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1. Introduction. After Schwartz's [8] extension of the Fourier
transform to generalized functions, the extension of classical integral
transformations to generalized functions have comprised an active and
interesting area of research (see, for example, Cooper [2], Dube and
Pandey [4], Koh and Zemanian [5], Pandey [6], Pandey and Zemanian
[7], and Zemanian [11], [12]). Our main objective in this paper is to
extend the classical Hankel potential transform [1] to generalized func-
tions, and to prove an inversion formula for the generalized Hankel
potential transform. It should be noted that the limit operation in the
inversion formula is interpreted in the weak topology of the testing
function space Tatβ. This yields a more general result than a corre-
sponding formula with the limit operation interpreted in the weak to-
pology of D(I).

The classical Hankel potential transform of a function / has been
defined by the following convergent integral:

dm{t) = Ϊ2»-1/2r(v + — YΓWt, v > 0 and x > 0 .

A function f(x) is said to belong to L if

\R\f(x)\dm(x) < oo f o r xe[0,R], 0 < R ^ oo .
Jo

Cholewinski and Haimo [1] proved the following inversion formula
for the transform (1.1).

THEOREM. Let f(t) belong to L for t e [0, R] for every positive R,
and let the integral
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converge for some x Φ 0. Then

(1.2) \imLn,xF(x) = f(x)

at all points x of the Lebesgue set for the function f(x), where the

operator LniX is defined as follows:

LUX[F] = V~ΈΓ{2v + 1) Dx^D— [DF]

2 5 / I + l ίWl + — )ΊV X

and

(1.3) L.ΛF] = 2«-+«+i/m| Γ ί n + ϋ .

x Dxin+^+1\nD ik^+ι Dxik+2>+ι] I>— D(F) ,
I fc ίC 1 X

An alternate form of the same operator is given as

1

(1.3)'

w = 1, 2, 3 .

Our main object in this paper is to extend the above inversion for-
mula to certain space of generalized functions.

The notation and terminology of this work will follow that of [3],
[5], and [10]. I denotes the open interval (0, °°) and all testing func-
tions herein are defined on I. Throughout this work, x and t are
variables over I. If / is a generalized function on /, the notation f(t)
simply indicates that the testing functions on which / is defined have t
as their independent variable. <•/(*), φ(t)) denotes the number assigned
to some element φ(t) in a testing function space by a member / of the
dual space. Finally D(I) is the space of infinitely differentiate func-
tions defined on I having compact support. The topology of D(I) is that
which makes its dual the space D'(I) of the Schwartz distribution.
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2. The testing function space. Ta,β(I) and its dual T'ayβ(I). Let
v > 0 be a fixed real number and let a, β be a pair of real numbers
such that 0 < a < 2v + 1 and 0 <: /5 < 1. Let f(£) be the positive con-
tinuous function defined on I as

for t 2 : l .

We define Ta>β(I) as the collection of infinitely differentiable complex-
valued functions φ(t) defined on I such that

(2.1) Ύk(φ) = sup < oo ,

for each fc = 0,1, 2, 3, , where m'(t) = [2v"1/2Γ(ι; + l^)]"1*21'. We assign
to Ta>β(I) the topology generated by the semi-norms {7*}ΪU> thereby
making it a countably multi-normed space. A sequence {φn(x)}n=i where
each φn{x) e Ta,β(I), converges in Ta>β(I) to φ(x) if Ύk(φn — φ) tends to zero
as n—> oo for each k = 0,1, 2, •••. A sequence {̂ n(a?)}n=i in TaJ(I) is
said to be a Cauchy sequence if Ίk(φm — 0n) tends to zero as m and n
both tend to infinity independently of each other, for each k = 0, 1, 2,
It can be seen that Ta>β{I) is a Frechet space, i.e., a complete countably
multi-normed-space [10, p. 12]. The dual space T'ayβ{I) consists of all
continuous linear functionals on Ta>β(I). T'a>β(I) is also a linear space to
which we assign the weak topology generated by the multi-norm {Ύ]Φ}9

where ηΦ(f) = | </, φ) \ and φ ranges through Ta,β(I). From now on the
space TΛiβ{I) and its dual will be denoted by the symbol Tatβ and T'a>β

respectively.
It is obvious that the space D(I) is contained in Tatβ, and the to-

pology of D(I) is stronger than that induced on it by Ta,β. Hence the
restriction of any feT'a,β to D(I) is in D\I).

