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Let / be an isometric immersion of a Riemannian manifold M into
a Riemannian manifold M of constant curvature and let Nf be the
normal bundle. The normal connection is a metric linear connection in
the bundle Nf which satisfies the Codazzi equation for the second funda-
mental form a. The first aim of the present paper is to prove the
following result: in the case where the first normal space Nx(x) coincides
with the normal space N(x) at each point x of M, a metric linear con-
nection in the bundle Nf which satisfies the equation of Codazzi type
coincides with the normal connection. This fact can be derived as a
special case of the general treatment of connections in the bundles of
normal spaces of higher orders as given by 0. Kowalski [6], but simpli-
city of the result under our assumption is remarkable. Indeed, we shall
define the torsion tensor of an arbitrary linear connection in the bundle
Nf in such a way that the normal connection can be characterized, still
under the assumption that N^x) = N(x) for every point x, as a unique
metric linear connection in Nf whose torsion tensor is 0. This then is
an analogue of the uniqueness theorem of the Riemannian connection as
a linear metric connection with zero torsion in the tangent bundle of a
Riemannian manifold.

The second aim of the paper is to apply the result above to obtain
congruence theorems for isometric immersions which satisfies N^x) =
N(x) for all points x or whose second fundamental forms are parallel.
Isometric immersions into a Euclidean space with parallel second funda-
mental forms have been essentially determined by D. Ferus [2], [3], [4],
and our result has a close bearing on part of the proof of the main
result in [4].

1. Uniqueness of the normal connection. Let / be an isometric
immersion of a Riemannian manifold M into a Riemannian manifold M
of constant curvature. For each point x of M, let N(x) be the normal
space and let Nf be the normal bundle. The second fundamental form
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a defines for each point x of M a bilinear symmetric mapping of
TZ(M) x TX(M) into N(x). Thus a is a section of the bundle Horn
(T(M)®T{M), Nf), where T(M) is the tangent bundle of M. It is
known that a satisfies the equation of Codazzi:

(1) (ΓiaXY, Z) = (ΓϊaXX, Z)

where X, Y, Z are tangent vectors to M and (Vxa){ Yf Z) is defined by

(2) {V*xa){Y, Z) = Fία(Γ f Z) - α(FxΓ, Z) - α(Γ, FXZ) .

Here F 1 denotes the normal connection in the bundle Nf. (For the
standard terminology on isometric immersions, see [5].)

More generally, let V be an arbitrary linear connection in the vector

bundle Nf. We define the torsion tensor of V as the section f of

Horn (T(M) (x) Γ(Λf) ® Γ(Λf), -N»

defined by

( 3) f(X, Y)Z = (ria)(Y, Z) - {V*Y*){X, Z) ,

where V\a is defined by

(4) (FJα)(Γ, Z) = Vxa(Y, Z) - a(ΓxY, Z) - a(Y, VXZ) ,

in other words, using V instead of VL in (2). Thus the torsion tensor
of V is identically 0 if and only if V satisfies the equation of Codazzi's
type:

(5) \ha)(Y, Z) = (ha)(X, Z) .

There is another way of defining the torsion tensor t. We interpret
a as a section p of the bundle

Hom(Γ(Λf)f Hom(Γ(AΓ), 2V»)

by setting
p(X)Y=a(X, Y).

Given a linear connection V in the bundle Nf, we have a linear connec-
tion in the vector bundle Hom(Γ(ilf), JV» over M defined by

(Fxτ)(Y) = Fx(τ(Y)) - τ(FxY) 9

where τ is a section of ΈLom(T(M), JV» and X, Y are vector fields on
M. Using this connection we have

( 6) f(X9 Y) = Fx(p(Y)) - K(P(X)) - p{[X, Y]) .

To prove (6) it is sufficient to note
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Fx(p(Y))Z = Vx{p{Y)Z) - p{Y){VxZ)

= VM{Y,Z))-a{VxZ, Y),

VY{p{X))Z = ΓAa(X, Z)) - a{VYZ, X)

and

p([X, Y])Z = a([X, Y], Z) = a(FxY, Z) - a(FγX, Z) .

Now (6) gives another expression for the torsion tensor of V which is
quite similar to the expression for the torsion tensor of a linear connec-
tion on a manifold:

T(X, Y) = VXY - VYX - [X, Y] .

