = W(2, K) and

A= # NF. If ¢ ={&w)}is an element of [[,co A#Z(w) such that the
function o — ||&(w)|| is continuous and moreover, for every n € _+#,, the
function o — (&(w)|N(w)) is continuous, then & is an element of _#,.

Proor. For an arbitrary fixed element w,c R, there exists an ele-
ment Ve _# with &w,) = N(w,). Let M = max{||&(w)||: w € 2}, then, for
every positive number e, there exists a neighborhood V(w,) of ®, such
that, for every we V(w,),

[1E@)|F — 8@ ] < &8, [(E(@)|n(w)) — (&(w)|n(@y))] < &/8
and
[[9(w) — D(w@y)]| < ¢/8M .

Hence, for every we V(w,), the following relations hold;

[(&(@) | 9(@0)) — (&(@0) [7(@)) ]
= [(§(@) | 7(@,)) — (@) [ (®)) + (@) |7(®)) — (E(w) | 7(@,))]
< &) ]| (@) — p(@w)]] + | (&(@) | 7(w)) — (E(we) | 7(w,))]
< e/8 + ¢/8 =¢/4
and so

HI§@)[I* — (§(@) | 7(w,))]
= [[IE@)|]F — (E(@o) | 7(@0)) | + [(E(@0) | 7(@0)) — (E(@)[7(@y))]

<e8+¢e/4<e/2.
Thus, for every w e V(w,), we have the following relation;
l|&(w) — &(wo)|I*
=< &) — E@) [ 9(w))] + &(@y) | — (N(wo) | §(@))]
<eg2+e4<e.

Therefore, & becomes an element of F' = C(2, K).
Now, if we consider the facts such that &(w)e Z(w) for every
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we and neF, then, for any positive number ¢, there exists a family
{U(w), Nu}oco of pairs consisting of closed and open neighborhood U(w)
of  and element 7, of _# such that ||&(®') — 7.(@)] <& for every
o' ¢ U(w). Since 2 is compact, there exists a finite subcovering {U(w;);
1=1,2, -+, n} of 2. We can suppose that {U(w,);t=1,2, ---, n} are
mutually disjoint. Let z; be the projection in C(2) corresponding to
Ulw,) and 7 = 3 2.7, € #, then [|&(w) — N(w)|| < ¢ for all we 2 and so
||¢ — p|| <e. Since .# is a closed submodule, ¢ is an element of _;.

In Proposition 2, put .# = H, then .# N F = F and, by Definition
1, forevery e # = Hand e _# N F = F, the function 0 — (§(w)|7(w))
is continuous. Hence, if & is an element of H = W(£2, K) such that the
function w — || &(w)|| is continuous on £2; then ¢ is an element of F. Fur-
thermore, we have the following result that is useful in this paper.

LEMMA 3. Let H = W(2, K) be a weakly continuous constant field
of Hilbert space K. Then if & is an element of H, there exists a max-
imal family {e} of orthogonal projections in C(R) such that et is an
element of F for every c.

Proor. Let {7,} be a completely normalized orthogonal system for
K. Then, for every w e 2, {(w) can be represented with &(w) = 3, fu(®)7,.
Now, since, for every 7€ F, the function w — (&(w)|7(w)) is continuous,
each f, is an element of C(£2). Thus, since 2 is a hyperstonean space
and each f, is an element of C(2), the relation ||&(w)|]® = 3| f«(w)|* induces
the existence of a maximal family {e,} of orthogonal projections in C(RQ)
such that the function @ — ||(e.£)(w)|| is continuous for every ¢. There-
fore, by the remark after Proposition 2, ¢£ is an element of F' for every
¢. The proof is completed.

From the representation shown above, we can show the following
elementary fact: Let & be an element of H and {¢} be the maximal family
of orthogonal projections in C(2) with the above property, then ||&|] =
sup ||e&||. Furthermore, from Lemma 3, we have the following corollary
which will be used in the proof of Theorem D. We can show this as-
sertion by using the proof of Lemma 3, so we omit its proof.

COROLLARY 4. Let & be an element of F = C(2, K) and {J}ecs @
completely mormalized orthogonal system for K. Then there exist a
sequence {f,} in C(2) and a sequence {7],} in {Valaes such that & = 37_, ful)s
in the semse of lim,_ . ||& — >k ., fun.|l = 0 where each 7, is a constant
field with 1, (w) = 7, for all we Q.

From the elementary property of C(2, K), let F, be the submodule
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of H generated by the set {f¢&: fe€C(Q) and & are constant vector field},
then F, = F where F, is the norm closure of F, in H = W(2, K).

Furthermore, let B(H) be the set of all bounded C(£2)-module hom-
omorphisms of H into H. Then, for A, Be B(H), if A|F = B|F; then,
by Lemma 3, A = B where A|F is the restriction of A to F.

