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COMPLEX HYPERSURFACES OF Pn(C) x Pn(C)
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Recently, Simons [7] has established a fundamental formula for the
Laplacian of the length of the second fundamental tensor of a submani-
fold of a Riemannian manifold and has obtained an application to a
minimal hypersurface of a sphere. Ogiue [6] and others then obtained
an important application of the formula of Simons' type to a complex
submanifold of a complex space form.

On the other hand, Ludden and Okumura [3] obtained a remarkable
application of the formula of Simons' type to a hypersurface of constant
mean curvature immersed in the product Sn x Sn of two ^-spheres.

In this paper we deal with complex hypersurfaces immersed in a
Kaehler manifold Pn(C) x Pn(C) by a similar method.

In § 1, we review some fundamental formulas for a complex hy-
persurface M of the product Pn(C) x Pn(C) of two complex projective
^-spaces and obtain a result: The scalar curvature p of M satisfies p ^
2n2. If the equality holds, then the tangent space of M is invariant
under an almost product structure on Pn(C) x Pn(C) (for simplicity, we
say that M is an invariant hypersurface), and M is a totally geodesic
hypersurface of Pn(C) x Pn(C) (Proposition 1.1).

In § 2, using the formulas obtained in § 1 we establish an integral
formula of Simons' type and obtain results: A totally geodesic hyper-
surface, and a compact Kaehler hypersurface of Pn(C) x Pn(C) satisfying

f /2n + 1 , _ ^ + i)φ\dM ^ 4 ί \\v*H\\2dM
jM\2n — 1 / JM

are invariant hypersurfaces, where φ = 2 trace H2 (Theorems 2.1 and 2.2).
In §3, we consider an invariant hypersurface of Pn(C) x Pn(C) and

obtain a result: A compact invariant Kaehler hypersurface M of Pn{C) x
Pn(C) is a totally geodesic hypersurface, φ = (n + l)/3 or φ(x) > (n + l)/3
at some xeM (Theorem 3.1).

Moreover, using a fact that a complete invariant Kaehler hyper-
surface of Pn(C) x Pn(C) is the product of Pn(C) and a hypersurface of
Pn(C) (Theorem 3.3), we obtain the main results: A) If φ ^ (n + l)/3,
then M = Pn^{C) x Pn(C) or n = 2 and M = Q^C) x P2(C), where
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is a complex quadric. B) Pn-^C) x Pn(C) is the only totally geodesic
hypersurface of PJC) x PJC). C) Pn-Afi) x Pn(C) and Qn^(C) x PW(C)
are the only compact invariant Kaehler hyper surf aces of Pn{C) x Pn(C)
with constant scalar curvature, where Qn-x{C) is the complex quadric
(Theorems 3.5, 3.6 and 3.7).

The author would like to express his hearty thanks to Professors
M. Obata and K. Ogiue for their advices.

1. Complex hypersurfaces of PJC) x PJC). Let PJC) be a com-
plex projective w-space with the Fubini-Study metric of constant holomor-
phic sectional curvature 1. Consider the Riemannian product PJC) x
PJC). We denote by P and Q the projections of the tangent space of
PJC) x PJfi) to each component respectively. We put

(1.1) F = P-Q .

Then the Riemannian metric on PJfi) x PJfi) is given by

g(X, Ϋ) = g\PX, PΫ) + g\QX, QΫ) ,

where gf is the Kaehler metric of PJC). Then we have

(1.2) P+Q = I,

(1.3) P2 = P, Q* = Q,

(1.4) PQ = QP=0,

(1.5) F> = I,

(1.6) trace F = 0 ,

(1.7) g(FX9 Ϋ) = g(X, FΫ) ,

(1.8) FxF = 0 ,

where V denotes the operator of covariant differentiation with respect to
g. We call F an almost product structure on PJC) x PJC).

