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1. Introduction. Let G be a Kleinian group and denote by 2(G)
and 4A(G) the region of discontinuity and the limit set of G, respectively.
A component of 2(G) will be called a component of G. The component
subgroup G, for a component 4 of G is the maximal subgroup of G
which keeps 4 invariant. The quotient 4/G, = S is a Riemann surface
and the cannonical mapping 4+ S is holomorphic.

The modern theory of Kleinian groups was initiated by Ahlfors,
who proved the finiteness of a finitely generated Kleinian group,
known as the finiteness theorem. That is to say, if G is finitely
generated, then there is a finite complete list {4,, 4,, ---, 4,} of non-con-
jugate components of G and 2(G)/G is the disjoint union of finite
Riemann surfaces S, + S, + --- + S,, where S, = 4,/G,. As a corollary
of this theorem, we can easily see that the component subgroup G, for
any component 4 of G is a finitely generated Kleinian group with the
invariant component 4 and that the boundary of each component 4 of
G is identical with the limit set of the component subgroup G..

Recently, in [3] Maskit found the remarkable facts about boundaries
of components of a Kleinian group G and about elements of G which
have their fixed points on the boundary of a component of G. For the
frequent use of those in our later discussion, we shall restate them
here.

THEOREM A. Let G,, (1 = 1,2) be the component subgroup of the
component 4, of a Kleinian group G. Assume that 4;/G,, is a finite
Riemann surface, i =1, 2. Then A(Gy, N Gy)=4(Gs) N A(G,,) = 34,134,

THEOREM B. Let G, be the component subgroup of the component
4 of a Kleinian group G. Assume that 4/G, s a finite Riemann
surface. Let g be a loxodromic element of G with at least ome fixed
point in 04. Then g"€ G, for some positive integer n.

THEOREM C. Let Gi, 4, G be as in Theorem B. Let g be a para-
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bolic element of G whose fized point z lies on the boundary of 4. Then
there is a parabolic element h € G, which has z as the fized point.

Giving two examples, he showed that »n in Theorem B is not equal
to 1 in general and that g in Theorem C is not an element of G, in
general. His examples also imply the existence of two kinds of Kleinian
groups. The one is a finitely generated Kleinian group G, such that
there are finite and more than two components of G, having at least
two common boundary points. The other is a finitely generated Kleinian
group G, for which there are an infinite number of components of G,
having at least one common boundary point.

Those kinds of finitely generated Kleinian groups are ruled out
from the space of the finitely generated function groups (see [4]). So,
in this paper, we shall treat the intersection of boundaries of more than
two components of a finitely generated Kleinian group being not neces-
sarily a function group.

First we shall generalize Theorem A for arbitrarily many (possibly
infinite) components of a finitely generated Kleinian group G and next
we shall show that the intersection of the boundaries of more than two
components of G consists of at most two points and that the common
boundary points of infinitely many components of G consists of at most
one point z. In the later case, as the Maskit’s example is so, there is
a parabolic element of G which has the point z as a fixed point and
does not keep invariant any component of G. We also give some
criteria for the number of common boundary points of components to
be one or two.

2. Let 4; and 4,, v # j, be two disjoint components of a Kleinian
group G. An auxiliary domain D,; of 4, relative to 4; is defined as
follows: Let 4% be a component of the complement of 4; such that 4%>
4;. Then D,; is the component of the complement of 4% such that
D,;; D 4,. It was shown in [4] that D,; N D;, = ¢ and 0D,; N dD;;, = 04,;N
04;.

LemmA 1. D;; C 4f.

PROOF. Since 4; C 4%, for each component D of the complement of
A% there is a component 4* of the complement of 4; such that D c 4*.
If D is the component containing 4,, then D = D,; and 4* = 4. Thus
we have D,; C 4}.

Now, let G be (non-elementary and) finitely generated. Then, as
mentioned in introduction, the component subgroup G, for any compo-
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nent 4 of G is a finitely generated Kleinian group with an invariant
component 4 and we can see from Maskit’s result [2] that, for each
component 4* (£ 4) of G,, the component subgroup G, for 4* of G, is
a finitely generated quasi-Fuchsian group of the first kind with the fixed
closed Jordan curve o4*. Hence we have the following.

LEMMA 2. If G is finitely generated, then D,; = A% and each 0D,;
18 a closed Jordan curve.

The next lemma is basic in our later discussion.

LEMMA 3. Let 4, 4, 4, be three distinct components of a finitely
generated Kleinian group G. Then D,; + D, holds for at most one
triple (¢, 3,k), 1,7,k=1,2,8. Moreover, D,; #+ D,, if and only if
A% # 4.