Now, since even if & and 7 are elements of H, (&, %) is not necessarily
an element of C(£2) where (&, 7) is the function w — (§(w)|n(w)) on 2, H =
W(2, K) does not become an AW?*-module which was introduced by
Kaplansky [4]. An important property of AW*-modules is the following;
let {£,} be a bounded set of an AW*-module M over C(2) and {e,} a
family of orthogonal projections in C(R), then there exists uniquely an
element & of M such that ¢, = ¢,£, for all @. Although, a weakly con-
tinuous constant field of Hilbert space is not necessarily an AW*-module,
we can give a property similar to the one in AW*-modules. To prove
this property, we shall show a result similar to the Riesz’s theorem
in Hilbert spaces (see [10; Theorem 3.6]). It can be shown by using
Lemma 3, a similar way to the proof in [10; Theorem 3.6] and by the
remark after Lemma 3.

LEMMA 5. Let ¢ be a bounded C(Q)-module homomorphism of H =
W(R, K) into C(RQ), then there exists uniquely in H an element & such
that ¢(&) = (&, &) for every £ F and ||g|| = [|&]l.

In Lemma 5, if we suppose that ¢ is a bounded C(£2)-module hom-
omorphism of F' into C(2), we can get the same conclusion in Lemma 5.
Furthermore, we can show by an elementary computation that if ¢ is a
bounded C(£2)-module homomorphism of H into C(2) then ||4|| = ||s|F|.
Furthermore, we can show that, if 4 is an element of B(H), then ||4| =
[|JA|F'||. This assertion can be shown by Lemma 3 and the remark after
Lemma 3.

By Lemma 5, we can show the assertion mentioned before Lemma 5
in the following.

PROPOSITION 6. Let {&,} be a bounded set of H = W(2, K) and {e,}
o maximal fomily of mutually orthogonal projections in C(2), then
there exists uniquely an element & in H such that e, = e&, for all a.

Proor. For every neF, the set {(», &)} is a bounded subset of
C(2), thus >ie.(n, &) in C(2) exists. Define ¢(7) = >. e (7, &), then ¢ is
a bounded C(2)-module homomorphism of F' into C(£2). Then, by the
remark after Lemma 5, there exists an element & in H such that ¢(7) =
(n, £) for every ne F. Therefore, ¢, = ¢,&, for all @. The unicity of ¢
is evident.



484 H. TAKEMOTO

Considering Proposition 6, we have the following definition.

DEFINITION 7. Let {&,} be a bounded set in H = W(2, K) and {e.} a
maximal family of mutually orthogonal projections in C(2): Let & be the
element determined in Proposition 6 as the form e,& = ¢,&, for all a. We

denote £ = 3 e.£,.

By Definition 7, we can give a reformulation of Lemma 3 which will
be useful in our later discussions.

PROPOSITION 8. Let & be an element of H; then there exist & maximal
family {e,} of orthogonal projections in C(2) and a family {&} in F
such that & = D) e.&, with e, = &, for all a.

Furthermore, by Lemma 5, we can define the adjoint operator of an
arbitrary element A e B(H) as follows: Let A be a bounded C(2)-module
homomorphism on H, then by Lemma 5, there exists a bounded C(2)-
module homomorphism A% of F into H such that, for every & 7eF,
(A&, 7) = (&, A*'p). Now, we shall extend this A to a bounded C(2)-module
homomorphism A* on H, If this is possible, by the remark after
Corollary 4, we call A* as the adjoint operator for A. Thus, we have
the following consideration.

LEMMA 9. Let A’ be o bounded C(Q)-module homomorphism of F
into H; then there exists uniquely o bounded C(2)-module homomorphism
A of H into H with A|F = A'.

Proor. If & is an arbitrary element of H, then & is expressed as
£ =73 ek, with the condition in Proposition 8. Since A’ is a bounded
C(2)-module homomorphism of F into H, {A’¢,} is a bounded set in H,
so >, e,A'¢, is an element of H by Proposition 6. Now, define an operator
A as follows; A& = >, e,A’6,. Then A is well-defined. In fact, if & is
represented by two forms &= 3 e, =3 f% under the condition in
Proposition 8, then, since e,f.&, = e.f.7. for all @ and ¢, we have ¢, fA’¢, =
e.f,A'n, for all « and ¢. Thus, >, ¢, 46, = 3, f,A'n, and so A is well-
defined. It is evident that A is C(2)-module and bounded, and A|F = A'.
We shall show the linearity of A. Let & = >,¢,5, and 7 =3 f» in H
with the expressions in Proposition 8, then & + » = 3 e, f.(&, + 7). Thus,
we have e.f(3 e.f(A'éx + AN)) = e f(Aé + A'N) = e.f(AE + A7) for
all & and ¢. Thus A& + Anp = A(E + 7). We can show by the remark
after Corollary 4 that A is uniquely determined.

