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1. Introduction. In the present paper, we shall introduce a notion
of the weakly continuous constant fields of a Hubert space over a hy-
per stonean space. We have defined in [10] the continuous fields of Hubert
spaces which give a characterization of APT*-modules, where the follow-
ing property has an important role in our definition: Let H = CF(Ω, H{ω))
be a continuous field of Hubert spaces introduced in [10] and ζ = {?(<*>)},
η = [η{ω)} be two elements of H, then the function ω —> (ζ(ω) \ η((θ)) is
continuous. But we can not expect, in general, the existence of the
continuous constant fields of an infinite dimensional Hubert space satisfy-
ing the conditions in [10; Definition 3.1]. Thus, replacing the condition
(4) of [10; Definition 3.1], we define another continuous constant fields
of a Hubert space. Namely, we shall introduce a new notion of the
weakly continuous constant field of a Hubert space.

Let K be a Hubert space and Ω a hyperstonean space. We set F =
C(Ω, K) and consider the set H = WF(Ω, K) of all weakly continuous
vector fields with respect to F, where C(Ω, K) is the space of all K-
valued continuous functions on Ω. Then, even if ξ and rj are two ele-
ments of H = WF{Ω, K), the function ω —> (ζ(co) \ rj{ω)) is not necessarily
continuous, and so H does not necessarily become an A W*-module in-
troduced by Kaplansky [4]. However, the space H — WF{Ωf K) turns
out to be a C(i2)-moduled Banach space with respect to the norm | |£ | | =
sup{||f(ω)||: co eΩ} and we can show that the set B(H) of all bounded
C(42)-module homomorphisms of H into H becomes a von Neumann algebra
of type I with the center *-isomorphic to C(Ω). As an application of
the above result, if Ω is a hyperstonean space, we can show that, if 31
is a von Neumann algebra acting on K and Ssf = C(Ω), then the tensor
product SI ® Szf of SI and όzf is *-isomorphic to the algebra W(Ω, K, SX)
where W(Ω, K, 2t) means the set of all elements A = {A(ω)} of B{H) such
that A(ω) e 31 for all ω e Ω (Definition 17). In general, let C(Ω, 3t) be the
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set of all 2C-valued continuous functions on Ω, then C{Ω, Sϊ) becomes a
C*-algebra under the pointwise multiplication defined by AB = {A(ω)B(ω)}
for every A and B e C(Ω, 3t). But, since our algebra W(Ω, K, 2t) is a
von Neumann algebra, we can not define the same multiplication in
W(Ω, K, Sί) by our result [8] and [9]. Nevertheless, we can fortunately
define the multiplication in W(Ω, K, Sί) as a subalgebra of B(H).

The above mentioned second result is closely related to the Sakai's
theorem [6] and [7; Theorem 1.22.13] which is given as follows: Let Szf =
L°°(Ω0, μ) be an abelian von Neumann algebra and % a von Neumann
algebra acting on a separable Hubert space, then the tensor product
2t (x) S/ of % and J ^ is represented as the algebra L°°(Ω0, μ, 21) of all
essentially bounded weak *-measurable 2C-valued functions on Ωo. The
Sakai's theorem contains naturally the assumption of separability for 2t
as a measure theoretic result, whereas our result is free from the sep-
arability assumption.

2. The weakly continuous constant fields of Hubert spaces. In this
paper, we use the following notations: Ω is a hyperstonean space and
F = C{Ω, K) is the set of all if-valued continuous functions on Ω where
K is a Hubert space. Then, if Ω is a hyperstonean space; any first
category subset of Ω is a nowhere dense set in Ω [2; Corollary of Pro-
position 5].

We introduce first the following notion which says the weakly con-
tinuous constant field of Hubert space over Ω.

DEFINITION 1. Let Ω be a hyperstonean space, K a Hubert space
and H(ω) = K for all ωeΩ; then a vector field ζ = {ζ(a))}eΐ[ωeΩH(ω) is
called a weakly continuous vector field with respect to F if, for every
ηeF, the function ω —* (ζ(ω) \ η{o))) is continuous on Ω. We denote the
set of all weakly continuous vector fields with respect to F by H —
WF(Ω, K) or simply W(Ω, K), and call the weakly continuous constant
field of Hubert space K over Ω.

Under Definition 1, we give the norm by the form; for every ζ e H —
W(Ω, K), | | ί | | = sup{||£(fi>)||: ωeΩ}, then we can show by an elementary
computation that H = W(Ω, K) becomes a C(42)-moduled Banach space
with respect to the above defined norm || ||.

We have, in [10], introduced the notion of continuous vector field
in which we have the following fact: If ξ = {ξ(ω)} is a continuous vector
field, then the function ω —* 11 ζ(ω) \ | is continuous on Ω. But, under De-
finition 1, even if ζ is an element of W(Ω, K), the function ω—>||£(α>)||
is not necessarily continuous. If ξ is an element of F, then the function
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ω—> || £(ω) 11 is continuous on Ω. Conversely, if ξ is an element of H =
W(Ω, K) such that the function ω--+||£(ω)|| is continuous on Ω, then
we can show that ξ is an element of F. This fact is useful for the later
part in this paper and so we give the proof.

For the above fact, we have the following considerations. Let ^S
be a closed submodule of H = W(Ω, K), then we can show by a similar
way to [11; Proposition 1.3] that ( ^ Π F)(ω) is a closed subspace of K
for every ω e Ω where ( ^ Π F)(ω) = {ξ(ω): ζ e ^ Π F). Then, we have
the following result.

PROPOSITION 2. Let ^ be a closed submodule of H — W(Ω, K) and
^fQ = ^ f] F. If ζ = {ζ(o))} is an element of ΐlωeΩ^£Ό(ω) such that the
function ω—> | | f(ω)| | is continuous and moreover, for every ^ e J J , the
function ω —* (ξ(co) \ r){ω)) is continuous, then ζ is an element of ^ ^ .

PROOF. For an arbitrary fixed element ωQeΩ, there exists an ele-
ment ηe^fQ with ξ(ω0) = η(ω0). Let M — max{||f(α>)||: ωeΩ}, then, for
every positive number ε, there exists a neighborhood V(ωQ) of ω0 such
that, for every ω e V(ω0),

111 ζ(ω) 112 - 11 ξ(ω0) \ | 2 1< β/8 , | (f(ω) | η(ω)) - (ζ(ω0) \ η{ωQ)) \ < ε/8

and

\\V(ω) - V(ω0)\\ < e/SM.