PROOF. By Lemma 2, D,; is the complement of 4%. Hence the
second statement of our lemma follows. We assume D,, # D, Since
4% and 4% are components of the complement of 4,, we have 4% 4% =
¢ by our assumption. Since 4,C 4% and 4,C 4%°, we see that 4% con-
tains the complement of 4% which is D, Hence 4%D4,. Thus 4% =
4% and D,; = D,,. In the same way we have D,, = D,,. Thus the lemma
is proved.

We shall write D,; = D, if D,; = D;,. Now we can prove the fol-
lowing.

PROPOSITION. Let 4,, 4, 4, be three distinct components of a finitely
generated Kleinian group G. Then 04, N 04, 04, consists of at most
two points. Moreover, if D,;=D, for any %, then 04, N 34, N d4,=0D,N
0D, N oD,. Otherwise, there is a triple (¢, j, k) such that D;; + D, and
04,N 34, N 04, = 0D; N D,. In the later case 84, 34, N 04, consists of
at most one point.

Proor. First note that each oD,; is a closed Jordan curve.

The case where D,; = D, for any 4. Since D,;N D; = ¢, we see
that D,, D, and D, are mutually disjoint. Since 44, N 304, = dD,, N oD,
and 04,N 04, = 0D,,N 0D, we also see that 04,Nd4,Nd4, = 0D, NoD,NAD;.
We shall show that this set consists of at most two points.

Assume that there are three points 2z, 2, 2, in 4D, N 6D, N dD,;. Join
2z, and z, by Jordan arcs C,, in D, and C,;, in D,, respectively. Then C,,
C), #, and 2, make a closed Jordan curve K, lying in D, U D, U {z, z}.
Let I, be a component of the complement of K,, containing z,. In the
same manner, we can drow a closed Jordan curve K,, (or K,) lying in
D, U D, U {2, 2z} (or D,U D, U {2, 2}) and passing through z, z, (or z, z,).
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Let I, (or I;) be a component of the complement of K, (or K,,) con-
taining 2z, (or z,). Since z; (1 =1, 2, 3) is a boundary point of D, D,C
I,NnI;N I, On the other hand I,N I,N I,c D, UD, Hence D,N(D,U
D,) # ¢. This contradicts the fact that D,, D,, D, are mutually disjoint.
Hence 04, N 04, N 04, consists of at most two points.

The case where there is a triple (4, 7, k) such that D,; # D,. We
may assume ¢ =1, j=2and ¥k =8. By Lemma 8, D, = D, =D, and
D, = Dy =D,., Hence D,ND,=¢. If 04,N 04, (=0D,N dD,) contains
two points, then there is a closed Jordan curve K passing through
these two points such that Kc D,U D,U A(G). Since 4%N 4% = ¢ by
Lemma 3 and since D, 4%, D,C 4% by Lemma 1, both the interior and
the exterior of K contain points of 04% 04, and hence also contain
points of 4,. This contradicts connectedness of 4,. Hence a4, N 04, con-
sists of at most one point. Therefore, 04, N 04, N 04, (C o4, N d4,) consists
of at most one point.

Next we show that 04, N 04, N 04, = 0D, N 0D,. As was just stated
above, it holds that D,c 4%, D,C 4% and 4% N 4% = ¢. Hence, if 0D, N
oD, #+ ¢, then 0D, N oD, contains a point of d4% cCdd,. Since 0D, N oD,
consists of at most one point, 6D, N 0D, 04,. Combining this with the
equality 04, N d4, = 6D, N 0D,, we have the inclusion relation a4, N 94, N
04, = 04, N (0D, N 6D,) = 0D, N 0D,. Thus we have shown 904,Nd4,Nd4,=
oD, N 0D, and completed the proof of our proposition.

For common subgroups we have the following.

THEOREM 1. Let G be a finitely generated Kleinian group and let
{4} be any collection of more than two components of G. Then N G,
18 an elementary group, where the intersection is taken over all ele-
ments of {4,}.

PROOF. Since 4(G,,) = d4,, we have A(N G.,) €N d4;. By the above
Proposition, the limit set of ) G,, consists of at most two points. From
this, the theorem is immediately obtained.

We shall see later that if D,; = D, (1 =1, 2, 3) and if 04,Nd4,N 04,
¢, then 04, N 04, N 04, consists of exactly two points.

3. Ahlfors’ finiteness theorem and Theorem A imply the fact that
if 4, and 4, are components of a finitely generated Kleinian group G,
then A(Gy, N Gs,) = 04, N 04,. We can extend this as follows.

