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1. Let {sn} denote the n-ih partial sum of a given infinite series
Σ an. Let {pn} be a sequence of constants, real or complex, and let

Pn = Vo + Pi + + pn P-k = P-k = 0 , for Jc ^ 1 .

The sequence {tn}, given by

(1.1) tn = ±±pn_ksk = ̂ -±Pn_kak, (P.*0),
Pn k=° Pn k=0

defines the Norlund means of the sequence {sn} generated by the sequence

{p.}-
Then, the series X an is said to be summable \N, pn\, if the sequence

{tn} is of bounded variation, that is, the series

(1.2) Σ l* — *—il
n

is convergent.
In the special cases in which pn = Γ(n + a)/Γ(a)Γ(n + 1), a > 0, and

pn = \j(n + 1), summability \N, pn\ are the same as the summability
\C,a\ and the absolute harmonic summability, respectively.

Let f(t) be a periodic function with period 2π and integrable (L) over
(—πf π). We assume without any loss of generality that the Fourier
series of f(t) is given by

(1.3) Σ (α« cos nt + bn sin nt) = Σ Λn(t)
n=l n=l

and Γ f(t)dt = 0.

The series "conjugate" to (1.3) is
oo oo

Σ Φn cos nt — an sin nt) = Σ Bn(t) .
n=l n=l

We write
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φ.(t) = φit) = hf(x + t)+ f(x - t)}
Δ

y.(ί) = fit) = hfix + t) - fix - t)}
Δ

{Pn} € ^ T : PnJPn ^ Pn+i/Pn+1 ^ 1 (% = 0, 1, 2, •) ί

Δpn = Pn- Pn + l I

τ = [π/t] ,

i.e., the greatest integer in π/t.

2. Dealing with the absolute Nδrlund summability of Fourier series,
M. Izumi and S. Izumi [6] proved the following theorem.

THEOREM A. Let {pn} be non-negative and non-increasing and X(t),
t > 0, be a positive non-decreasing function such that [κ{n)/{n + 1)} is
non-increasing y

(2.1) Σ

and

(2.2) KHCjt)\dφ(t)\ < oo for some constant C > 0 .
Jo

Then the series

±X(n)An(t)

is summable \ N, pn | at t = x.

This theorem is an extension of theorems due to L. S. Bosanquet [1]
and M. Mohanty [11, 12].

Generalizing the theorems of 0. P. Varshney [17] and T. Singh [16],
K. Kanno [8] proved the following theorem.

THEOREM B. Let {pn} be non-negative and non-increasing. Let λ(ί),
t > 0, be a positive, non-decreasing function satisfying the condition
{X(n)/Pn} is non-increasing.

If the conditions

(2.3) I

and
(2.2) \\iC/t)\dφit)\ <

Jo
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for some constant C > 0 hold, then the series

Σ (^
0

is summdble \ N, pn \ at t — x.

Very recently the author [13] generalized these theorems in the
following form.

THEOREM C. Let {pn} be non-negative and non-increasing. Suppose
that λ(ί), t > 0, is a positive non-decreasing function and {μ(n)} is a
positive bounded sequence such that {λ(w)μ(w)/(w + 1)} is non-increasing,

(2Λ) ±
and

(2.2) \\(C/t)\dφ(t)\ < ~ for a constant C > 0 .
Jo

Then the series

Σ Mn)μ(n)An+1(t)

is summable \ N, pn \ at t = x.

On the other hand, concerning the absolute Norlund summability
factor of the conjugate series of a Fourier series, A. Kumar [9] proved
the following two theorems.

THEOREM D. Let {pn} and {Apn} are both non-negative and non-
increasing sequences. Let λ(£), t > 0, be a positive non-decreasing func-
tion such that {λ(ί)/ί} is non-increasing for t > 0.

// the conditions

(2.1)

(2.5) [\(C/t)\dΉt)\
Jo

and

(2.6) \*MC/t)\jr(t)\dt < „
Jo t

hold for some constant C > π, then the series

Σ Mn)BM
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is summable \N9 pn\ at t = x.

This theorem is the conjugate analogue of Theorem A.

THEOREM E. Let {pn} e ^f. If the conditions

(2 7)

(2.8) # ) e B F ( 0 , π)

(2.9) r ι*;>i dt < oo
v ' Jo ί log (C/ί)

for some constant C > π hold, then the series

- i log (n + 1)

is summable \ N, pn \ at t — x.

Theorem E includes as special case the theorem of R. D. Ram and
N. Lai [15], which is the conjugate analogue of the result due to 0. P.
Varschney [17].