The curvature tensor of PJC) may be written as

\ Y')Zf

', Z')Xr - g\X\ Z')Y' + g\JΎ\ Z')J'X'
4

- g\J'X\ Z')JΎ'

where Jf denotes the complex structure of PJC). We put

JX = J'PX + J'QX .

Then we can easily see that
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(1.9) J'P=PJ, J'Q = QJ,

FJ = JF, J*= - I,

g(JX, JΫ) = g(X, Ϋ) •

Therefore the curvature tensor of PJC) x PJC) is given by

(1.10) S(X, Ϋ)Z = \{g{ Ϋ, Z)X - g(X, Z) Ϋ + g(JΫ, Z)JX
O

- g(JX, Z)JΫ + 2g(X, JΫ)JZ + g(FΫ, Z)FX - g{FX, Z)FΫ

+ g(FJΫ, Z)FJX - g{FJX, Z)FJΫ + 2g(FX, JΫ)FJZ) ,

from which we can easily see that Pn{C) x PJC) is an Einstein Kaehler
manifold because of (1.6), (1.7) and (1.9) (See [8], [10]).

Now, let M be a complex hypersurface of PJC) x PJC), and B the
differential of the immersion % of M into PJC) x PJC). Let g and J
be the induced Eiemannian metric and the induced complex structure
on M, respectively, and V denote the operator of covariant differentiation
with respect to the Eiemannian connection of g. Let X, Y and Z be
tangent to M and N a unit normal vector. Then we have the following:

(1.11) FBX - BfX + u(X)N + u(X)JN,

(1.12) FN= BU+XN+ XJN,

g(U,X) = u(X), g(JU, X) = u(X) ,

u(X) = - u(JX) , Jf = fJ , λ = 0 ,

(1.13) VBχBY = BFXY+ h(X, Y)N + k(X, Y)JN,

(1.14) FBXN = - BHX + s(X)JN,

MX, Y) = g(HX, Y), MX, Y) = g(JHX, Y)

HJ = - JH , trace H = trace HJ = 0 ,

(1.15) R(X, Y)Z

h , Z)X - g(X, Z)Y+ g(JY, Z)JX - g{JX, Z)JY
o

+ 2g(X, JY)JZ + g(fY, Z)fX - g(fΣ, Z)fY

+ g(fJY, Z)fJX - g(fJX, Z)fJY + 2g(fX, JY)fJZ)

+ {h(Y, Z)HX - MX, Z)HY) + {MY, Z)JHX - k(X, Z)JHY}

Gauss equation,

(1.16) (FXH) Y - ψYH)X - s(X)JHY + s( Y)JHX

= hu(X)fY- u(Y)fX
o
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+ u(JX)fJY - u(JY)fJX - 2g(fX, JY)JU)

Codazzi equation,

(1.17) (Fxs)(Y) - (VYs){X) = 2ds(X, Y)

= X s(Y) - Y s(X) - s([X, Y])

= 2g(X, JH*Y) + ±{u(XMJY) - u(JX)u(Y)
4

+ g(X, JY) + \g(fX, JY)}

Ricci equation,

(1.18) PX = X - u(X) U + u(JX)JU ,

(1.19) u(fX) = - Xu(X) ,

(1.20) fU= -\U,

(1.21)

(1.22) (Fγf)X =h(Y,X)U+ k(Y, X)JU + u(X)HY - u(JX)JHY ,

(1.23) {VYu)X = \h(Y, X) - h(Y, fX) - s(Y)u(JX) ,

(1.24) Vx U = - fHX + XHX + s(X)JU ,

(1.25) X λ = - 2h(X, U)= - 2u(HX) ,

(1.26) S(X, Y) = ̂ ±λg(X, Y) - \u{X)u{Y) - \u{JX)u{JY)
4 4 4

- ±g(fX, Y)\ ~ 2g(H*X, Y) ,

(1.27) p - 2n2 - (1 - λ2) - 2 trace H2 ,

where /; u, u; U; λ, λ; h, k; s; S and p define a symmetric linear trans-
formation of the tangent bundle of M, two 1-forms, a vector field, two
functions on M, the second fundamental tensors of the hypersurface, a
normal connection form, the Ricci tensor of M and the scalar curvature
of M, respectively (See [2], [3]).