THEOREM 2. Let G be a finitely generated Kleinian group and let
{4} be any collection of the components of G. Then AN G,) = N4,
where the intersections in both sides are taken over all elements of {4.}.
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ProoF. From the fact stated in the beginning of this section, it
suffices to prove Theorem 2 for any collection {4,} consisting of more
than two components. The inclusion relation A(N) G,,) cN 04, was
already proved in the proof of Theorem 1. To prove the opposite
inclusion relation we note that ) 04; consists of at most two points and
may suppose that () d4; is not empty. We divide the proof into three
cases corresponding to the number of elements of {4,}.

The case 1 where {4} = {4,, 4,, 4;}. First we assume that D, =
D, (+=1,2,3) and that 04, N 04, N 04, consists of two points z, z,. If
either G, N G4, or G4 N Gy, say Gs4 N Gy, is an elementary group, then,
by Theorem A, G, N G4, contains a loxodromic element g of G with 2z,
and 2, as the fixed points. By Theorem B, there is an integer » such
that 9" €G,. Then g¢* is an element of G, N G4 N G4, and has the fixed
- points 2, 2. This is the required. If both G, N G4 and G, N Gy are
non-elementary, then, since D,, D,, D, are mutually disjoint and each of
their boundaries is a closed Jordan curve, D, lies in a component of
(D, U D,)* which is bounded by two Jordan subares C, of oD, and C, of
0D, with the same end points z,, z,, We show that there is a loxodro-
mic element ge G, N G, with both endpoints of C, as the fixed points.
Let Gp, be the maximal subgroup of G, which keeps D; invariant, ¢ =
1,2. Then it is shown in [4] that G,, is a quasi-Fuchsian group of the
first kind and A(Gp, N Gp,) = 0D, N 3D,. We can obtain the required g
in G, NGy, as follows. If the quasi-Fuchsian group Gp, N Gy, is of the
first kind with two invariant curves 0D, and 0D,, then 4(Gp,NG,,) =0D, =
oD, and D,UD,=CU{x} and D, = ¢, which is absured. Hence G, N
G,, must be of the second kind. Let w be a conformal mapping of the
upper half plane onto D, with w([0,1]) = C, and let I" be a Fuchsian
model of G NGy, such that G, NGp, = wlw™. Since D, lies in a
component bounded by C, and C, and since 9D, N 4D, = A(G,, N Gp,), any
point of C, except for its both end points lies in 2(Gp, N Gp,). Hence
we see that the open interval (0,1) on the real axis lies in 2(I"). On
the other hand, since both end points of C, lie in 4(G,, N Gp,), both end
points of (0,1) lie in 4(/"). By a well known fact for a finitely gener-
ated Fuchsian group of the second kind, there is a hyperbolic element
v of I' with the fixed points 0, 1. Let g = wyw™. Then g is a desired
loxodromic element of Gy N Gp, C Gy N Gy By the same reasoning as
before, we see that A(G,, N G4, N Gy) D04, N 04, N 04,

Next we shall show that the case, where D,; = D, (+ =1,2,3) and
94, N 84, N 04, consists of one point 2, does not occur. If G4 NGy is
an elementary group, then it contains a loxodromic or a parabolic ele-
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ment g of G, N Gy, with 2, as a fixed point. If ¢ is loxodromic, then,
by Theorem B, there is an integer n such that g€ G,. Since g"e€ G, N
G4, N Gy, and A(Gs N Gy N Gy) 04,0 34,0 34, another fixed point of g
must lie on 04, N 04, N 04,. This contradicts our assumption. Hence ¢
is parabolic. By Theorem C, there is a parabolic element ¢'c G, with
the fixed point z,. Let G,, (1 =1, 2, 3) be as before. Since G,, is iden-
tical with the component subgroup G‘,;j for a component 4% of G, and
there is a parabolic element of G,, with 2, as the fixed point, there is
a parabolic element g,eG,, with 2z, as the fixed point by Theorem C,
1=1,2,8. Since G,, is a quasi-Fuchsian group of the first kind, z
corresponds to a puncture of the Riemann surface D,/G,,. Hence there
is an open disc in D, whose boundary passes through z,, This means
that there are three open discs which are mutually disjoint and tangent
each other at z,. This is impossible. Therefore G, N G, is not elemen-
tary. Thus as was already shown, there is a loxodromic element g€
G4, N Gy, Wwith 2, as one fixed point. In the same way as before, we
arrive at the same contradiction that 04, N 04, N 04, consists of two
points. Hence, the case, where D,; = D, (1 =1, 2,3) and 64, N d4, N 04,
consists of one point 2, does not occur.