From Lemma 9, for any element A€ B(H), there exists uniquely
determined operator A* such that (Af, n) = (&, A*n) for every & neF.
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Furthermore, one can show the equalities ||A4]|| = ||4*|| and ||4*A4|| =
[|Al*? by the remark after Corollary 4 and the definition of A*. Thus,
B(H) becomes a C*-algebra. In particular, B(H) becomes a von Neumann
algebra of type I and its center is *-isomorphic to C(2). We shall show
this assertion in the remainder of this section. The greater part of our
proof is due to the proof of the Kaplansky’s theorem [4; Theorem 7]
and the author’s result [11; Theorem 1.6]. Before the proof of this as-
sertion, we have some considerations. We first determine the relation
between the projections and the closed submodules of H. We noticed
‘before Proposition 2 that if _#Z is a closed submodule of H = W(2, K),
then (#Z N F)(w) is a closed subspace of K. Thus, we can introduce
the following notion.

DEFINITION 10. Let .# be a closed submodule of H = W(2, K) and
My=_# NF. Then _Z is called a continuous submodule of H if the
following condition (x) is satisfied:

(x) If ¢ is an element of J[,.., . #(w) such that the function w—
[|&(w)|| is bounded and, for every 7ne._#, the function w— (&(w)|n(w))
is continuous, then ¢ is an element of _Z

By Definition 10, we can determine the projection P with PH = _#.
Before proving this assertion, we show the following.

LEmMMA 11. If A is an element of B(H), then there exists a field
{A(w)} of bounded operators on K such that (Af)(w) = A(w)&(w) for every
EeF=C2,K) and we L.

Conversely, if {A(w)} s a field of bounded operators on K such that
the function o — ||A(w)|| is bounded and, for every EcF, the wvector
field {A(w)é(w)} is an element of H (this operator field {A(w)} is called
o weakly continuous field), then there exists uniquely an element A of
B(H) such that (Af)(w) = A(w)é(w) for every £ F and we Q.

Proor. Let A be an element of B(H). Then for every &£e F such
that Afe F, [[(A8)w)]] = ||A]l-||&w)|| for every we 2, because both
functions @ — ||(A&)(w)|| and w — ||&(w)|| are continuous. For any ele-
ments £e€ F, put A& = 3} fm, under the condition in Proposition 8. Let
G. be the closed and open set in £ corresponding to f, and let 7 be an
element of F. Then since fi£€F and Afé = f,As =1, e F for all ¢, for
every we @, we have

[((A8) (@) | n(w))| = [((AfE)w) | p(@))| = [| Al - [[(fE) @) - [ 9(w) ]|
= [|All- [|&@)]] - [|p(w)]] .
Thus, [((A&)(w)|p(w))] < ||A]l - ||&(@)]|| || n(w)]| for all we U G,. Since both
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functions w — ((A&)(w)|N(w)) and w — || A[| - [|&(w)]| - || D(w)|| are continuous
and the set UG, is dense in 2, [((A8)(@)|7(@))| = |[All-[[&@)]l- | 7(@))]|
for every & neF and weR. Thus, put F((&(w)|n(w)) = ((A&)(w)| n(w))
for & neF, then, for every we 2, F, is a bounded bilinear form on K.
Hence, there exists a field {A(w)} of bounded operators on K such that
((A8)(®) | P(w)) = (A(w)é(w) | n(w)) for every w e 2 and &, 1 € F. Furthermore,
for every &eF, the vector field {A(w)é(w)} is an element of H; and
(A8)(w) = A(w)&(w) for every £c F and we .

Conversely, let {A(w)} be a field of bounded operators on K such
that the function @ — || A(w)|| is bounded and, for every & ¢ F, the vector
field {A(w)é(w)} is an element of H. Then, define an operator A’ as
follows: A’¢ = {A(w)&(w)} for every £e F. Then A’ is a bounded C(2)-
module homomorphism of F' into H. By Lemma 9, A’ is uniquely ex-
tended an operator A defined on H. Now, since, for every &eF,
(Af)(w) = (A'8)(w) = A(w)é(w) for every we 2, we have the conclusion of
the Lemma.

By Proposition 8 and Lemma 11, we have the following result.

PROPOSITION 12. For each A, B€ B(H) and &€ F, there exists a
nowhere dense set N in 2 such that (AB)w)&(w) = A(w)B(w)é(w) for all
we 2\N.

Furthermore, for every Ae B(H), A(w)* = A*(w) for all we L.

ProOOF. Since we can show the second assertion by an elementary
computation and Lemma 11, we give the proof of the first assertion.
Put { = {B(w)&(w)} € H, then { is written by the form = 3 e¢,, under
the condition in Proposition 8. Let G, be the closed and open set cor-
responding to e,. Then, since e¢,Bf = ¢l = {,cF, we have, for every
w € G,, (AB)()i(w) = (Ae,Bf)(w) = A(w)(e.Bé) (@) = A(w)B(w)é(w). Hence,
(AB)(w)é(w) = A(w)B(w)é(w) for all we U G,.

Next, from Proposition 12, we shall give a condition which is equiv-
alent to the notion of continuous submodule.

LEMMA 13. Let # be a continuous submodule of H; then the fol-
lowing properties are shown:

(1) Let {&} be a bounded subset of #Z and {e,} a maximal family
of orthogonal projections in C(R2); then & = >, e.f, is also an element
of .

(2) For every we R, #(w) = #Z(w) where #,= # N F.