Hence, for every ω e V(ωQ), the following relations hold;

= \(ξ(ω)\v(ω0)) - (ξ(ω)\η(ω)) + (ξ(ω)\η(ω)) - (ζ(ωo)\V(ωo))\

^ \\ξ(ω)\\'Mω) - V(co0)\\ + \(ζ(co)\v(ω)) - (ξ(ωo)\η(ωo))\

< ε/8 + ε/8 = ε/4

and so

\\\ζ(ω)\\2 ~ (ξ(o>)\y(o*o))\

^ \\\ξ(ωW - (ξ(«)0)\7)(ω0))\ + \(ζ{ωQ)\η(ω0)) - (f(

< ε/8 + ε/4 < ε/2 .

Thus, for every ω e V(ω0), we have the following relation;

< ε/2 + ε/4 < ε .

Therefore, ξ becomes an element of F = C(Ω, K).
Now, if we consider the facts such that ξ(ω) e ^fo(ω) for every
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ω e Ω and η e F, then, for any positive number ε, there exists a family
{U(ω), ηω}ωeΩ of pairs consisting of closed and open neighborhood U(ω)
of ω and element ηω of ^*C such that \\ζ{ω') — Ύ]ω{ω')\\ < ε for every
ω' e U(ω). Since i2 is compact, there exists a finite subcovering {U(ωt);
i — 1, 2, , n} of Ω. We can suppose that {U{ω%)\ i = 1, 2, , n) are
mutually disjoint. Let zt be the projection in C(Ω) corresponding to
U(ωt) and η = Σ ^ ^ e ^ , then \\ξ(ω) — >?(α>)|| < ε for all ωei2 and so
II£ "- 1̂1 < ε Since J^o is a closed submodule, ξ is an element of ^€J.

In Proposition 2, put ^ = H, then ^ Π JP = F and, by Definition
1, for every ξ e ^£ = H and rj e ^ Π F = F, the function α> -> (ξ(ω) \ η(ω))
is continuous. Hence, if ξ is an element of H = W(Ω, K) such that the
function α>—*||£(ω)|| is continuous on Ω; then ξ is an element of F. Fur-
thermore, we have the following result that is useful in this paper.

LEMMA 3. Let H = W(Ω, K) be a weakly continuous constant field
of Hilbert space K. Then if ξ is an element of H, there exists a max-
imal family {ej of orthogonal projections in C(Ω) such that eeξ is an
element of F for every c.

PROOF. Let {rfa} be a completely normalized orthogonal system for
K. Then, for every ωeΩ, ξ(ω) can be represented with ξ(ω) = X fJίoήVa-
Now, since, for every η eF, the function ω —• (ξ(ω) \ r](ω)) is continuous,
each fa is an element of C(Ω). Thus, since Ω is a hyperstonean space
and each/α is an element of C(Ω), the relation ||f(ω)||2 = ΣIΛ(^)I2 induces
the existence of a maximal family {ec} of orthogonal projections in C{Ω)
such that the function ω—>||(βt£)(ω)|| is continuous for every c. There-
fore, by the remark after Proposition 2, ecξ is an element of F for every
c. The proof is completed.

From the representation shown above, we can show the following
elementary fact: Let ξ be an element of H and {ee} be the maximal family
of orthogonal projections in C(Ω) with the above property, then | |£ | | =
sup \\etξ||. Furthermore, from Lemma 3, we have the following corollary
which will be used in the proof of Theorem D. We can show this as-
sertion by using the proof of Lemma 3, so we omit its proof.

COROLLARY 4. Let ξ be an element of F = C(Ω, K) and {ηa)aeA a>
completely normalized orthogonal system for K. Then there exist a
sequence {fn} in C(Ω) and a sequence {ηn} in {̂ α}αê  such that ξ = Σ S U / Ά
in the sense of lim^^ ||£ — ΣSUi/j?J| = 0 where each rjn is a constant
field with Ύ]n{ω) = f}% for all ωeΩ.

From the elementary property of C(Ω, K), let Fo be the submodule
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of H generated by the set {fζ: f e C(Ω) and ξ are constant vector field},
then Fo = F where Fo is the norm closure of Fo in H = W(Ω, K).

Furthermore, let B{H) be the set of all bounded C(i2)-module hom-
omorphisms of H into H. Then, for A, BeB(H), if A\F = B\F; then,
by Lemma 3, A = B where A \ F is the restriction of A to F.

Now, since even if ξ and rj are elements of H, (ζ, rj) is not necessarily
an element of C(Ω) where (f, η) is the function ω —> (ζ(ω) \ η(ω)) on Ω, H =
W(Ω, K) does not become an APF*-module which was introduced by
Kaplansky [4]. An important property of AT7*-modules is the following;
let {ξa} be a bounded set of an ATT*-module M over C(Ω) and {ea} a
family of orthogonal projections in C(Ω), then there exists uniquely an
element ζ of M such that eaξ — eaζa for all a. Although, a weakly con-
tinuous constant field of Hubert space is not necessarily an ATT*-module,
we can give a property similar to the one in AW*-modules. To prove
this property, we shall show a result similar to the Riesz's theorem
in Hubert spaces (see [10; Theorem 3.6]). It can be shown by using
Lemma 3, a similar way to the proof in [10; Theorem 3.6] and by the
remark after Lemma 3.

LEMMA 5. Let φ be a bounded C(Ω)-module homomorphism of H =
W(Ω, K) into C(Ω), then there exists uniquely in H an element ξQ such
that φ(ξ) = (ί, f0) for every ζ e F and \\φ\\ = \\ξQ\\.

In Lemma 5, if we suppose that φ is a bounded C(i2)-module hom-
omorphism of F into C(Ω), we can get the same conclusion in Lemma 5.
Furthermore, we can show by an elementary computation that if φ is a
bounded C(42)-module homomorphism of H into C(Ω) then | |0 | | = | | ^ | F | | .
Furthermore, we can show that, if A is an element of B(H)> then \\A\\ =
| | A | F | | . This assertion can be shown by Lemma 3 and the remark after
Lemma 3.

By Lemma 5, we can show the assertion mentioned before Lemma 5
in the following.