Thus, comparing Theorem C with these theorems, we may expect a
result for the | N, pn | summability of the series Σ»=i X(n)μ(n)Bn(x).

Our theorems are as follows:

THEOREM 1. Let {pn} and {Δpn} are both non-negative and non-
increasing. Assume that X(t), t > 0, is a positive non-decreasing func-
tion and μ(t), t > 0, is a positive bounded function such that {nμ(n)}
and {μ(n)/pn} are non-decreasing and {λ>{t)μ(t)lt} is non-increasing.

If the conditions

(2.4)

(2.10) I dt <
Jo t

and

(2.11) \\(C/t)\dψ(t)\ < -
Jo

for some constant C > π hold, then the series

±X{n)μ(n)Bn{t)
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is summable \N, pn at t — x.

If μ(t) = 1, our theorem reduces to Theorem D. If we put X(t) = 1
and μ(t) = I/log (t + 1), then we see that our theorem partially includes
Theorem E, because the condition {pn} e ̂ fί implies that {Apn} is non-
negative and non-increasing (see K. Kanno [8]).

THEOREM 2. Let {pn} be non-negative and non-increasing. Assume
that X(t), t > 0, is a positive non-decreasing function and μ(n) is a
positive bounded sequence such that {λ>{ri)μ{ri)ln} is non-increasing.

If the conditions (2.4), (2.11) and

(2.12) ΊK + O) = 0

hold, then the series

Σ Mn)μ(n)Bn(t)

is summable \N, pn\ at t = x.

Theorem 2 is a generalization of the theorem of H. P. Dikshit [5],
which was given as the conjugate analogue of Theorem B.

3. We need some lemmas for the proofs of our theorems.

LEMMA 1 [4]. Let {pn} be a given sequence, then for any x, we have

(1 - x) Σ Pkx
k = Pmxm - Pnx

n+1 - Σ Λpkx
k+1

k=m k=m

where m and n are integers such that n ^ m ^ 0.

LEMMA 2 [10]. If {pn} is non-negative and non-increasing9 then for
0 ^ α ^ 6 < o o , O^ί^TΓ, and for any n, we have

where A is a positive constant, not necessarily the same at each oc-
curences.

LEMMA 3 [16]. // {pn} is non-negative and non-increasing, then
{(Pn — Pn_k)/k} is a non-decreasing sequence in k for 1 ^ k ^ n.

LEMMA 4 [16]. // {pn} and {Jpn} are both non-negative and non-
increasing, then for 1 ^ k ^ n and n Ξ> 2, {(pn-k — Pn)/k} is non-
decreasing.

LEMMA 5 [7] If {pn} is non-negative and non-increasing, then
{Pn_k/Pn} is non-decreasing and {Pn_k/Pn}—>1 as n—+°o for each fixed



568 Y. OKUYAMA

LEMMA 6 (cf. [9], [18]). Let μ(t), t > 0, be a positive bounded func-
tion and X(t), t > 0, be a positive non-decreasing function such that

is non-increasing and {nμ{n)} is non-decreasing.
If ψ(t)eBV(0,π) and

(2.10) ΓMC/*MC/*)lt(01^ < ^ f o r s o m e c o n s t a n t c>π hold,
Jo t

then the series

converges where π/(n + 1) ̂  θn < π/n, n = 2, 3,

PROOF. Since the hypothesis ^r(t)eBV(0f TΓ), implies that | iK*) |e
ΰ7(0, π), we can write

\ψ(t)\ = ψ1(t)-ψ2(t)

where ψ^t) and ψ2{t) are positive, bounded and non-decreasing functions.
Using the condition that {κ(t)μ{t)jt} is positive and non-increasing, we
have

(3.1)

C
—n
πby virture of the fact that ψ^t) is positive and non-decreasing.

Similarly, we have

( 3.2) p-'i^jMC/^C/ί)]^
Jπ/n t2 I 1/t )

- 1 )

If we put a = C/π, then we obtain by (3.1) and (3.2)
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(π\ _ X(a(n - l))μ(a(
n \n/ (n — 1)

X{an)μ{an) (π\ _ X(a(n - l))μ(a(n - 1)) / π \
\n/ (n — 1) 2 \ n — 1 /

Since π/(^ + 1) ̂  T̂C < TΓ/^, we have

(3.4)
n

n

= X(an)μ(an) (π\ _ X(a(n - ϊ))μ(<x(n - 1)) , / π \
n Ύι\n) (n-ΐ) Ύ*\n-1/

X(a(n - l))μ(a(n - 1)) . / π \ X(a(n-l))μ(a(n- 1)) (π\
(w-1) Ύ\n-l) (»-l) ^»/

1)) , ( π \ _ X(Q:TO)/<(Q:TO) / IT \

Thus, since {»/<(»)} is non-decreasing, we have by (3.3) and (3.4)

n — 1/)

— 1) — 1/)

a(n —

AX(a)μ(cc)

a

t + A < oo
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by virture of the hypotheses (2.10) and that [^(n)μ(n)jn} is non-increasing
and ψ2(t) is non-decreasing and bounded.