PRrROOF. Since . Z;(w) is a closed subspace of K by the remark be-
fore Proposition 2, we can put the projection P(w) of K onto _#;(w) for
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every we 2. Then, by the definition of the continuous submodule, the
field {P(w)} becomes a weakly continuous field. Furthermore, put P =
{P(w)}, then PH = _# Hence, the proof of the assertion for (1) is
evident because Pt = 3, ¢, P&, = 3, ¢.&..

Next, we shall show the proof of (2). For every £ H and neF,
the both functions w — (P(w)&(w)|7(w)) and @ — ((P&)(w)|n(w)) are con-
tinuous, and there exists a nowhere dense set N such that (P&)(w) =
P(w)é(w) for every we2\N. Hence (Pf)(w) = P(w)é(w) for every £e H
and we 2. Therefore, (PH)w) C #(w), and so #Z (w) = _#(w) for every
weQ,

We shall show a sufficient condition under which a closed submodule
becomes a continuous submodule. Before going to show the result, we
introduce the following condition (xx) similar to the notion [11; Theorem
1.5 (3)]:

(**) _# is a closed submodule of H = W(2, K) which satisfies; for
every bounded subset {&,} in .# and a maximal family {e,} of orthogonal
projections in C(R2), the element > e.&, is in _Z

Let P be a projection in B(H) and .# = PH, then it is evident that
A satisfies the condition (**). Furthermore, we have the converse by
the following Proposition 14.

PROPOSITION 14. Let # be a closed submodule of H = W(2, K) and
My = # N F; then the following conditions are equivalent:

(1) _# satisfies the condition (xx*).

(2) There exists a projection P in B(H) with PH = _#.

PrROOF. (2)=(1): This assertion has been already mentioned in the
remark before this proposition and in the proof of Lemma 11.

(1)=(2): Let P'(w) be the projection of K onto _#(w) for every
€ 2, then, every £e H and 7€ .4, the function w — (P'(0)&(w)|9(w)) =
(&(w) | P'(w)n(w)) = (&(w)|n(w)) is continuous. Furthermore,

|| P"(@)é(w) ]| = sup {|(P"(@)(@) | 7(@))]: 7 € A with ||7]| =1},

thus the function @ — || P(w)é(w)]|| is lower semi-continuous. Hence, there
exists a maximal family {e,} of orthogonal projections in C(£) such that
the function @ — || P (w)é(w)|| is continuous on U G, where G, is the closed
and open set in 2 corresponding to e,. Then, since the function w—
|| P'(w)é(w)]|| is continuous on U G,, if we define an element &, such that
£ (w) = P'(w)é(w) for we G, and & (w) =0 for w¢G,, then &, is an ele-
ment of _# by Proposition 2. Thus { = 3 e,&, is an element of _#;
because .# satisfies the condition (x+). Put an operator P determined
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as the form; P¢ ={. Then, P is well-defined and it is evident that P is
a bounded C(2)-module homomorphism on F. We shall show that P is
a projection. At first, we shall show that P is linear. For any & and
¢ in H, put { = 3} el, and (' = 3 f{ where {,(w) = P'(w)i(w) for every
we G, and {(w) = P'(w)é'(w) for every we F, where -G, and F, are closed
and open set in 2 corresponding to ¢, and f, respectively; then, for every
weF, NG, €+ o) =Po)w) + &) and so £ + ' = 3 e [l + ).
Thus, P(¢ + &) = { 4+ {'. Therefore, P is a bounded C(2)-module homomor-
phism of H into H. Conversely, if £ is an element of _#, we can re-
present & as the form & = ) ¢.£, such that {£,} C._#; and {¢,} is a maximal
family of orthogonal projections in C(2). Now, Py = n for every ne_#,,
Pt =3 e, P;, = De.f, =& and so PH = _# Furthermore, for every
&e H, since Pte _+«#, P = P(Pf) = P&, thus P* = P.

It is evident by Lemma 11 and Proposition 12 that P* = P.

We have shown the condition for a closed submodule to satisfy the
condition (x*). But, we can not show the relation #(w) = _#(w) for
every we . Now, if we suppose that .Z(w) = _#(w) for every we 2,
then we can show that _# is a continuous submodule.

PROPOSITION 15. Let .#Z be a closed submodule of H and _#, =
A NF. If # satisfies the condition (x*) and A (w) = _#Z(w) for
every we R, then #Z is a continuwous submodule of H.

PrOOF. Let & = {&(w)} be an element of [].,.. . #;(w) such that the
function w — ||&(w)|| is bounded and, for any 7 e._, the function w —
(é(w) | n(w)) is continuous. Then, we must show that £ is an element of
H and P& = & where P = {P(w)} is the projection of H onto .# determined
by Proposition 14. Now, since, for any 7ne._#, the function w—
(é(w)| (w)) is continuous and &(w)e #Z(w) for every we 2, the function
w — ||&(w)|| is lower semi-continuous on 2. Hence, there exists a maximal
family {e,} of orthogonal projections in C(£2) such that the function w —
|| (e.£)(@)]| is continuous for every a«. Then, by Proposition 2, ¢,£ is an
element of _#, for all @. Thus, put & = 3, e.(e.£), then £ is an element
of _# because .# satisfies the condition (xx). Now, for every 7 e ._#;,
both functions w — (&(®)|9(®)) and @ — (&'(w)|n(w)) are continuous. Fur-
thermore, the relation & = 3 ¢,(¢.£) leads us to the fact that &(w) = &'(w)
for every we U G, where G, is the closed and open set in 2 correspond-
ing to e,. Thus, since UG, is dense, (&(w)|7n(®)) = (§'(w)|n(w)) for every
ne . #, Therefore &w) = &(w) for all we 2, and ¢ =& e .