PROPOSITION 6. Let {ζa} be a bounded set ofH= W(Ω, K) and {ea}
a maximal family of mutually orthogonal projections in C(Ω), then
there exists uniquely an element ξ in H such that eaξ = eaξa for all a.

PROOF. For every η e F, the set {(η, ξa)} is a bounded subset of
C{Ω), thus Σejj], ξa) in C(Ω) exists. Define φ(jη) = ^ejj], ξa), then φ is
a bounded C(J2)-module homomorphism of F into C(Ω). Then, by the
remark after Lemma 5, there exists an element ξ in H such that φ{rj) =
(η, ξ) for every ηeF. Therefore, ej = eja for all a. The unicity of ζ
is evident.



484 H. TAKEMOTO

Considering Proposition 6, we have the following definition.

DEFINITION 7. Let {ζa} be a bounded set in H = W(Ω, K) and {ea} a
maximal family of mutually orthogonal projections in C(Ω): Let ζ be the
element determined in Proposition 6 as the form eaζ = eaζa for all a. We
denote £ = Σ β«?«•

By Definition 7, we can give a reformulation of Lemma 3 which will
be useful in our later discussions.

PROPOSITION 8. Let ζ be an element of H; then there exist a maximal
family {ea} of orthogonal projections in C(Ω) and a family {ζa} in F
such that ζ = Σ e«ζa with eaζa = ζa for all a.

Furthermore, by Lemma 5, we can define the adjoint operator of an
arbitrary element AeB(H) as follows: Let A be a bounded C(42)-module
homomorphism on H, then by Lemma 5, there exists a bounded C(42)-
module homomorphism A* of F into H such that, for every £, η e F,
(Aζ, η) = (£, A*η). Now, we shall extend this A* to a bounded C(i2)-module
homomorphism A* on H. If this is possible, by the remark after
Corollary 4, we call A* as the adjoint operator for A. Thus, we have
the following consideration.

LEMMA 9. Let A' be a bounded C(Ωymodule homomorphism of F
into H; then there exists uniquely a bounded C(Ωymodule homomorphism
A of H into H with A\F = A'.

PROOF. If ξ is an arbitrary element of H, then ξ is expressed as
ί = Σ e«ia with the condition in Proposition 8. Since A' is a bounded
C(J2)-module homomorphism of F into if, {A'fα} is a bounded set in H,
so Σ e«A'£a is an element of H by Proposition 6. Now, define an operator
A as follows; Aζ = Σ β«A'£α. Then A is well-defined. In fact, if ζ is
represented by two forms ξ = Σ e«?« = Σ /#< under the condition in
Proposition 8, then, since eafξa = βα/^f for all a and *, we have eafcA

rξa =
eafcA'ηc for all α and £. Thus, Σ M ' ί « = Σ / 4 ^ and so A is well-
defined. It is evident that A is C(i2)-module and bounded, and A | F = A'.
We shall show the linearity of A. Let £ = Σ e«ί« a n < i ^ = Σ/«V« ί n H

with the expressions in Proposition 8, then ξ + η = Σ eaf(ζa + ηt)m Thus,
we have eβ/β(Σ ββ/β(A'fβ + A')?,)) - eJt{A'ξa + A%) = βα/(Aί + A^) for
all α and t. Thus Af + Aη — A(ξ + ̂ ). We can show by the remark
after Corollary 4 that A is uniquely determined.

From Lemma 9, for any element AeB(H), there exists uniquely
determined operator A* such that (Aζ, η) = (ξ, A*η) for every ζ, η e F.
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Furthermore, one can show the equalities ||A|| = ||A*|| and ||A*A|| =
|| A||2 by the remark after Corollary 4 and the definition of A*. Thus,
B(H) becomes a C*-algebra. In particular, B(H) becomes a von Neumann
algebra of type I and its center is *-isomorphic to C(Ω). We shall show
this assertion in the remainder of this section. The greater part of our
proof is due to the proof of the Kaplansky's theorem [4; Theorem 7]
and the author's result [11; Theorem 1.6]. Before the proof of this as-
sertion, we have some considerations. We first determine the relation
between the projections and the closed submodules of H. We noticed
before Proposition 2 that if ^ is a closed submodule of H = W(Ω, K),
then (^ Π F)(ω) is a closed subspace of K. Thus, we can introduce
the following notion.

DEFINITION 10. Let Λ be a closed submodule of H = W(Ω, K) and
^ 0 = ^ f Π F. Then ^ is called a continuous submodule of H if the
following condition (*) is satisfied:

(*) If ξ is an element of ΐ[ωeΩ ^fo((ύ) such that the function ω —•
||£(α>)|| is bounded and, for every l y e j ; , the function ω —* (ζ(ω) \ Ύ](ω))
is continuous, then ζ is an element of ^£1

By Definition 10, we can determine the projection P with PH = ^f.
Before proving this assertion, we show the following.

LEMMA 11. If A is an element of B(H), then there exists a field
{A(ω)} of bounded operators on K such that (Aζ)(ω) = A(ω)ζ(ω) for every
ζ e F = C(Ω, K) and ωeΩ.

Conversely, if {A(ω)} is a field of bounded operators on K such that
the function co—>\\A(co)\\ is bounded and, for every ζeF, the vector
field {A(ω)ζ(ώ)} is an element of H (this operator field {A(aή} is called
a weakly continuous field), then there exists uniquely an element A of
B(H) such that (Aζ)(ω) = A(ω)ξ(ω) for every ξeF and ωeΩ.

PROOF. Let A be an element of B{H). Then for every ξeF such
that AξeF, ||(Af)(α>)|| ^ || A | | ||£(α>)|| for every ωeΩ, because both
functions ω —> \\(Aζ){ω)\\ and ω—»||£(α>)|| are continuous. For any ele-
ments ζ e F, put Aξ = Σ feVt under the condition in Proposition 8. Let
Ge be the closed and open set in Ω corresponding to /, and let η be an
element of F. Then since feζ e F and Aftξ = fAξ = ηt e F for all c, for
every ωeGc, we have

\((Aξ)(ω)\y(ω))\ = |((Afξ)(ω)\η(ω))\ ^ \\A\\ | |(/,f)(ω)| | . \\V(ω)\\

= \\A\\.\\ξ(ω)\\-\\V(cϋ)\\.