LEMMA 7. Let {pn} be a sequence of positive numbers. Then the
condition

is equivalent to the condition

(3.6) Σ &ψ± = 0(Pn)
k — l fc

where {μ(n)} is a positive sequence.

PROOF. First, we assume that the condition (3.5) holds.
Using the formula

n n oo oo oo

f̂cOfc = _ 2 J (αfc — αfc-i) 2 j θ r + ô m+i 2 J or — an 2J I

we have

Pnί& k P . <έί ^fcP,

P r P

say. Clearly, we have

W2 = 0(1) and TΓ3 = 0(1) .

Also, we have

= 0(1) .

Collecting the above estimations, we have the condition (3.6).
The inverse statement is proved similarly.
Thus, we have by Lemma 7

LEMMA 8. The condition (2.4) implies the condition (3.6).

4. Proof of Theorem 1. By (1.1) we have
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where

Bk(x) = — Γ ψ(t) sin ktdt .
π Jo

Hence

(4.1) Γ

7Γ Jo

ί 1 w

Therefore, to prove the theorem, we have to show that

= Σ I ("iK*){ p-5— Σ (P-P-* - Pn-kpn)X(k)μ(k) sin

Now taking ^w as points of continuity of ψ(t) with π/(n + 1) ^
θn < π/n for ^ = 1, 2, , we obtain

I ^ Σ I P ?Kί)|-5-5— Σ (P P-* - Pn-kPn)Mk)μ(k) sin fcί

+ Σ Γ ?K*)|-5-5— Σ (P.P-* - P«-kP«)MJc)μ(k) sin fcίldί

^=i J*» ( P w P w - i f c = 1 >

= Ii + Λ ,

say. We define Hw(ί) in the following way;

( t s i n kt tor 0 ^ t < θn

j

to for θn^t^π.

Since <9% < TΓ/̂  and Hn(t) = 0 for ί ^ ίΛ, then we have

£Γn(ί) = 0 for π ^ τ + 1 .
Therefore, since {λ(Λ )} is non-decreasing, {kμ(k)} is non-decreasing and
sin kt I 5g λtf, we have

(4.2) ±\Hn{t)\

^ Σ Σ

n=ί

= Σ X(k)μ(k) I Sin Λί I Σ
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^^

^ AτX(C/t)μ(C/t)

by virture of Lemma 5.
By (4.2) and (2.10), we have

i = Σ \[Ψ(t)Hn(t)dt <ί [\f(t)\±\Hn(t)\dt
n=l I JO JO n=l

t

Now, observing that ψ(π) = 0 and integrating by parts, we have

Σ hK'JI ( P A , -

cos kt
d ( t )

say. Let us write m = [»/2] Then we obtain

i* ^ Σ ΰ ^ l Σ P " P-kP*-Mk)μ{k) cos
! PP I kk

v

n=2

= ioii + 1*1

" k
cos

k c o s
+ A

say. Since {̂ (it)/p»} is non-decreasing and {n\(n)μ(n)} is non-decreasing,
we have by Lemma 3

hn ^ Σ
k

P. - P.-

p

by virture of Lemma 6.
Similarly, by Lemma 4, we have
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Σ ψξfΔ Σ h>^^Pn

m

m

by virture of Lemma 6.
Since {X(n)μ(n)/n} is non-increasing and {nX(n)μ(n)} is non-decreasing,

we have

.)l Σ f A - Γ p

f - A

m t=m+i PnPn_ι

k=m+i

by virture of Lemma 6. Thus, by /211, J212 and J218, we prove the finite-
ness of J21.

Next, we define Kn{t) in the following way;

(0 for 0 ^ t < 0n

^ ( ^ }
 | cos to

Σ ( ^ ^ή f o r

Thus, we have

= \'Σ,\κ.(t)\\dΉt)\.
JO n=l

Considering the condition (2.11) and the definition of Kn(t), it suffices
for 722 < oo to prove that uniformly in 0 < t ^ π,
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(4.3)

Now, we have

= O(X(C/t)).