By the above considerations, we have the following theorem.
THEOREM A. Let # be a closed submodule of H = W(2, K) and
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Ay = # NF. Then, the following two properties are shown.
(1) The following conditions () and (B) are equivalent:

(o) For every bounded subset {&,} in A4 and every maximal
family {e,} of orthogonal projectioms in C(R2), the element >, e.£, 18 in
A

(B) There exists a projection P of H onto _/#.

(2) The following conditions (') and (8') are equivalent:

(&) A is a continuous submodule of H.

(B') For every bounded subset {£,} im # and every maximal
family {e.} of orthogonal projections in C(R), the element 3, e,&, 1s in
A, and for every we R, #(w) = #Z(w).

We say that P is an abelian projection in B(H) if PB(H)P is abelian.
If £is an element of H such that the function w — ||&w)]| is continuous,
by the remark after Proposition 2, & becomes an element of F' = C(R2, K).
Thus, if ¢€ H and || is a projection in C(2), then & is an element of
F. With this thing, we can determine the abelian projections of B(H)
in the following form by considering Lemma 3, Theorem A, the remark
after Proposition 2 and by the similar way to the proof of [4; Lemma
13]. We leave the proof to the readers.

LEMMA 16. Let H = W(2, K) be a weakly continuous constant field
of Hilbert space K over 2. Let 1 be an element of H such that there
exists a family {e.} of mutually orthogonal projections in C(2) which
satisfies the relations; e,|n| = e, for all a and (I — e)|n| = 0 where e =
3. e.. Then the operator P determined by P& = (& )y for every tcF
18 an abelian projection. Conwversely every abelian projection arises in
this form.

Let 3 be the set of all elements T, for feC(R) defined by T, =
{f(w)é(w)} for every £€ H. Then B is a C*-subalgebra of B(H) (in fact,
8 is a von Neumann algebra and *-isomorphic to C(R2)).

From the above considerations, we can show the main theorem.

THEOREM B. Let H = W(2, K) be a weakly continuous constant field
of Hilbert space K with respect to F = C(2, K) over a hyperstonean
space 2; then the algebra B(H) of all bounded C(2)-module homomor-
phisms of H into H is @ von Neumann algebra of type I and its center
18 *-isomorphic to C(R2).

ProOF. If we can show that B(H) is an AW*-algebra, it is evident
by Lemma 16 that B(H) is an AW*-algebra of type I. Furthermore,
if we can show that the center of B(H) is *-isomorphic to the von
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Neumann algebra C(2), then B(H) becomes a von Neumann algebra of
type I by [3; Theorem 2].

Now, since we can show by an elementary computation that 3 is
*.isomorphic to C(2) and 8 is the center of B(H), we must show that
B(H) is an AW*-algebra. For this assertion, it is sufficient for us to
show the following: The left annihilator (&) of any subset & of B(H)
is of the form B(H)P with P a projection in B(H) (see [4]). Let & be
a subset of B(H), (&) the left annihilator of & and N = the linear
span of the set {R(B): Be©}, then (&) = {A e B(H): AR = {0}} where
R(B) is the range of B. Now, put .# = the norm closure of {3 e.&.:
{¢.} is a bounded subset of M and {e.} is a maximal family of orthogonal
projections in C(2)}, then by the proof in [11; Lemma 2.5] and Theorem
A, 7 is a closed submodule satisfying the condition (x*); furthermore,
for every Ae ¥ (8), A~ = {0}. Thus, &L (&) ={AecBH): A# = {0}}.
Since _# satisfies the condition (x*), there exists a projection @ of H
onto #Z Put P=1-Q, then (&)= B(H)P. This completes the
proof.

For Theorem B, let V be the norm closure of linear subspace gen-
erated by {pow.: &€ F and ¢€.%} in B(H)*, then we can show by an
elementary computation that B(H), = V where w.(4) = (4¢, &) in .7 for
Ae B(H) and .7 = C(2) (for example, see [12]).

3. The weakly continuous constant field of von Neumann algebra.
In this section, we shall consider the second problem in the introduction
as an application of Theorem B and Theorem C which will be shown
later.

In the previous section, we have shown that an arbitrary element
A e B(H) has the following representation; there exists an operator field
{A(w)} satisfying the relation (A&)(w) = A(w)é(w) for every &€ F and
we 2. Thus, let 7, be the mapping of B(H) onto B(K) defined as fol-
lows; 7,(4) = A(w) for A = {A(w)}. Then, by the author’s theorem [8]
and [9], 7, is not a *-homomorphism in general. But, it is evident that
T, 1S a positive linear mapping.