One can easily check that if f(x) is a function on / such that

ξ(x)

then f(x) generates a regular generalized function on Tayβ defined by

(2.2) </, φ) = [°f(x)φ(x)dx , Φ 6 Tatβ .
Jo

Using this fact one can show that if f(x) e L then f(x) generates a regular
generalized function on Ta,β.

3. The Hankel potential transform of generalized functions. Mo-
tivation. For f(x) e L, we rewrite the Hankel potential transform (1.1)
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of / as

T(f) = (Tf)(x) = \\(x,t)f(t)dt
Jo

where
, 1ku(x, t) — _ ,

Since x2*+%(x, t) = t2v+ίkχtf x)9 it follows from Fubini's theorem that
for any φeTa,β

(3.1) (%(*)(\(*, t)f(t)dtdx = (7(t)t2>+1

Jo Jo Jo
( ί , ajJ

Jo Xr

i.e.,

(3.2) \™T(f(t))(x)φ(x)dx =
Jo

which is a Parseval type relation for the Hankel potential transformation.
We can show that t2"+1T(χ-{2"+1)φ(x))(t) e Ta,β wherever φeTa,β. This

fact enables us to define the Hankel potential transform of generalized
functions in T'a,β by extending the relation (3.2) to generalized functions.

DEFINITION 3.1. The Hankel potential transform Hvf of fe T'a,β is
that element of T'a,β which assigns the same number to φ(x)eTa,β as /
assigns to t2v+1T{x~^v+l)φ{x)){t). More precisely, HJ is given by

(3.3) {HJ, φ) = </(t), t2^T(x~^φ(x))(φ ,

for all φ e Ta>β.
The above definition is meaningful, as function t2ιt+1T(x'{2u+1)ψ(x))(t) 6 Ta,β

whenever φ{x) eTayβ.

4. The inversion theorem. First we notice that for a fixed v > 0,
kXx, t) belongs to the space Ta>β but dkXx, t)/dt does not belong to the
same space. This shows that the testing function space Ta>β is not closed
with respect to differentiation. Therefore, it will not be possible for us
to define the generalized derivative of / e T'a,β by

(4.1) <D/, φ) = </, -Dφ) , V^ e Ta,β .

Now, noting that Ta,β is closed with respect to the operator t(d/dt), we
define an operator Θ as a mapping from T'a>β to itself by the following
relation

(4.2) <flf, φ) = (f, -(t± + l ) ^ , Vφ e Ta,β .

For a regular distribution / generated by feD'(I), we have
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V ί i s B ( / )

Therefore it follows that the operator θ defined by (4.2) is analogue of
the operator t(d/dt) on D\I).

Define the operators LntX and Qn>x as follows

.= 1,2,3-

(4.4)
v + l)n\

x {-.£-<* 1 +
JL- + 2v + 1

2A;

X 1 -

a; A + 2v + 1

2A; + 2y
= 1, 2, 3,

In (4.3), the suffix * represents the argument of the testing function of
the generalized function upon which the operator £,,, works. A simple
computation shows that for feT'a,β and all φeTa,β we have

<θf. Φ> = (f, -m'(x){xJL + (2v
\ ί ώ

where m'(a ) - [2^1/2Γ(v +
Therefore it can be shown that

(4.5)

VφeTa>β and feT'a>β.