If u is identically zero, then M is said to be an invariant hyper-
surface, that is, the tangent space TX(M) is invariant under F. We can
easily see by (1-21) that this is equivalent to λ2 = 1.

Pick an orthonormal frame EΛ, EA* = JEA, A = 1, , 2n in such a
way that the first 2 ^ - 1 EA's satisfy Ea = BEa, and E2n = N{1). Then

( 1 ) We use the following convention on the range of indices unless otherwise stated:

A, B, C, D = l,' ',2n

a, b, c, d = 1, , 2n — 1
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because of (1.6) and (1.11) we have

trace/ = Σ,g(fEi,Ei)

= Σ 9(BfEίf BE,) = Σ 9(FBEi9 BE%)

= Σ O(FEA, EA) + Σ g(FEA*, EA*) - g(FN, N) - g(FJN, JN)

= trace F - 2λ = - 2λ .

From (1.21) and (1.27) we easily get

PROPOSITION 1.1. The scalar curvature p of M satisfies p rgj 2n2.
If the equality holds, then M is an invariant and totally geodesic hy-
per surface of Pn(C) x Pn(C).

We will see later Theorem 2.1 that "invariant" of Proposition 1.1
automatically holds.

2. Integral formulas of Simons' type. Consider the function φ =
2 trace H2. We will now compute the Laplacian Δφ. Since M is a
minimal submanifold of Pn(C) x Pn(C), the following holds ([1]):

\Δφ - Σ IIFΉJI1 +-Σ trace (HaHβ - HβHaf

- Σ (trace HaHβf

h Ek)giM,E« Eh)

- g(R(Eβ, Ek)Ek, Ea)g(HaEi, E,)g(HfEt, E,)

+ 2g(R(Ek, E^Ei, EMHaEif E,)g(H,Ek, Et)

+ 2g(R(Ek, Et)Eh EMHaEu Eι)g{.HβEj, Ek)) ,

where Greek indices a, β have the range {2n, 2n*}, and H2n — H, H2t =
JH, and F}H = VXH - s{X)JH ([2]). Using (1.9), (1.10), (1.11), (1.12),
(1.15), (1.18), (1.21) and trace / = - 2λ, the last term of the right hand
side of the above equation equals to

2L±λ φ + JLx,^ + 2 trace (fH)2 - 3λ trace fH2 - 6g(H2U, U) .

Moreover we have ([6])

Σ trace (HaHβ - HβHa)
2 = - 8 trace HU = - 8 trace W .

Thus we have
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(2.1) λ Ά±λ λ λjφ φ + x φ φ

+ 2 trace (fH)2 - 3λ trace fH2 - 6g(H2U, U)

Next we want to compute div (fHU). Extend an orthonormal basis
E/s for TX{M) to vector fields in a neighborhood of x in such a way
that VEi = 0 at x. Since div Z = Σ ff(PεtZ, Et) for any vector field Z, we
first have, for a vector field X,

Vx(fHU) = (Vxf)HU + f(FxH)U + fHVxU

= g(H*U, X)U+ g(JH2U, X)JU + g(HU, U)HX - g(JHU, U)JHX

+ f((VπH)X + s{X)JHU - s(U)JHX + ±-{u(X)fU - u(U)fX
O

+ u(JX)fJU - u(JU)fJX - 2g(fX, JU)JU)) + fH(-fHX

+ XHX + s(X)JU)

= g{H2U, X)U+ g(JH*U, X)JU + g(HU, U)HX - g(JHU, U)JHX

s(U)fJHX + i-λ2%(X)ϊ7 - —(1 - λ2)(Z - u(X)U
8 8

+ u{JX)JU) + hfu(JX)JU - (fHYX + XfH'X ,
o

because of (1.16), (1.18), (1.20), (1.21), (1.22) and (1.24), from which it
follows that

div (fHU) = 2g(HU, HU) + trace fVυH - ^ ( 1 - λ2)
Δ

+ JL(l - λ,2)2 - trace (fHf + λ trace fH2.