Thus, I ((Aξ)(ω) I η{ώ)) \ ̂  11A \ \. 11 ξ(ω) 11 11 V(<*>) 11 f or all ω e U Gc. Since both
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f u n c t i o n s ω —* ((Aξ)(ω)\?){ω)) a n d ω —» 11 A\| 11£(ω)\\-\\η(ώ)\| a r e c o n t i n u o u s

and the set U G, is dense in Ω, \((Aξ)(ω)\η(ω))\ ^ || A\\ \\ξ(ω)\\ \\v(ω))\\
for every ξ,ηeF and ωeΩ. Thus, put Fω((ζ((θ)\v(ω)) = ((Aζ)(ω)\η(ω))
for ξ,ηeF, then, for every ωeΩ, Fω is a bounded bilinear form on K.
Hence, there exists a field {A(ω)} of bounded operators on K such that
((Aξ)(ω)13?(ω)) = (A(ω)f(ω)|^(ω))for every ωeΩ andξ,ηeF. Furthermore,
for every ξeF, the vector field {A(ω)ξ(ω)} is an element of H; and
(Af )(<*>) = A(ω)£(α>) for every £ e F and ωeΩ.

Conversely, let {A(ω)} be a field of bounded operators on K such
that the function ω —>\\A(ω)\\ is bounded and, for every ζeF, the vector
field {A(ω)ζ(ω)} is an element of H. Then, define an operator A! as
follows: A'ξ = {A(α>)f(ω)} for every £ e F. Then A' is a bounded C(Ω)~
module homomorphism of F into H. By Lemma 9, Af is uniquely ex-
tended an operator A defined on H. Now, since, for every ξeF,
(Aζ)(ω) = (A'ζ)(ω) = A{ω)ξ(ώ) for every ωeΩ, we have the conclusion of
the Lemma.

By Proposition 8 and Lemma 11, we have the following result.

PROPOSITION 12. For each A, BeB(H) and ζeF, there exists a
nowhere dense set N in Ω such that (AB)(ω)ξ(ω) — A(ω)B(ω)ζ(ω) for all
ω e Ω\N.

Furthermore, for every AeB(H), A{ω)* = A*(ω) for all ωeΩ.

PROOF. Since we can show the second assertion by an elementary
computation and Lemma 11, we give the proof of the first assertion.
Put ζ = {B(ω)ξ(ώ}} e H, then ζ is written by the form ζ — Σ β«C« under
the condition in Proposition 8. Let Ga be the closed and open set cor-
responding to ea: Then, since eaBξ = eaζ — ζa e F, we have, for every
ω e Ga, (AB)(ω)ζ(ω) = {AeaBζ)(ω) = A(ω)(eaBξ)(ω) = A(ώ)B{ω)ξ(ώ). Hence,
(AB)(ω)ξ(ω) = A(ω)B(ω)ξ(ω) for all ω e U Ga.

Next, from Proposition 12, we shall give a condition which is equiv-
alent to the notion of continuous submodule.

LEMMA 13. Let ^J? be a continuous submodule of H; then the fol-
lowing properties are shown:

(1) Let {ξa} be a bounded subset of ^ and {ea} a maximal family
of orthogonal projections in C(Ω); then £ = Σ e«?« ^s a^so a n element
of ^ί.

(2) For every ωeΩ, ^ίέ{ω) — ̂ ^{ώ) where ^ ^ = ^£ Π F.

PROOF. Since ^ ( ω ) is a closed subspace of K by the remark be-
fore Proposition 2, we can put the projection P(ω) of K onto ^l(ω) for
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every ωeΩ. Then, by the definition of the continuous submodule, the
field {P(o))} becomes a weakly continuous field. Furthermore, put P =
{P((ϋ)}, then PH = ^fί Hence, the proof of the assertion for (1) is
evident because Pξ = Σ eaPL = Σ *«£«•

Next, we shall show the proof of (2). For every ξ e H and η e F,
the both functions ω —>(P(ω)ξ(ω)\η{ω)) and ω—*{(Pξ){ω)\η{ω)) are con-
tinuous, and there exists a nowhere dense set N such that (Pζ)(ω) =
P(ω)ζ(ω) for every ω e i2\iV. Hence (Pf )(ω) = P(ω)f(α>) for every ζ e H
and (OGfi. Therefore, (PH)(ω)c^(ω), and so ^(α>) = ĉ C(α>) for every

We shall show a sufficient condition under which a closed submodule
becomes a continuous submodule. Before going to show the result, we
introduce the following condition (**) similar to the notion [11; Theorem
1.5 (3)]:

(**) ^ is a closed submodule of H = W(Ω, K) which satisfies; for
every bounded subset {ξa} in ^ and a maximal family {ea} of orthogonal
projections in C(Ω), the element Σ #<*£« is in ^ C

Let P be a projection in JB(iϊ) and ^ — PH, then it is evident that
^£ satisfies the condition (**). Furthermore, we have the converse by
the following Proposition 14.

PROPOSITION 14. Let ^£ be a closed submodule of H = W(Ω, K) and
= ^ Π F; then the following conditions are equivalent:
(1) ^ satisfies the condition (**).
(2) There exists a projection P in B{H) with PH =

PROOF. (2) ==> (1): This assertion has been already mentioned in the
remark before this proposition and in the proof of Lemma 11.

(1)=>(2): Let P'{ω) be the projection of K onto ^ ί ( ω ) for every
ωe Ω, then, every ξ e H and η e ^ , the function ω —> (P'(ω)ξ(ω) \ r](ω)) =
(ζ(ω)IP\ω)η{ώ)) = (ξ(ω)\η(ω)) is continuous. Furthermore,