DEFINITION 17. Let H = W(2, K) be a weakly continuous constant
field of Hilbert space K and ¥ a von Neumann algebra acting on K.
Then we define W(R2, K, ) = {AeB(H): A(w)e A for every we 2} and
call W(2, K, %) as a weakly continuous constant field of the von Neumann
algebra 2.

Under the above definition, if 2 is a von Neumann algebra acting
on K, then we must show that the weakly continuous constant field



WEAKLY CONTINUOUS CONSTANT FIELD OF HILBERT SPACE 491

W(2, K, %) of A becomes a von Neumann algebra. To prove this asser-
tion, we shall show that W(2, K, ) = W(L, K, A)’" where W(2, K, N)”’
means the double commutant of W(R, K, ) in the von Neumann algebra
B(H).

THEOREM C. Let U be a von Neumann algebra acting on K; then
W, K, ) is a von Neumann subalgebra of B(H) where H = W(2, K).

ProoF. By Proposition 12, it is evident that W(2, K, %) is a self-
adjoint and linear subspace of B(H). We shall show that, for every
A, Be W(2, K, %), AB is also an element of W(2, K, %), that is, (AB)(®w) e«
for every we 2. Thus, we must show that, for any C’ e’ and & 7€ F,
(C'(AB)()&(w) | 9(w)) = ((AB)(w)C'é(w)| n(w)) for all we 2. For &¢e F, there
exists a nowhere dense set N such that (AB)(w)é(w) = A(w)B(w)é(w) for
all we 2\N. Furthermore, since the vector field {C’&(w)} is an element
of F, by the same argument, there exists a nowhere dense set N’ such
that (AB)(w)C'&(w) = A(w)B(w)C'é(w) for every w € 2\N’. Thus, put N” =
. NUN’, then N” is also a nowhere dense set, and, for every we 2\N",
we have the following relation;

(C'(AB)(w)é(w)In()) = (A(®)B(w)é(w) | C*n(w)) = (A(w)B(w)C'&(w) | n(w))
= (AB)(@)C'&(w) | 9(w)) .
Now, since both functions
o — (C'(AB)()é(w) | 7(w)) and @ — ((AB)(@)C'&(w)|7(w))

are continuous and N” is a nowhere dense set, (C'(AB)(w)&(w)|n(w)) =
((AB)(@)C'é(w) | p(w)) for every & neF and wef. Therefore AB is an
element of W(Q, K, %) and so W(L, K, A) becomes a C*-subalgebra of
B(H). By the same argument as above, we can also show the relation
W, K, %) = W2, K, %), and so W(2, K, %) = W(2, K, A)’. Therefore
W(2, K, %) becomes a von Neumann algebra.

Let U (resp. B) be a von Neumann algebra acting on a Hilbert space
K (resp. L). Then the tensor product A ® B of A and B is defined as
the weak closure of the algebraic tensor product €A ® B of A and B on
the Hilbert space K® L, and this tensor product U ® B does not depend
on underlying Hilbert spaces in algebraic sense (see [5; Theorem 1]).

Let U, be the predual space of ¥ (that is, 2, is the set of all o-
weakly continuous linear functionals on %), then we have the following
Tomiyama’s result [13; Theorem 1].

LEMMA 18. Let A and B be von Neumann algebras acting on K
and L respectively. Let A R B be the temsor product of W and B. Then
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for each ¢ € U, there exists a o-weakly continuous mapping Byi: A QB —B
satisfying the following;

(1) B(Zr A ® B) =31 (4, ¢)By,

(2) R ((IQA)X(I® B)) = AR(X)B for XeAR B,

(3) (X, 6Q9) = (By(X), y) for XeUAR B and + € B,.

Next, let 2 be a von Neumann algebra acting on K and & an
abelian von Neumann algebra acting on L, then we can show that the
tensor product A Q) .o~ of A and .o is *-isomorphic to the weakly con-
tinuous constant field W(Q, K, 2A) of A where £ is the spectrum space
of 9% For this assertion, we can suppose that . is a maximal abelian
von Neumann algebra of B(L) by [5; Theorem 1].

For every A = {A(w)}e W(2, K, %) and &, 7 e K (if we consider an
expression of each fibre &(w) of a constant vector field ¢ = {&(w)} e H,
we shall denote by &w) = & € K), the function w — (A(w)&|7) is continuous.
Hence, if we let ¢ = 3.7, 0z, 7, [A W, (in the later part of this paper,
we denote 3.7, @, 7, |U by X7, w;, 7,), then the function w — ¢(A(w)) is
continuous on 2. Thus, we define the continuous function ¢oA on 2
such as (¢° A)w) = ¢(A(w)) = (A(w), ¢) for every we 2.

Let A = {A(w)} e W(2, K, %), then we define a bilinear form on K L
as follows; for & = 31, & @y, & = 2 & Q 1),

(EIE) =3 2 (@e 550 Al 25):

Then, the above defined bilinear form is well-defined. In fact, if we
suppose that & ~0® 0 (or & ~ 0 0), then we can show that

2 3 (@5 Al 15) = 0.