On the other hand, we have

trace fH = Σ {gifHE., Ea) + g(fHJEa, JEa)}

= Σ {g(JfHEa, JEa) + g(fHJEa, JEa)}

= Σ {- g(fHJEa, JEa) + g(fHJEa, JEa)} = 0 ,

from which we obtain

0 = FX (trace fH)

= Σ [g((Vxf)HEu Et) + g(f(FxH)Ei, Et)}

, EMU, E<) + g(HJHX, Et)g(JU, E{



COMPLEX HYPERSURFACES OP Pn(C) X Pn(C) 547

+ g(HU, EMHX, E<) + g(HJU, EMJHX, Et)}

+ trace fVxH

= trace fVxH,

because of (1.22), from which it follows that

(2.2) div (JHU) = 2g(HU, HU) - trace (fHf + X trace fH2

- |-(i - λ ) + i-(i - xy.

Now we compute div (XHU). From (1.16), (1.24) and (1.25), we have

VX(\HU) = (X X)HU + X(FXH) U + XHPX U

= -2u(HX)HU + X(PVH)X - Xs(U)JHX

± - u(U)fX + u(JX)fJU - 2g(fX, JU)JU)+
8

- XH/HX + XΉ2X .

Therefore

(2.3) div {XHU) = -2g(HU, HU) + — λ2(l - λ2) - λ trace /if2

Thus we have

(2.4) — Δφ + 2 div (fHU) - div (XHU)
Δ

_ » + 1 φ _ J ^ i _ g trace if* - ±-(2n - 2 + 3λ2)(l - λ2)
φ φ 8 trace H

Δ Δ Δ

From (2.2), (2.3) or (2.4) we easily get

THEOREM 2.1. A totally geodesic hypersurface of Pn(C) x Pn(C) is
an invariant hypersurface.

Assume that the hypersurface M is compact. Integrating the above
equation over M, we get, because of Green-Stokes' theorem,

(2.5) ^{^Y1 <P-\<P2-S trace W

_ λ.(2n - 2 + 3λ2)(l - λ2) + 2\\V*H\AdM = 0 .
Δ )
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Applying (l/(2n - l))φ2 ^ 8traced 4 ([5]) to (2.5), we have

THEOREM 2.2. A compact Kaehler hyper surface of Pn(C) x PJfl)
satisfying

(2.6) \ ( | ^ 4 ^ 2 - (Λ + l)φ)dM ^ Λ \\F*H\\2dM
)M\2n — 1 / JM

is an invariant hypersurface.

REMARK. From (2.5) and (2.6), we easily see that a compact Kaehler
hypersurface with parallel second fundamental tensor of Pn(C) x Pn(C)
satisfying φ ^ (2n — V)(n + l)/(2w + 1) is an invariant hypersurface and
φ = (2n — l)(n + l)/(2n + 1). However, we will see later Theorem 3.7
that there exist no such invariant hypersurfaces.

3. Invariant hypersurfaces of Pn(C) x Pn{C). In this section we
assume that the hypersurface M is invariant, i.e., (1.11) can be written as

FBX = BfX.

Since the 1-form u and the vector field U vanish identically, we have

(3.1) ΓX = X ,

(3.2) 1 - λ2 = 0 ,

(3.3) Vxf = 0 ,

(3.4) X λ = 0 .