We now wish to show that if .Hj,/ is the Hankel potential transform
of fe T'a,β, then

lim Ln>x(HJ) = / in the topology of n,/* ,

i.e., for fe T'a,β,

(4.6) lim (Ln,xHJ, Φ> = if, Φ> , Vφ 6 Γβ l ί .
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To prove the inversion formula (4.6), we need the following lemmas.

LEMMA 4.1. Let ζ(t) be the function as defined in Section 2. Then,
for an arbitrary ε > 0, there exists a positive f] < 1 such that

(4.7) ξ(t) _
ζ(tx)

< ε Vt > 0 and l-Ύ]<x<l

PROOF. The lemma follows quite easily by considering the behaviour,
of ζ{t) as t —*0+ and t —>oo, and observing that f(£) is uniformly con-
tinuous function of t over any compact subset of J.

LEMMA 4.2. If φ(t) is continuous in 0 < t < °o ami the limits as
t approaches to 0 + and °o ea isί then to an arbitrary positive ε there
corresponds a number rj such that

\φ(tx)- φ(t)\ <ε

for 0 < £ < oo, 0 < l — ^ < a ; < l + ^ .

P R O O F . The proof follows from [9, Lemma 5, p . 287].

LEMMA 4.3. Let φ(t) e Ta,β with 0 < β ̂  1 and 0 < a < 2v + 1
/or ε > 0 there exists a positive rj < 1

PROOF. This is a consequence of Lemma 4.2.

LEMMA 4.4. Let φ(t) e Ta,β with 0 < α < 2v + 1, 0 <;<£ < 1.
/or ε > 0 ίfeere exists a positive Ύ] < 1

< ε , Vt and x satisfying
m'{tx) m'(t)

1 — Ύ] < x <1 + Ύ) and t > 0 .

PROOF. In view of Lemmas 4.1 and 4.3, for ε > 0 there exists posi-
tive Ύ] < 1 such that for all t > 0 and 1 - η <x <1 + η

(4.8) (1 - ε)ξ(tx) < ξ(t) < ξ(tx)(l + ε)

and

(4.9) -ε < ζ(tx)^L - ξ ( ί ) i | < ε .
m(tx) m(t)

Now, we write q(t, x) = f(£) — ξ(tx).
Clearly,

ί, a?) I < εζ(tx) Vt > 0 and l -
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Now,

Therefore, using Lemmas 4.1 and 4.3 we get

Γ φ(tx) φ(t) 1
Lm'ίtaO m'ίί) J

εξ(tx) Φ(tx)
m'(tx)

^ ε(l + M)

where M = sup Φ(t)
m'(t) £ ( * ) .

Since s is arbitrary the proof of the lemma is complete.

LEMMA 4.5. Let φ e Tayβ and ξ(t) be the function as defined in
Section 2. Then

d

m)2Γ(2n + v + 2) f°°Γ φ(x) _ φ(t) Ί

ίr(n + ̂ - + ί)V ]° Lm'(ίc) m ' ( ί ) J

uniformly for all t > 0 as n —> oo.

PROOF. Denoting the integral in (4.10) by / and using the substitu-
tion x = ty, we get

(4.11) I =
m'{tx) m' (1 +

-dx .

Now we divide the range of integration in (4.11) into 0 < x < 1 — f],
1 — Ύ] <x <1 + rj and l + 3?<a;<oo, (0 < 7̂ < 1), and denote the cor-
responding integrals by Iu I2, and Is, respectively.

Using Lemma 4.4 and Stirling's approximation formula we get

(4.12)
a s n

where Mv is a constant depending upon v.
Next, for x e (0,1 — rj), there exist positive constants c and c' satis-

fying

(4.13) s u p f ( ί ) 4 £ l _ J » g L
o<ί<oo m\tx) m'(t)

A careful computation shows that

A +
xa
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Using Stirling's approximation formula again, we have for n —• °o

\ 2 n

as

Hence

(4.14) 2Γ(2n + ι> + 2) g ^ ^> Q as n-+oo

uniformly for all £ > 0.
Again, for x > 1 + η we can find positive constants cί9 c2 and c3 such
that

(4.15) supf(t) φjtx) _ Φ(t)
m\tx) m\t)

Using the bound (4.15) and Stirling's approximation formula, we can
show that

(4.16) , r < 2 M + , " + 2 > { W / , ~ 0 as

uniformly for all ί > 0.
Combining (4.12), (4.14) and (4.16), Lemma 4.5 is proven.