\\P'(ω)ξ(ω)\\ = auv{\(P\ω)ξ(ω)\7fcω))\:ηe^r0 wi th \\rj\\ ^ 1} ,

thus the function ω-+\\P'(ω)ζ(ω)\\ is lower semi-continuous. Hence, there
exists a maximal family {ea} of orthogonal projections in C(Ω) such that
the function ω-+\\P'(ω)ζ(ω)\\ is continuous on U Ga where Gα is the closed
and open set in Ω corresponding to ea. Then, since the function ω—>
||P'(ύ>)£(β>)|| is continuous on U(?α, if we define an element ζa such that
ξa(ω) = P'{ω)ζ(ω) for ω e Ga and ία(ω) = 0 for ω ί Gα, then £β is an ele-
ment of ^f0 by Proposition 2. Thus ζ = Σ e«?« is an element of ^ <
because ^/έ satisfies the condition (**). Put an operator P determined
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as the form; P£ = ζ. Then, P is well-defined and it is evident that P is
a bounded C(i2)-module homomorphism on F. We shall show that P is
a projection. At first, we shall show that P is linear. For any £ and
£' in H, put ζ = Σ e«C« and ζ' = Σ / C where ζa(ω) = P'(ω)ξ(ω) for every
ωeGa and ζ;(ω) = P'{ω)ξ'(ω) for every ωeFe where Ga and JF7, are closed
and open set in Ω corresponding to ea and ft respectively; then, for every
ωeFef] Ga, (ζ + ζ')(ω) = P'(ω)(ξ(ω) + £'(α>)) and so ζ + ζ' = Σ eaf(ζa + C).
Thus, P(£ + £') = ζ + ζ'. Therefore, P is a bounded C(£)-module homomor-
phism of H into H. Conversely, if £ is an element of ^ C we can re-
present £ as the form £ = Σ #«?« such that {£a} c ^ C and {eα} is a maximal
family of orthogonal projections in C{Ω). Now, Pη = η for every η e ^f0,
Pi = Σ ^« ί̂« = Σ β«£« = ξ, and so PJΪ = ^ Furthermore, for every
ζ e H, since Pξz^f, P2ζ = P(Pζ) = Pξ, thus P 2 = P.

It is evident by Lemma 11 and Proposition 12 that P* = P.
We have shown the condition for a closed submodule to satisfy the

condition (**). But, we can not show the relation ^t(ω) = ^Q(ω) for
every ωeΩ. Now, if we suppose that ^f(ω) = ^fo(ω) for every ωeΩ,
then we can show that ^ is a continuous submodule.

PROPOSITION 15. Let ^ he a closed submodule of H and ^f0 =
» f̂ Γl F. If ^f satisfies the condition (**) and ^S(ώ) = ^fo(a)) for
every ωeΩ, then ^£ is a continuous submodule of H.

PROOF. Let ξ = {ζ(ω)} be an element of Π ^ i J ^ o M such that the
function ω —* 11 ζ(ω) \ \ is bounded and, for any η 6 * ^ , the function ω —•
{ζ(ω)\Ύ](ω)) is continuous. Then, we must show that ζ is an element of
H and Pζ = ζ where P = {P(ω)} is the projection of H onto ^ determined
by Proposition 14. Now, since, for any ??e^C the function ω—•
(f(ω)I^(ω)) is continuous and ξ(ώ)e^fo(ω) for every ωeΩ, the function
ω—> ||ί(α>)|| is lower semi-continuous on 42. Hence, there exists a maximal
family {ea} of orthogonal projections in C(Ω) such that the function ω—•
||(βα£)(α>)|| is continuous for every α. Then, by Proposition 2, βα£ is an
element of ^ ί j for all α. Thus, put £' = Σ βα(eαf), then £' is an element
of ^/ί because ^ satisfies the condition (**). Now, for every rje^^
both functions ω —> (ξ(ω) | η(ω)) and ω —• (£'(ω) | η(ω)) are continuous. Fur-
thermore, the relation £' = Σ ea(eaξ) leads us to the fact that ζ{ω) = ξ'(ω)
for every ω e U Ga where Ga is the closed and open set in Ω correspond-
ing to ea. Thus, since U Ga is dense, (ζ(ω) \ *η{ω)) = (£r{ώ) \ Ύ]{ω)) for every
Ύ] e ^ . Therefore £(α>) = £'(ω) for all α> e i2, and £ = £' e ^

By the above considerations, we have the following theorem.

THEOREM A. Let ^S be a closed submodule of H — W(Ω, K) and
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^ f] F. Then, the following two properties are shown.
(1) The following conditions (a) and (β) are equivalent:

(a) For every bounded subset {ζa} in ^ and every maximal
family {ea} of orthogonal projections in C(Ω), the element Σ e«f« is i n

(β) There exists a projection P of H onto
(2) The following conditions (a') and (β') are equivalent:

(α') ^ is a continuous submodule of H.
(βr) For every bounded subset {ξa} in ^ and every maximal

family {ea} of orthogonal projections in C{Ω), the element X eaξa is in
^ C and for every ωeΩ, ^£{ω) = ^fo(ω).

We say that P is an abelian projection in B(H) if PB(H)P is abelian.
If ξ is an element of H such that the function ω —> ||ί(ft>)|| is continuous,
by the remark after Proposition 2, ξ becomes an element of F = C(Ω, K).
Thus, if ζeH and \ζ\ is a projection in C(Ω), then ξ is an element of
F. With this thing, we can determine the abelian projections of B(H)
in the following form by considering Lemma 3, Theorem A, the remark
after Proposition 2 and by the similar way to the proof of [4; Lemma
13]. We leave the proof to the readers.

LEMMA 16. Let H = W(Ω, K) be a weakly continuous constant field
of Hίlbert space K over Ω. Let ΎJ be an element of H such that there
exists a family {ea} of mutually orthogonal projections in C(Ω) which
satisfies the relations; ea\rj\ = ea for all a and (I — e)\η\ = 0 where e =
Σ e<χ Then the operator P determined by Pξ = (ξ, rj)rj for every ξ e F
is an abelian projection. Conversely every abelian projection arises in
this form.

Let 3 be the set of all elements Tf for / 6 C(Ω) defined by Tfζ =
{f(ω)ζ(ω)} for every ξ e H. Then 3 is a C*-subalgebra of B(H) (in fact,
3 is a von Neumann algebra and *-isomorphic to C(Ω)).

From the above considerations, we can show the main theorem.

THEOREM B. Let H = W(Ω, K) be a weakly continuous constant field
of Hilbert space K with respect to F = C(Ω, K) over a hyperstonean
space Ω; then the algebra B{H) of all bounded C{Ω)~module homomor-
phisms of H into H is a von Neumann algebra of type I and its center
is *-isomorphic to C(Ω).

PROOF. If we can show that B{H) is an AT7*-algebra, it is evident
by Lemma 16 that B{H) is an AW*-algebra of type I. Furthermore,
if we can show that the center of B(H) is Msomorphic to the von
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Neumann algebra C(Ω), then B(H) becomes a von Neumann algebra of
type I by [3; Theorem 2].