+

say. Thus we have

J 3 ,

U

= = "11 + "12 »

say. Since 1 - P^^JP^ ^ P*/Pr_i, we have by Lemmas 5 and 8

X(Jc)μ(k)(. Pr->_

λ(τ) ^,

= O(λ(C/έ))

by virture of the hypothesis that {λ(w)} is non-decreasing.
Also, since {X(n)μ(n)/n} is non-increasing and {μ(n)} is bounded, we have

Hence we have by Jn and J12

, = O(λ(C/ί))
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By the same method as Jn, we have

| . (Pa=i_Pa=b±)
«=2r+Λ Pn PM_ 1 /

ί=ί k
Λ

= O(x(C/t)).

In order to show that J3 = O(X(C/t)), we consider the sum

N

= Σ
Then it is enough to prove that

Jί = O(X(C/t)) as N~*oo .

This is similarly proved by the same method as that used by Y.
Okuyama [13].

Collecting the estimations Jlf J2 and J3, we have

j = O(X(C/t)).

Thus, by the hypothesis (2.11), we see that 722 is finite.
Therefore, by the above estimations, our theorem is completely

proved.

5. Proof of Theorem 2, We shall only sketch the proof. By (4.1),
we have

where

= - [ψ(t)\± (Pnpn-k - Pn-kpn)Mk)μ(k) sin kt\dt .
7Γ Jo U = i )

S π

dψ(t) = 0, and therefore by
0

integration by parts, we fyave (cf. T. Pati [14])
[

π JO
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for each n, where

\dn{t)\ =

Thus we have

/'either

Y. OKUYAMA

Σ (Pn
1 — cos kt

or Σ (P.J>.-» - PnPn-Mk)μ(k)

k

cos kt

9 Cπr —1 1 n

± Jo Σ p ^ - Σ (P.P.-* - P.P.->
1 — cos kt

7Γ Jo Λ=Γ fc=i \

fP,-k --ήx(k)μ(k)cos kt \dψ(t)\.
Pn Pn_, I ' k

Since by the hypothesis \ X(C/t)\dψ(t)\ < oo, in order to prove the
Jo

finiteness of /, it is enough to show that uniformly in 0 < t ^ π
— cos kt = O(λ(C/ί))

and

Since 1 — cos kt ^ kΨ, we have

Σ pn-Mk)μ(k)k

by the hypotheses that (λ(π)} is non-decreasing and {/̂ (w)} is bounded.
72 follows directly from the estimation J of the proof of Theorem 1.

Hence we complete the proof of Theorem 2.

6. In this section, we shall establish the theorem which will clarify
the relation between Theorem 1 and Theorem 2.

THEOREM 3. Let λ(£), t > 0, be a non-decreasing function tending to
an infinity as ί->oo and μ(t), t > 0, be a positive function. If the
condition

iC/t) Ύdt t

holds for a suitable constant 7, then the set of the conditions (2.10) and
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(2.11) is equivalent to the set of the conditions (2.11) and (2.12).

To prove this theorem, we require the following two lemmas.

LEMMA 9. Let X(t) be a non-decreasing function and μ(t) be a
positive function. If the condition

d_X(CIt) = <yX(C/t)μ(C/t)
dt t

holds for a suitable constant 7, then the condition

(6.1) X(C/t)ψ(t)eBV(O,π)

is equivalent to the condition (2.11) wherever the condition (2.10) holds.

PROOF. This lemma easily follows from the fact that

(6.2) [x(C/t)\dψ(t)\ ^ [\d{X(C/t)ψ(t)}\ + [\f(t)\\dX(C/t)\
Jo Jo Jo

= [\d{HC/t)Ψ(t)}\ + |7| [MC/t)μ(C/t)\f(t)}dt < M
Jo Jo t

and

(6.3) [\d{X(C/t)f(t)}\ ^ \\(C/t)\dψ(t)\ + [ \ψ(t)\\dX(Clt)\
Jo Jo Jo

<; \'MP/t)\d«t)\ + |7
Jo

LEMMA 10. Under the same assumptions as those of Theorem 3, the
set of the conditions (2.10) and (6.1) is equivalent to the set of the con-
ditions (2.11) and (2.12).