We are now ready to prove our main result.

THEOREM 4.1. Let f be an arbitrary generalized function in T'a>β

(0 < a < 2v + 1, 0 <; β < 1; v > 0) αtid let HJ be the Hankel potential
transform of f as defined by (3.3). Then

(4.17) lim (Ln,xHJ, Φ> = </, Φ> , V^ e Γα,, .

PROOF. For any 0 in Ta,β, we have

<£,,.ir,/f Φ) = (HJ, Qn,x{J^m'(x)) , (by (4.5))

Km (x)
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= </(*), *•.,(«)> > say.

We wish to show that,

θ Λt) ~> 0(*) i n r«,^ a s

Now,

(by integration by parts)

(by integration by parts)

where LΛ>X is the operator defined by (1.3).
(4.18) can be written in view of [1, (2.4), p. 320] as

v + 2)

+ ϋ +

Moreover, it can be seen that

2Γ(2n + v + 2) +2 - t o + 1, _ .

as n —• oo. In fact, this follows by evaluating the above integral with
the help of the substitution x = t tan u, and then using Sterling's for-
mula. Hence, as n—*°°,
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Also,

m'(x)L\ dx

m (x)

where ψ(x) is clearly an element of Ta>β. Hence, in view of Lemma 4.5,
(4.19) converges to zero as n—> ©o, uniformly for all t > 0.

This completes the proof of the theorem.

5. Another approach* In this section, the Hankel potential trans-
form of generalized functions is defined in a different way. An inversion
formula for the Hankel potential transform of generalized functions is
also established, interpreting the limit operation in D'{I). The testing
function space Ta,β and its dual T'a,β are taken to be the same as before.

DEFINITION 5.1. The Hankel potential transform of a generalized
function feT'a,β is defined as a function F(x) obtained by applying f(t)
on the kernel m'(t)(t/(x2 + t2)v+1), i.e.,

(5.1) F(x) = (f(t), m'(t){χ2 + * f 2 y + i ) , * > 0 .

It can be easily seen that for a fixed x > 0, m'(t)(t/(x2 + t2)v+1) be-
longs to the space Ta,β, and therefore the right-hand side of (5.1) has a
sense.

REMARK 5.1. A similar approach as above has also been used in
defining Hankel transform [4], [5], Laplace transform [11], Mellin trans-
form [11], and Stieltjes transform [6], of generalized functions.

Now following the standard technique [3, p. 70], one can prove that
F(x) is an infinitely differentiate function and that

The following theorem gives the behaviour of F(x) near zero and infinity.

THEOREM 5.1. Let / e T*lβ (0 ^ β < 1, 0 < a < 2v + 1, v > 0) and let
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F(x) be the Hankel potential transform of f as defined by (5.1). Then

I F(x) I = O(χ-{**+ι+β)) as x-+0 +
and

I F(x) I = O(a?β- ( t o + 1 )) as x - > oo .

PROOF. In view of the result [10, Th. 8-1, p. 18], there exists a
positive constant c and a non-negative integer r such that

\F(x)\ ^ c m a x sup »'^'* " " l

0<ί<oo (a;2 + ί 2 Γ
Clearly

(5.2) AY • 0 when either t —> 0+ or £

Therefore, the expression in (5.2) assumes global maximum for each
k — 0,1, 2, somewhere in (0, oo). Carrying on the principle of maxi-
ma and minima, we see that the maximum value of the expression in
(5.1) lies at points like ak)l,x. Using this fact, our result stated in the
theorem follows.