To prove it, we can suppose by an elementary consideration that {y,}\,
is linearly independent. Then, since A(w)e B(K) for every we 2 and so
A(w)*E; € K, the equation 3, &, ® x; ~ 0® 0 induces X7, (A(w)*E}|E,)x: =
0 for all 7 and we. Hence, since {x)r, is linearly independent,
(A(@)E;|E)) = 0 for all 4, j and we L, and so @ :°A =0 for all 3, j.
Thus, & ~0® 0 induces the identity 3\, 3\ ((@s,¢;0 A)x:l %) = 0, and
by the similar way, we have the same conclusion when &' ~ 0 0.
Next, we shall show that (&|Z’> becomes a bounded bilinear form on
K® L. For this, we can assume that A is a positive element of
W2, K, ). Let {, = {A(w)"*§}, then (F]|5) = 3%, (@se;° Al 25) =
St i= (€ €)xilx5) = 0 where & = 33, &, @ ;. Thus, by the Schwartz’s
inequality, for every & =37, ®yx, and &' =378 Ry KFIE)| <
{(B|E)(&'|&")}”*. Now, since we can suppose that {,}r, and {;}™, are
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normalized orthogonal system, and ||A||] — A = 0; we have the following
result:
0=

1,

(@76, ° Al 1) = % (@z,.z;° | AN D) | 25)

(A Ea)X1]XJ)—iHA’| Il = 1Al -1 Z]P

1

where &(w) = &, for all ¢ and we 2. Thus, (Z|E) < ||A||-||E]]% and so,
by the similar way, (&'|&') < ||A|l-||&'|]2. Therefore, [(E|&')|
IA][-]|Z]|-11&8"]], and so <(Z|Z') is bounded on K @® L. Hence, there
exists an element A in B(K & L) satisfying

|&") = 20 3 (g0 A 25)

i=1 j=1

-

7M= M=

i,

o
Iq

(4

and [[A]] = [[A]l. B

Next, we shall show that A is an element of A X .o~ Since we
suppose that . is a maximal abelian von Neumann algebra, (A Q &) =
A ® .~ Hence, to prove this assertion, it is sufficient to show that A
commutes with B’ @ zc ' ®© o4 For every &, 7 e K and B' e, we can
show the equation wz:; = w:;5+. Thus for every B'®zeW ® . and
E = ?:1&@1“ E':Z;ng;@X;eK@L’

AB ®2)5|5) = AE BE Q2 55 Q1)

(@55,,8;° A)2xa] A7)

Il
M=
Ms i

il
-
Il
-

=17

Il
Ms
iMs

((we. BreE; o A)x:l2*Y3)

=(4 ( Ef®X¢)IZB'*E & 2*x5)

= ( ul(B'®z)*S’)=((B'®Z)A 1) .

Therefore, Ac(W' Q ¥) = AR

Furthermore, we can show that Ry(A) = ¢o A for each ¢c U, where
R, is the o-weakly continuous linear mapping for ¢ determined in Lemma
18. In fact, if we take a functional ¢ = 3\, w;, 5, then, for every xe L,
we have the following equation;

R A), 03y = A @ @) = <&, (3 05,5) @ 0 = 3 <&, 0,7, @ @)
= SAE QDT @0 = 3 (@z7,° Ax12) = (o A -

Hence, R (A) = ¢o A for every ¢c2,. Furthermore, we can show the

s
I
hA

uMs I
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converse of this fact by similar way to the proof of the above fact.

Next, let A be an element of AR . and & 7e K. Then, R:;(4)
is an element of .o = C(2) where R;; means the map B ; determined
in Lemma 18. Now, define a bounded bilinear form on K for every
we Q as follows; (£|7) = R;:(A)(w) for any &, 7 e K. Then, there exists
an element A(w) € B(K) such that (A(w)E|7) = R;;(A)(w) for every we Q.
Put A = {4(w)}, then, by Lemma 9, 4 can be extended onto H as an
element of B(H). We assert that A belongs to W(£2, K, %). For any
element B’ e and weR, (A(w)B'E|7) = Rs::(A)®) = R:z+(A) @) =
(A(w)E|B"*T]) = (B'A(w)&|7) for every &, 7 ¢ K. Hence A(w) e ¥ for every
wef, and so A = {A(w)} e W(2, K, N). Thus, if we consider the above
relation and use an elementary computation, we have the equation;
Ry(A) = g0 A for every se,.

With the above correspondence, we have the following theorem.

THEOREM D. Let U be a von Newmann algebra acting on K, ¥
an abelian von Neumann algebra acting on L and 2 the spectrum space
of 7 then the temsor product A R &7 of A and &7 is *-isomorphic
to the weakly continuous constant field W(2, K, ) of A.