Now, since we can show by an elementary computation that 3 is
*-isomorphic to C(Ω) and 3 is the center of B(H), we must show that
B(H) is an ATΓ*-algebra. For this assertion, it is sufficient for us to
show the following: The left annihilator £f(&) of any subset © of B(H)
is of the form B{H)P with P a projection in B{H) (see [4]). Let @ be
a subset of B(H), £f(β) the left annihilator of @ and Sft = the linear
span of the set {R{B): B e ©}, then £f{β) = {A e B(H): A$l = {0}} where
R(B) is the range of B. Now, put ^€ — the norm closure of {Σ eaξa:
{ξa} is a bounded subset of 91 and {ea} is a maximal family of orthogonal
projections in C(Ω)}, then by the proof in [11; Lemma 2.5] and Theorem
A, ^ is a closed submodule satisfying the condition (**); furthermore,
for every Ae J2f(@), A^t = {0}. Thus, &{β) = {AeB(H): A^f/ = {0}}.
Since ^ satisfies the condition (**), there exists a projection Q of H
onto ^ Put P = I - Q, then £f(β) = B(H)P. This completes the
proof.

For Theorem B, let V be the norm closure of linear subspace gen-
erated by {φoωξiξeF and ^ e j / J in B(H)*, then we can show by an
elementary computation that B(H)* — V where ωζ(A) = (Aξ, ζ) in J ^ for
A G B(H) and J ^ = C(X?) (for example, see [12]).

3. The weakly continuous constant field of von Neumann algebra.
In this section, we shall consider the second problem in the introduction
as an application of Theorem B and Theorem C which will be shown
later.

In the previous section, we have shown that an arbitrary element
AeB(H) has the following representation; there exists an operator field
{-4(α>)} satisfying the relation (Aξ)(ω) = A(ω)ξ(ώ) for every ξ e F and
ωeΩ. Thus, let πω be the mapping of B(H) onto B(K) defined as fol-
lows; πω(A) = A(ω) for A — {A(ω)}. Then, by the author's theorem [8]
and [9], πω is not a *-homomorphism in general. But, it is evident that
πω is a positive linear mapping.

DEFINITION 17. Let H = W(Ω, K) be a weakly continuous constant
field of Hubert space K and St a von Neumann algebra acting on K.
Then we define W(Ω, K, S) = {A eB(H): A(ω) eSt for every ωeΩ} and
call W(Ω, K, St) as a weakly continuous constant field of the von Neumann
algebra St.

Under the above definition, if 31 is a von Neumann algebra acting
on K, then we must show that the weakly continuous constant field
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W(Ω, K, %) of 3ί becomes a von Neumann algebra. To prove this asser-
tion, we shall show that W(Ω, K, 81) - W(Ω, K, W where W(Ω, K, 2t)"
means the double commutant of W(Ω, K, Sί) in the von Neumann algebra
B(H).

THEOREM C. Let % be a von Neumann algebra acting on K; then
W(Ω, K, 2() is a von Neumann subalgebra of B(H) where H = W(Ω, K).

PROOF. By Proposition 12, it is evident that W(Ω, K, 31) is a self-
adjoint and linear subspace of B{H). We shall show that, for every
A, Be W(Ω, K,SI), AB is also an element of W(Ω, K, St), that is, (AB)(ω) eSt
for every ωeΩ. Thus, we must show that, for any C" e 2C and ζ, ηeF,
(C'(AB)(ω)ζ(ω)|η{ω)) = ((AB)(ω)C'ξ(ω)\η(ω)) for all ωeΩ. For ξeF, there
exists a nowhere dense set N such that (AB)(ω)ξ(ω) = A(ω)B(ω)ξ(ω) for
all ωeΩ\N. Furthermore, since the vector field {C'ζ(ω)} is an element
of F, by the same argument, there exists a nowhere dense set JY' such
that (AB)(ω)C'ξ(ω) = A(ω)B(ω)C'ξ(ω) for every ω e Ω\N'. Thus, put N" =
N U N'f then N" is also a nowhere dense set, and, for every ω e Ω\N",
we have the following relation;

(C(AB)(ω)ξ(ω)\η(ω)) = (A(ω)B(ω)ξ(ω)\C'*η(ω)). - (A(ω)B(ω)C'ξ(ω)\η(ω))

= ((AB)(ω)C'ξ(ω)\y(o>)) •

Now, since both functions

ω->{C{AB){ώ)ζ{ω)\η{ω)) and ω -> ((AB)(ω)C'ξ(ω) \ η{ω))

are continuous and N" is a nowhere dense set, (C'(AB)(ω)ζ(ω) \ r](ω)) =
((AB)(ω)C'ζ(ω)\η(ω)) for every ξ,ηeF and ωeΩ. Therefore AB is an

element of W(Ω, K, 3ί) and so W(Ω, K, Si) becomes a C*-subalgebra of
B{H). By the same argument as above, we can also show the relation
W(Ω, K, W) = W(Ω, K, SI)', and so W(Ω, K, St) = W(Ω, K, %)". Therefore
W(Ω, K, %) becomes a von Neumann algebra.

Let 3t (resp. 35) be a von Neumann algebra acting on a Hubert space
K (resp. L). Then the tensor product Sϊ (x) 33 of St and 35 is defined as
the weak closure of the algebraic tensor product 31 © 35 of 3t and 35 on
the Hubert space K®L, and this tensor product S[ (x) 35 does not depend
on underlying Hubert spaces in algebraic sense (see [5; Theorem 1]).

Let 31* be the predual space of 31 (that is, SI* is the set of all σ-
weakly continuous linear functionals on 3C), then we have the following
Tomiyama's result [13; Theorem 1].

LEMMA 18. Let 2ί and 35 be von Neumann algebras acting on K
and L respectively. Let 3ί (x) 35 be the tensor product of % and 35. Then



492 H. TAKEMOTO

for each φ e Si* there exists a σ-weakly continuous mapping Rφ: SI (x) S3 —* S3
satisfying the following;

( 2 ) !?,((/ (x) A)X(7 <g) 5)) - AK,(X)5 /or X G a (x) S3,
(3) (X, φ (g) f) = (RΦ(X), ψ) for XeW®® and ψe?&*.