PROOF. If the conditions (2.11) and (2.12) hold, then we have

t t

^ A\π \df(u)\\[π dX(C/t)

= A [\dψ(u)\(X(C/u) - X(C/π)) <
Jo

from which (2.10) follows; and then (6.1) follows from (6.3).
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Conversely, suppose that the conditions (2.10) and (6.1) hold. Then
we obtain (2.11) from (6.2). Since X(t) is a non-decreasing function tend-
ing to an infinity as t —> oo, (2.12) is obvious from (6.1).

PROOF OF THEOREM 3. By Lemmas 9 and 10, we complete the proof
of our theorem.

7. In this section, we consider some applications of our theorems
and deduce the several corollaries from the theorems.

Our results are as follows:

COROLLARY 1. If

( i ) A*t-'-«\ψ(t)\dt < - (or (i') τK + 0) = 0)
Jo

and

(ϋ) \'ra\dψ{t)\ < - ,
Jo

then the series ^n=iW>aBn(t) is summable \C, β\ at t = x, where

0 ^ a < β < 1 .

This corollary coincides to L. S. Bosanquet and J. M. Hyslop [2] for
a = 0. By Theorem 3, Corollary 1 coincides to R. Mohanty [11] for
0 < a < 1. Also, see H. P. Dikshit [3].

COROLLARY 2. If

( i ) (Y1(logC/ί)/Ί'iHί)|dί < °° (or (i') τK + 0) = 0)
Jo

and

(i i) [(logC/ty\df(t)\
Jo

then the series Σ*=i (1°& n)βBn(t) is summable \C, a\ at t = x, where
0 < a < 1 and β ^ 0.

COROLLARY 3. / /

( i ) \*r'ilogC/ty-'lψWldt < oo (or (ϊ) ψ( + 0) = 0)
Jo

and

(i i) [(logc/tγ\dψ(t)\ < oo,
Jo

then the series
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Bn(t) is summable \ N, l/(n + l){log (n + l)}a \
- i {log (n + l)}1

at t = x, where 0 <^ a < 1, /3 ̂  0 and a + β < 1.

For a = β — 0, this corollary is due to R. D. Ram and N. Lai [15].

COROLLARY 4. If

( i ) (π r i (log c/ty1 (log log c/ty-1 \ ψ(t) \dt < - (O r (r) t (+o) - o)
Jo

and

(ϋ) \*(log Yog C/ty\dΉt)\ < - ,
Jo

then the series

Σ 7 ^ π 5 " ? ,—r^ττir-o ^ summάble \ N, l/(n + 1) log (n + 1) |
»=i log (w + l){log log(^ + I)}1 β

at t — x, where 0 ^ β < 1.

COROLLARY 5. / /

( i ) ΓrMtίOld* < "° (or (ϊ) ψ( + 0) = 0)
Jo

and

(ϋ) [(log C/t)\dΉt)\< - ,
Jo

έfeew the series Σ?=i -Bn(ί) ^ s summable \ N, log (tz, + l)/(w + 1) | at t = ».

COROLLARY 6. / /

( i ) (Vί log City1] ψ(t)\ dt < - (or (ϊ) ψ( + 0) = 0)
Jo

(ϋ) Γ(loglogC/ί)l^(ί)l < ^ >
Jo

ίfcβ^ the series

j? — ^ a ί * ) — ί s summable \ N, log log (w + l)/(^ + 1) log (n + 1) |
n=i lOg (?t + 1)

at t = x.

As these corollaries are similarly proved, we shall prove here only
Corollary 6.
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PROOF OF COROLLARY 6. In our theorems, we put

pk = log log (k + l)/(k + 1) log (k + 1) ,

X(t) = log log (t + 1) and μ(t) = I/log (t + l){log log (ί + 1)}. Then we have

Pn = Σi log log (A; + l)/(k + 1) log (fc + 1) ~ {log log (n + I)}2 .
k = ί

On the other hand,

f X(k)μ(k) = 0( log log (n + 1) \ = Q/λ(n)\
*=» fcPfc V {log log (n + I)}2 / \PnJ

m

Therefore, by our theorems, we see that Corollary 6 holds.
Now, by Theorem 3, we see that the set of the conditions (i) and (ii)

is equivalent to the set of the conditions (i') and (ii) in the above corol-
laries except Corollary 2 where β Φ 0. However, we see from Lemmas
9 and 10 that the set of the conditions (i') and (ii) is better than the set
of the conditions (i) and (ii) in Corollary 2 (β Φ 0).

For the Fourier analogue of these corollaries, the reader is referred
to K. Kanno [8] and Y. Okuyama [13].

Finally, the author wishes to express his hearty thanks to Prof. K.
Kanno for his valuable suggestions and encouragements in the preparation
of this paper.
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