We shall now prove

THEOREM 1. Let f be an isometric immersion of a Riemannian
manifold M into a Riemannian manifold M of constant curvature.
Assume that the first normal space Nx{x) coincides with the normal
space N(x) at each point x. Then a metric linear connection V with
zero torsion tensor in the normal bundle Nf coincides with the normal
connection F1.

PROOF. For any section ξ of Nf and for any vector field X on M,
we set

K(X)ξ = Fif - Fxξ

Then K is a section of Hom(Γ(M), Horn (AT/, N/)). For any l e TX(M),

K(X) is a skew-symmetric endomorphism of the normal space N(x),

because both F£ and Vx are metric connections in Nf. Since both con-

nections satisfy the equation of Codazzi's type, we obtain from (1) and

(5)

(7) K(X)a( Y,Z) = K( Y)a(X, Z)

for any X, Y, Z e TX(M). Using skew-symmetry of the endomorphism of
the form K(X), XeTx(M), we obtain

(K(Z)a(X1, X2), a(Yu Γ2)> + (a(Xu X2), K(Z)a(Yu Γ2)> = 0

<K(XJa(X» ^), a(Z, Γ2)> + <α(X2, Γt), K(XMZ, Y*)> = 0

(K(X2)a(Z, Xy), a(Y, F2)> + <a(Z, Xt), K(X2)a(Y, Γ2)> = 0

-<J5Γ(ri)α(rM Z), <x(Xlt X2)> - <«(Γ2, Z), K{Y,)a{Xιt X2)> = 0

-<K(Y2)a(Z, Xd, a{X>, Yd) - W , Xd, K(YJa(X» Y'd> = 0 .

Adding up these five equations and making use of (7) we obtain

= 0 .
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Since N,(x) is spanned by vectors of the form a(X, Γ), X, Ye TX(M),
our assumption N^x) = N(x) implies that

(K(Z)ξ, V) = 0 for all ξ,ηe N(x) .

This means K(X) = 0, that is, Vx = Vx for every Xe TX(M).

2. Congruence of isometric immersions. In this section, let M be
one of the standard models of Riemannian manifolds of constant curva-
ture, namely, the Euclidean space Em, the sphere Sm, the real projective
space Pm(R) of constant positive curvature, and the hyperbolic space Hm.

THEOREM 2. Let f and f be two isometric immersions of a con-
nected Riemannian manifold M into M. If there exists a bundle
isomorphism Φ of the normal bundle Nf for f onto the normal bundle
N} for f which preserves the metrics and the second fundamental
forms and if N^x) = N(x) for all xeM for the immersion /, then f
and f are congruent (by an isometry of M).

PROOF. Define a linear connection V in the bundle Nf as follows.
For any section ξ of Nf and for any vector field X on M, we set

Vxξ = φ-ψxΦ{ξ)) ,

where FJ denotes the normal connection in Nf for /. Since Φ preserves
metrics, V is a metric connection. Since Φ preserves the second funda-
mental forms, i.e. Φa(X, Y) = ά(X, F), the connection V in Nf satisfies
the equation of Codazzi's type for a. By Theorem 1 we conclude that
V coincides with F1. This means that Φ preserves the normal connec-
tions. By a well-known result in [7], / and / differ by an isometry of
M.

We now consider isometric immersions with parallel second funda-
mental forms.

THEOREM 3. Let f and f be two isometric immersions of a Rie-
mannian manifold M into M such that their second fundamental
forms a and a are parallel. If there exists a bundle isomorphism Φ
of Nf onto N} which preserves the metrics and the second fundamental
forms, then f and f are congruent.

PROOF. Since F*α = 0, the first normal spaces N^x) for / are parallel
relative to the normal connection in Nf. By a theorem of Erbacher [1],
there is a complete totally geodesic submanifold Mx of M such that
/(MJcikfi. (Note that the theorem is valid for Pm(R) as well. Also
note that Mι is again one of the model spaces.) The normal bundle for
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the immersion / of M into Mί is denoted by Nι

f, its fibers being N^x).
Similarly, there is a complete totally geodesic submanifold Mx of M such
that f(M) c M19 for which the normal bundle N1* has fibers Nx(x), namely,
the first normal spaces for / .

The bundle isomorphism Φ of Nf onto N} induces an isomorphism
of Nf onto N\ which preserves the metrics and the second fundamental
forms. Thus by Theorem 2, we conclude that there is an isometry φ
of Mλ onto Mγ such that φof = f. We may now extend φ to an isometry
of M onto itself.
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