Next, let Si be a von Neumann algebra acting on K and S^ an
abelian von Neumann algebra acting on L, then we can show that the
tensor product 2t (x) J ^ of Si and *Ssf is *-isomorphic to the weakly con-
tinuous constant field W(Ω, K, Si) of Si where Ω is the spectrum space
of J^Γ For this assertion, we can suppose that J ^ is a maximal abelian
von Neumann algebra of B{L) by [5; Theorem 1].

For every A = {A(ω)} e W(Ω, K, Si) and ξ9ηeK (if we consider an
expression of each fibre ζ{ω) of a constant vector field ξ — {ί(ω)} e H,
we shall denote by ξ(ω) = ξ e K), the function ω —• (A(ω)ξ\η) is continuous.
Hence, if we let φ = Σ?=i^?Λ,^|St eSt* (in the later part of this paper,
we denote Σ ^ U ω ^ J S l by Σ ? = i ω ^ J , then the function ω—>φ{A(ω)) is
continuous on Ω. Thus, we define the continuous function φoA on Ω
such as (φ o A)(α>) = ^(A(ω)) = <A(ω), ^> for every ωeΩ.

Let A = {A{ω)} e W(Ω, K, Si), then we define a bilinear form on K © L

as follows; for 5 - Σ?=i £ <8> Z<, ^ = ΣΓ=i fί ® Zί,

(Ξ\Ξ') = Σί±((ωϊi,i>oA)χi\χ'i):
ί = l J = l ^

Then, the above defined bilinear form is well-defined. In fact, if we
suppose that Ξ ~ 0 (x) 0 (or Ξ ~ 0 (x) 0), then we can show that

To prove it, we can suppose by an elementary consideration that {χj?=i
is linearly independent. Then, since A(ω) eB(K) for every ωeΩ and so
A{ώ)% e K, the equation Σ?=i h ® Ẑ  ̂  0 ® 0 induces Σ?=i (A(α>)*f | f,•)%, =
0 for all j and α>ei2. Hence, since {χJJU is linearly independent,
(A(ω)ξt\ξj) = 0 for all i, j and ωei2, and so α)fi(f-:o4 = 0 for all i, j .
Thus, ^ - 0 ( g ) 0 induces the identity Σ?=iΣΓ=i ((^,f"; °^)ZilZί) = 0, and
by the similar way, we have the same conclusion when Ξf ~ 0 0 0.
Next, we shall show that (^Π^Γ) becomes a bounded bilinear form on
K®L. For this, we can assume that A is a positive element of
W(Ω, K, Si). Let C, = {A(*>y/2f J, then <51 S> - Σίy-i ( ( ^ ° A)χ41 χd) =
Σ?.i=i ((Ci, WZ* I Zi) ^ 0 where Ξ_= Σ?=i f < <8> Z* Thus, by the Schwartz's
inequality, for every Ξ = Σ?«ifi(8>Zi and ff' - Σ Γ = i l j ® Zί» | < S | S f > | ^
{<S'|S'><S"|fi'/>}1/2. Now, since we can suppose that {<?J?=1 and &}J=i are
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normalized orthogonal system, and \\A\\I — A^ 0; we have the following
result:

^ Σ (K.ey^JχJχy)^ Σ

= Σ

where ζt(ω) = f, for all i and ω e ίλ Thus, (Ξ\Ξ) ^ || A | | | |SΊ| 2 , and so,
b y t h e s i m i l a r w a y , (Ξ'\Ξ'} ^ \\ A\\ \\Ξ'\\\ T h e r e f o r e , \(Ξ\Ξ')\£
IIAH II'SΊI II'S'ΊI, and so (Ξ\Ξr) is bounded on K®L. Hence, there
exists an element Ά in B(K (x) L) satisfying

and | | | | | | | |
Next, we shall show that Ά is an element of 2C (x) J^C Since we

suppose that J ^ is a maximal abelian von Neumann algebra, (Sί (x) J ^ ) ' =
2t' (g) J^Γ Hence, to prove this assertion, it is sufficient to show that Ά
commutes with B' (x) z e SC' © J^C For every ξ,ηeK and S ' e 3ί', we can
show the equation ω^j,^ = (ύe& η Thus for every Bf 0 zeW ® *$/ and

{A(Br ® z)Ξ IS') = (A(Σ 5'f, (x) % ) IΣ f (x) χ )
1 l

= (AΞI (5 ' (X) ̂ )*S') = ((£' (x) ̂ )AS IΞ') .

Therefore, A e (SC' (g) j ^ ) ' = 2t (g) J^Γ
Furthermore, we can show that RΦ(Ά) = φ © A for each ^ 6 Sϊ* where

JŜ  is the σ-weakly continuous linear mapping for φ determined in Lemma
18. In fact, if we take a functional φ — Σ?=i ωu>ϊi ^en, for every χ e L ,
we have the following equation;

{RΦ{A\ ωχ) = (A, φ (x) ωχ) = (A, ( Σ

= Σ ( ^ ( f < ® χ) l7*®Z) = h i

Hence, RΦ{Ά) — φoA for every 0e2t*. Furthermore, we can show the
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converse of this fact by similar way to the proof of the above fact.
Next, let A be an element of 210 J ^ and ξ,ηeK. Then, Riη

is an element of J ^ = C(Ω) where Rζ^ means the map Rω- - determined
in Lemma 18. Now, define a bounded bilinear form on K for every
ωeΩ as follows; (ξ\η) = Rξ^(Ά)(ω) for any ξ, η eK. Then, there exists
an element A(ω)eB(K) such that (A(ω)ξ\ff) = Rξ^{A){ω) for every ωeΩ.
Put A = {A(ω)}, then, by Lemma 9, A can be extended onto H as an
element of_ B(H). We assert that A belongs to W(Ω, K, 21). For any
element B' e W and ωeΩ, (A(ω)B'ζ\η) = RΈrζ-η(A){ώ) = R^^Ά)(ω) =
(A(ω)f | JB'*^) = (ΰ'i(ft))f I )?) for every ξ,ηeK. Hence A(ω) e 2ί for every
α) e Ω, and so i = (A(ω)} e W(Ω, K, Sϊ). Thus, if we consider the above
relation and use an elementary computation, we have the equation;
Rφ(Ά) = φoA for every φe%*.

With the above correspondence, we have the following theorem.