Proor. Without loss of generality we may assume that .& is a
maximal abelian von Neumann algebra. Then, from the considerations
before this theorem, we can define the following mapping 7 of W(L2, K, %)
onto AR .v; m W(R, K, N)sA={A0)}—AcAR . determined as
Ry (A) = o A for every ¢cU, (in fact, the above relation is determined
by the form R;;(A) = (A&, 7) for every &, 77 € K where &w) = &, n(w) =
for every we 2). Then, it is clear that w is a *-preserving linear, one-
to-one mapping. Thus, we must show that 7 is multlphcatlve To prove
this assertion, we must show that ((AB)(w)&‘lr]) = R;:;(AB)(w) for every
E,NeK and we . At ﬁrst for every Ae%[®&/ and Be¥A ® & we
have that R;;(BA) = Rg,;,(BA) and R;(4B) = g,,,(AB). In fact, if B =
B® I, then R;;(BA) = R;3:(A) and R;;(AB) = Rs: ;(A). Thus, suppose
B=3r.B®z e A ® .5 then, the following equation holds; R; (BA) =

m Rei(B, ® 2)A) = S 2.Rei((B. ® I)A) = 32, 2.Re 5y5(A).  Further-
more, for every we 2,

(B@)AWE|T) = 3, 24 BA@E|T) = 3, 2w} A@]F| BrT) -

Thus, the function w — (B(w)A(w)£|7) is continuous, and so, by Proposi-
tion 12, (B(w)A(w)E|7) = (BA)(w)&|7) for all we R and &, 7 e K. There-

fore, by the above facts, R:;(BA)= R; v(BA) for all £, 7eK. By a
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similar argument, we can show that R;;(AB) = Rg,g(;l\é) for all §, 7 e K.
In the above argument we have shown that if AeA® . and BeA®G .
A(w)B(w) = (AB)(w) and B(w)A(w) = (BA)(w) for every we 2.

At last, we shall show that if A, Be¥A ® . and §, 7 € K, R:;(BA) =
Rg,;(ﬁ/él). Since A is an element of % ® .%; there exists a net {4,} in
A ® & such that A,— A in the o-weak topology. Then, the o-weak
continuity of the mapping R;; and the fact such that R;:(4) = (4%, 7)
induce the following fact; (4., n) — (A&, 1) in the o-weak topology where
&w) = & and n(w) = 7 for all we 2. Thus, considering Corollary 4, for
every & ne F, we can show that (4., 7) — (A&, 7) in the o-weak topology
Now, since A,— A in the o-weak topology, R:;(BA,)— R:;(BA) in the
o-weak topology. Furthermore, we have by the previous proof; for
every we R, '

B;{(BA)(0) = (BA)@)|7) = (B(@)AL0)|7)
= (Aw)E| B(0)'7) = (A&, B*n)(®)

where &(w) = & and 7n(w) =7 for all weN. Write B*n = Y ¢, under
the condition in Proposition 8. Let G, be the closed and open set in 2
corresponding to ¢.. Then, for every ¢, e(A.& B*)) = (4.8, 1) — e(AE, 1)
in the o-weak topology. Thus e.R:;(BA) = e(A£, 7.) = e(A, B*y). Hence,
we have; for every we G, R::(BA)(w) = (A&, 7.)(w) = (A§, B*n)(w). Fur-
thermore, since £ and 7 are element of F,

(45, B*n)(w) = ((A8)(@) [(B*n)(@)) = (A()é|B(w)*7]) = (B(w)A(w)E|7)

for every we 2. Thus, for every we U G,, R:;(BA)w) = (B(w)A(®)E|7).
By Proposition 12, there exists a nowhere dense set N such that
((BA)(w)E |7 )=(B(w)A(w)%|7) for all w € 2\N. Hence, for every w e (UG)N
(2\N), R;: (BA)(w) = (BA)w)E|7). Now, since both functions @ —
R; :(BA)w) and @ — ((BA)(w)&|7) are continuous on £ and the set (UG,) N
(2\N) is dense in £, Rg,,-,/(_lgﬁ)(w) = ((BA)w)é|7) for all weR. Thus,
R;::(BA) = (BA§, 1)) = R;;(BA). Therefore, © is multiplicative, and so
7w is a *-isomorphism of W(®2, K, %) onto A ® &~ This completes the
proof of Theorem D.

In Theorem D, we have successfully dealt with the effect of nowhere
dense sets in 2 which may be considered as replacement of null sets in
the measure theoretic arguments (for example, see [2. Proposition 1]).

The author wishes to express his hearty thanks to Professor Masanori
Fukamiya for his many valuable suggestions in the presentation of this
paper.
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CONCLUDING REMARKS: After this work was finished, the author
came to know the paper by B. B. Renshaw appeared in Trans. of the
A.M.S., 194 (1974), 337-347, in which his main theorem is similar to our
Theorem D in the present paper. In his theorem, Renshaw has proved
the isometric property of the mapping m. On the other hand, although
he uses the theory of module mappings in order to treat the multiplica-
tivity of z his arguments there still leave the problem of nowhere dense
subsets in nonseparable case, whereas the present work goes through
this problem as a reduction theory and shows that the space W(&2, K, %)
is an algebra and that the mapping = is actually a *-isomorphism be-
tween A ® & and W(2, K, ).