We may assume that λ = 1 in the following discussions. Then the
formula (2.5) becomes

(3.5) ( \Ί!L±λφ - λφ* - 8traceH4 + 2\\F*H\\2\dM = 0 .
Jitfl 2 2 )

Thus noting that 8 trace H* ^ φ2 ([5], [9]), we get

THEOREM 3.1. Let M be a compact invariant Kaehler hypersurface
of Pn(C) x Pn(C). Then either M is the totally geodesic hypersurface,
φ = (n + l)/3, or φ(x) > (n + l)/3 at some xeM.

COROLLARY 3.2. Let M be a compact invariant Kaehler hypersurface
of Pn(C) x Pn(C). Ifφ<(n + l)/3, then M is a totally geodesic hy-
persurface.

Now let

TX(M); fX = - X] .
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Then x —> Tλ(x) and x—> T^a?) define (w — l)-dimensional and ^-dimensional
distributions respectively, since trace / = — 2λ = — 2. By virtue of
(3.3) it follows that both distributions are involutive. We easily see
that if XeT, and YeT_u then FγXe Tλ and Γ z 7 e Γ_lt Hence both
distributions are parallel. Moreover, for the vector fields X and Y
chosen in the above way, we have g{VzX, Y) = 0 and g{VwY, X) = 0,
where Z e Tx and W e T^. Thus the maximal integral manifolds through
each x e M of Tι and T7^ are both totally geodesic in M. By standard
arguments (See [3]) we know that M is a product of the maximal in-
tegral manifolds of the distributions Tλ and T_x. In the next step we
want to show that the maximal integral manifold of T_λ is Pn{C).

Let Xe T_x. Then by virtue of (1.1) and (1.2) it follows that

PBX = —(IBX + FBX) = —{BX + BfX) = 0 .
Δ Δ

Thus BX belongs to the tangent space T(Pn(C)) which is defined by
VQ = {X; QX = X}. Conversely, if we take a vector field X belonging
to VQ, X can be written as a sum of the tangential components and the
normal components. So we put

X = BX + aN + άJN .

Applying P to the above equation, we have

0 = PX = PBX + aPN + άPJN

= —{(IBX + FBX) + a{IN + FN) + a(IJN + FJN)}
Δ

= MBX + BfX + 2aN + 2&JN} ,
Δ

from which we have

fX= - X, a = 0 , α = 0 .

This means that X = BX, and consequently Fρ = BT_X. Thus, if M is
complete, the maximal integral manifold of T_γ must be Pn(C). It Xe
T19 then the same discussion as above shows that BXe VP = {X; PX = X}.
Since the integral submanifold of VP is another Pn(C), the maximal
integral manifold of Tγ is a hypersurface of Pn(C). Thus we have

THEOREM 3.3. A complete invariant Kaehler hypersurface of
PJP) x Pn(C) is a product manifold M' x Pn(C), where Mf is a Kaehler
hypersurface of Pn(C).

In order to get further results, we prove
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LEMMA 3.4. Let P and Q be the projection of T(M) into T(M')
and T(Pn(C)) respectively. Then we have

(3.6) HQ = 0 .

PROOF. By the definitions of F, P and Q, we have

FBQX =(P- Q)BQX = (P - Q)QBX = - QBX = - BQX ,

since VQ = BT_^ Hence

(3.7) FBY{FBQX) = - VBY{BQX)

= - BFr(QX) - h(Y, QX)N - k(Y, QX)JN.

On the other hand, we have

(3.8) VBY(FBQX)

= F(BFY(QX) + h(Y, QX)N + k(Y, QX)JN)

= - BFY(QX) + h(Y, QX)FN + k(Y, QX)FJN

= - BFY(QX) + h(Y, QX)N + k(Y, QX)JN,

because of the fact that FY(QX) e VQ, FN = N and FJN = JN.
Comparing (3.7) and (3.8), we have h(Y, QX) = k(Y, QX) = 0, from

which (3.6) follows.
We consider the immersion i': M' —*M' x Pn(C) = M, and denote the

differential of i' by B'. Then we have

(3.9) FBB,Y,BB'X' = BB'F'Y,X'

+ Σ,h'A{X', Y')NΆ + Σ k'A(X', Y')JN'A ,
A = l A = ί

where X' and Y' e T(Mf), and h'A and k'A's are the second fundamental
tensors with respect to the normals N'A and JN'A respectively. Now we
choose the last normal N'n+ι in such a way that N'n+ί is the unit normal
to M' in Pn(C).