THEOREM D. Let 2C be α von Neumann algebra acting on K, Sz?
an abelian von Neumann algebra acting on L and Ω the spectrum space
of Jzf, then the tensor product 2C 0 Ssf of 2C and j y is *-isomorphic
to the weakly continuous constant field W(Ω, K, 21) of §ί.

PROOF. Without loss of generality we may assume that sf is a
maximal abelian von Neumann algebra. Then, from the considerations
before this theorem, we can define the following mapping π of W{Ω, K> 3X)
onto 2t 0 J ^ ; π: W(Ω, K, 2() 9 A = {A(ω)} -> A e % 0 J ^ determined as
RΦ{Ά) = φ o A for every φ e 2t* (in fact, the above relation is determined
b y t h e f o r m Rξtη{A) = (Aξf η) f o r e v e r y ξ,ηeK w h e r e ξ(ώ) = ξ, η(ω) = fj
for every ωeΩ). Then, it is clear that π is a *-preserving linear, one-
to-one mapping. Thus, we must show that π is multiplicative. To prove
this assertion, we must show that ((AB)(ω)ξ\η) = Rξ^(AB)(ω) for every
ξ,ηeK and ωeΩ. At first, for every AG?C(g)J/ and Be21 © J*ί we
have that J R ^ ( £ A ) = 12^(22) and i2f,^(AB) = jβ^(AB). In fact, if B =
5 0 J, then RIΪ(BA) = jβ^5^(A) and i2^(AJ5) = iϊ^^^A). Thus, suppose
B = Σ?=i 5 4 0 2i 6 21 © J ^ then, the following equation holds; iie,̂ (BA) =
Σ?=i i2e.^(54 0 î)A) - Σ?«i ZiR-^φt 0 /)A) = Σr=i «iΛf,5!ϊU). Further-
more, for every ωeΩ,

(B(ω)A(ω)ξ\y) = ±zi{ω)BiA{ω)ξ\v) = ±zi(ω)(A(ω)ξ\Bΐv).
i l i l

Thus, the function α>—>(j5(α))A(ω)||̂ ") is continuous, and so, by Proposi-
tion 12, CB(ω)A(ω)f \rj) = ((J5A)(ω)f |γ") for all ωei2 and ξ,yeK. There-
fore, by the above facts, i?^(J?A). = Rξ^(BA) for all ζ,ηeK. By a
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similar argument, we can show that R-ξiη(AB) = Rξ^(AB) for all f, η eK.
In the above argument we have shown that if A e 91 (x) Szf and B e Sί © j^<
A(ω)B(ω) = (A£)(ω) and £(ω)A(ω) = (£A)(ω) for every ωeΩ.

At last, we shall show that if A, B e % (x) J ^ and ξ,ηeK, Rξ^(BA) =
ϋ?^(i?A). Since A is an element of Sί (g) Ĵ < there exists a net {Aα} in
21 © Jjf such that A α - > i in the <7-weak topology. Then, the tf-weak
continuity of the mapping Rζj and the fact such that Rς,η(Ά) — (Aζ, ή)
induce the following fact; (Aaξ, η) —• (Aξ, rj) in the α-weak topology where
ξ(ω) = ξ and η(ω) = rj for all ωeΩ. Thus, considering Corollary 4, for
every ζ, η e F, we can show that (Aj , η) —> (Aξ, η) in the <7-weak topology.
Now, since Άa—>Ά in the σ-weak topology, Rζ,η{BAa) —*Rξj{BA) in the
α-weak topology. Furthermore, we have by the previous proof; for
every ω 6 Ω,

R-ζJβΆa){ω) = {{BAa){ω)ζ\η) = (B(ω)Aa(ω)ξ\η)
= (Aa{ω)ξ\B{ωγrJ) - (Aaζ, B*η){ω)

where ξ(ω) = ξ and η{ω) = ^ for all ω G β. Write J3*)? = X β#, under
the condition in Proposition 8. Let Ge be the closed and open set in Ω
corresponding to et. Then, for every c, et(Aaξ, B*η) = (AJ, ηc)-+et(Aξ, ηc)
in the ίJ-weak topology. Thus ecRξ^{BA) = β,(^ί, ηζ) = β,(Af, 5*^). Hence,
we have; for every ω e Ge, Rξj(BA){ω) = (Af, ^)(ω) = (Af, B*η)(ω). Fur-
thermore, since £ and 27 are element of F,

(Aξ, B*ηXω) = ((Aξ)(ω)\(B*y)(ω)) - (A(ω)ξ\B(ωYη) =

for every ωei2. Thus, for every ωe U Gc, Rξ-η(BA)(ώ) =
By Proposition 12, there exists a nowhere dense set N such that
((BA)(ω)ξ\η) = (B(ω)A(ώ)ξ\η) for all ω G Ω\N. Hence, for every ω e (UG,)Π
(β\iV), i2f-̂ (5A)(α>) - ((jBA)(α>)ί|̂ ). Now, since both functions ω~*
Rlγ(BΆ)(ω) and ω —> ((BA)(ω)ξ\rj) are continuous on Ω and the set (UG) Π
(J2\iSΓ) is dense in β, Rhη(BA)(ω) = ((BA)(ώ)ξ\Ύj) for all ω e ΰ . Thus,

Rξ^(BA) = (BAξj η) — Rζj(BA). Therefore, π is multiplicative, and so
π is a *-isomorphism of W(Ω, K, St) onto 3ί (x) Ĵ T This completes the
proof of Theorem D.

In Theorem D, we have successfully dealt with the effect of nowhere
dense sets in Ω which may be considered as replacement of null sets in
the measure theoretic arguments (for example, see [2. Proposition 1]).

The author wishes to express his hearty thanks to Professor Masanori
Fukamiya for his many valuable suggestions in the presentation of this
paper.
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CONCLUDING REMARKS: After this work was finished, the author
came to know the paper by B. B. Renshaw appeared in Trans, of the
A.M.S., 194 (1974), 337-347, in which his main theorem is similar to our
Theorem D in the present paper. In his theorem, Renshaw has proved
the isometric property of the mapping π. On the other hand, although
he uses the theory of module mappings in order to treat the multiplica-
tivity of π his arguments there still leave the problem of nowhere dense
subsets in nonseparable case, whereas the present work goes through
this problem as a reduction theory and shows that the space W{Ω, K, Sί)
is an algebra and that the mapping π is actually a ^isomorphism be-
tween 3ί (x) j * and W(Ω, K, %).