THEOREM 5.2. (Inversion). Let fe T'a,β (0 ^ β < 1, 0 < a < 2v + 1)
and let F(x) be the Hankel potential transform of f Then

lim <Ln,xF(x), φ(x)} - </, φ) ,

for each φ 6 D(I), where Ln>x is the operator defined by (1.3)'.

PROOF. The theorem is proved by justifying the steps in the fol-
lowing manipulations.

(5.3) <Ln>xF(x), φ(x)) = \^L
Jo

(5.6) —></, φ) as n—>oo.

The step (5.3) is obvious in view of Theorem 5.1 and the facts that
both F(x) and φ(x) are smooth functions and Φ(x) has a compact support
on (0, oo). The successive integration by parts in (5.3) leads to (5.4);
the operator Qn>x has been defined by (4.4). That (5.4) equals to (5.5)
can be proved by the technique of Riemann sums [2, p. 76], The last
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step follows by showing that

(5.7) m'(ί) ί . * + l QM (Ά)dm(x) -> φ(t)
Jo (x2 + t2y+ί \m(x) I

in Tatβ as n—> ©o, which has been established while proving Theorem 4.1
for ^ G Tα,/5 and is therefore true for φ e D(I).

This completes the proof of the theorem.

REMARK 5.2. We could not succeed in proving the above theorem
for φ 6 Ta,β. The difficulty arises in justifying the step (5.3) for φ e Ta,β.

REMARK 5.3. The Hankel transformations F(x) and H£f) of / as
defined by (5.1) and (3.3) respectively, agree on the space D(I). In fact
for any φeD(I),

<F{x), φ(x)) = [°F(x)φ(x)d
Jo

φ(x)dx
'Jo w (af + t*y+li

(by Riemann sum technique)

= <HJ, Φ) .

REFERENCES

[ 1 ] F. M. CHOLEWINSKI AND D. T. HAIMO, Inversion of the Hankel potential transform,
Pacific J. Math., 37, No. 2 (1971), 319-330.

[2] J. L. B. COOPER, Laplace transformation of distributions, Canadian J. Math., Vol. 18
(1966), 1325-1332.

[3] L. S. DUBE, Some Hankel transformations of generalized functions, Ph. D. Thesis,
Carleton University (1973).

[ 4 ] L. S. DUBE AND J. N. PANDEY, On the Hankel transform of distributions, Tόhoku Math.
J., 27 (3), (1975), 337-354.

[5] E. L. KOH AND A. H. ZEMANIAN, The complex Hankel and I-transformations of gener-
alized functions, SIAM J. Appl. Math., 16, No. 5 (1968) 945-957.

[6] J. N. PANDEY, On the Stieltjes transform of generalized functions, Proc. Camb. Phil.
Soc, 71 (1972), 85-96.

[7] J. N. PANDEY AND A. H. ZEMANIAN, Complex inversion for the generalized convolution
transformation, Pacific J. Math., 25 (1968), 147-157.

[8] L. SCHWARTZ, Theorie des Distributions, Vol. II, Hermann, Paris, 1959.
[9] D. V. WIDDER, The Laplace Transform, Princeton Univ. Press, Princeton, N.J., 1941.
[10] A. H. ZEMANIAN, Generalized Integral Transformations, Interscience Publishers, 1968.
[11] A. H. ZEMANIAN, The distributional Laplace and Mellin transformations, SIAM J. Appl.

Math., 14 (1966), 41-59.



INVERSION OF THE HANKEL POTENTIAL TRANSFORM 201

[12] A. H. ZEMANIAN, A generalized Weierstrass transformation, SIAM J. Appl. Math., 15
(1967), 1088-1105.

[13] A. H. ZEMANIAN, Distribution Theory and Transform Analysis, McGraw-Hill Book Com-
pany, 1965.

DEPARTMENT OF MATHEMATICS

CONCORDIA UNIVERSITY, (Sir George Williams Campus), MONTREAL, P.Q.,
AND

CARLETON UNIVERSITY, OTTAWA, ONTARIO