On the other hand, we have

FBB,r,BB'X'

= BVB,Y,B'X' + h(B'X', BΎf)N + k(B'X', BΎ')JN,

from which it follows that

(3.10) VBB,Y,BB'X' = BB'FY,X'

+ Σ K(X\ Y')BNa + Σ K(X', Y')BJNa
α=l α=l

+ h(B'X', BΎ')N + k(B'X', BΎ')JN.
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Comparing (3.9) and (3.10), we get

hjίx', T) = κ(x', r), ux; r) = K(x', r),
for a = 1, , n ,

k(B'X', BΎ') = K+ι(X', Y').

Since M' is a totally geodesic submanifold in M' x PJfi), it follows that
ha(X', Y') = ka(X', Y') = 0 for a = 1, • • , n. Also, for any positive in-
teger p,

trace H" = Σ ff(HpEa, Ea) + Σ g(HvJEa, JEa)

= ^g(H"BΈA,BΈA) + ± g(H*N't, N't)
A=l t=ί

Σ g(H»JBΈA, JBΈA) + Σ g(H»JN't, JN't) ,
A=l ί = l

where N'u t = 1, •••, ̂  are unit normals to ikΓ in M' x Pn(C). Since
there exist Xt in T(M) such that iSΓί = QXt, we have i?piSΓί = 0, because
of Lemma 3.4. Thus we get

trace Hp = Σ 9(HPBΈA, BfEA) + Σ g{H*JBΈA, JBΈA)
A l A=l

Λ, EA) + Σ,9(H'/+ιJ"EA, J"EA)

Σ ( ) Σ
A=l A=l

= trace H'n\, ,

where J " is the complex structure of M\ This shows that, once we fix
a choice of normals in the above way, trace Hp is a function on M\
The immersion i: M-+Pn(C) x Pn{C) being i' x id: Mr x Pn(C)-+Pn(C) x
Pn(C), we have that the second fundamental tensor ifUi is identical
with that of Mf in Pn(C). Thus, denoting the second fundamental tensor
of Mf in Pn(C) by if' we can easily see that if p = 2n2 — φ = constant,
then p' = n(n — 1) — 2 trace H'2 = n(n — 1) — φf = constant, where ^ f is
the scalar curvature of M'.

If φ = 0, it follows that £>' = 0 and consequently ikΓ is totally
geodesic in Pn{C). Thus we have M = P^.^C) x P*(C).

If 9> = (w + l)/3, then 9?' = (n + l)/3. Hence n = 2 and M' is im-
bedded as a complex quadric Q^C) in P2(C) ([9]). Thus M = Q^C) x
P2(C).

If ^ = n - 1, then 9>' = n - 1. Thus p' = (n - I)2.
From the above fact, we have

THEOREM 3.5. If φ ^(n + l)/3, then M = P ^ C ) x P*(C) or w = 2
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and M = 0,(0) x P2(C).

Moreover, combining Theorem 2.1, we get

THEOREM 3.6. Pn-^C) x Pn(C) is the only totally geodesic hyper-
surface of Pn(C) x Pn(C).

Applying Kon's theorem (See [4], Theorem 1) and combining Theorem
3.3, we have

THEOREM 3.7. Pn^{C) x Pn(C) and Q^C) x Pn(C) are the only
compact invariant Kaehler hyper surfaces of Pn(C) x Pn(C) with constant
scalar curvature, where Qn-^C) is the complex quadric.

COROLLARY 3.8. There exist no compact invariant Einstein Kaehler
hypersurfaces of Pn(C) x Pn(C).
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