Next we assume that there is a triple (4, j, k) such that D,; # D,,.
We may assume D,, = D,;. By Proposition, 04, N 04, N 04, consists of at
most one point and is identical with 0D, N 0D, = 04, N 04,. 1If z, = 04, N
04,, then, by Theorem A, we have z, = 4(G,, N G,). Hence there is a
parabolic element g€ G,, N G,, with 2z, as the fixed point. By Theorem
C, there is a parabolic element ¢'e G, with 2z, as the fixed point. If g
and ¢’ do not belong to the same cyclic subgroup of G, then an invari-
ant curve in 4, under ¢ intersects an invariant curve in 4, under g¢'.
This contradicts the fact that 4, and 4, are the distinct components.
Hence ¢ and ¢’ belong to the same cyclic subgroup of G and there are
two integers m, n such that g™ = (¢')"eG, N G4y N Gy Thus g™ is a
parabolic element of G, N G4 N Gy Wwith 2z, as the fixed point and we
have the proof of theorem in the case I.

The case II where {4,} = {4, 4, ---, 4,}, » > 38. Let 2, and z, (+#%7,)
be points of () d4,. Then for any three components of {4,}, say 4, 4,
4y, 04, N 04, N 04,=(2, z,}. By the result in the case I, 4(G, NG;,NG,)=
{#, 2,}. Hence there is a loxodromic element geG, N G, NG, with z,
2, as the fixed points. By Theorem B, for each 4; there are an integer
n; and a loxodromic element g,€G, such that g, = g". Let n, be a
common multiple of %, %, ---, n,. Then g™ is a loxodromic element of
N G, with z, 2, as the fixed points. Hence AN G.,) DN 4.
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Next assume that () 04, consists of only one point 2z, In the same
way as just stated above, we see that there is a parabolic element g¢¢
G4, NGy N Gy, with 2z, as the fixed point. By Theorem C, for each 4,,
1> 3, there is a parabolic element g,eG,, with 2z, as the fixed point.
By the same reasoning as in the last step of the case I, we see that
each ¢, is an element of a cyclic subgroup of G containing ¢ so that
there are two integers m,, n, such that g™ = g7:. Let m, be a common
multiple of m,, ms, ---, m,. Then g™ is a parabolic element of N G,
with z, as the fixed point. Hence we have the required.

The case III where {4,} consists of infinite elements. The proof of
this case is somewhat long, so it will be given in a sequence of lemmas.

LEMMA 4. If 04, is not empty, then it consists of ome point.

PrROOF. Assume that [) 04, consists of two points 2z, and z, By
Proposition, for each triple (4, 4;, 4,) of {4,}, D,; = D,. Hence we can
use the notation D, instead of D,;. Note that D, N D, = ¢ for each
%, J (#1). Conjugating G by a linear transformation, we may assume
2z, =0 and 2, = . Since each G,, is a finitely generated quasi-Fuchsian
group of the first kind with a quasi-circle 0D, as the fixed curve and
since 0D, passes through oo, there is a positive number C, depending
only on G,, such that [, — {i| = C;|{;| for any two points {;, {; on oD;
separated by 0 and -« (see [1]). Since there are only a finite number
of non-conjugate components of G, there are also only a finite number
of non-conjugate D, so that there are only a finite number of distinct
C./’s. Let C be the maximum of {C;}. Then it holds that |{, — {i| =
C|¢,| for each 7 and for any two points {;, {; on oD, separated by 0
and . Choose {; and {; on 0D, such that |{;] = |{;] =1 and such that
the open arc on the unit circle bounded by ;, and {; lies in D,. Then
|, — | = C for each 7. Therefore, there can be only finitely many
distinet D, and hence only finitely many 4,. Thus we have our lemma.

LEMMA 5. Assume that () 04, consists of one point z,. Let 4, 4;
and 4, be any three distinct components of {4;}. Then 04, N dd; N 04,
consists of the point z,.

PROOF. Assume that 04; N 04; N 04, contains another point 2, # 2,
From a result in the case I, 4(G4, N G4; N G4) = {2, 2,}. Hence there is
a loxodromic element ge Gy, NGy NGy With 2, 2z as the fixed points.
By Theorem B, for each 4, there is an integer m, such that g"ieGy,.
Hence z €04, for every 4. This implies 2 €()0d4;, a contradiction.
Hence we have our lemma.
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LEMMA 6. If (04, consists of one point z, then each G, contains
a parabolic element g, with z, as the fixed point.

PrRoOF. By Lemma 5 and by a result in the case I, 4(G, N Gy N
G,) = %, for any three distinct components 4,, 4;, 4,. Hence there is a
parabolic element g,€G,, N G,; N G, with z, as the fixed point, which is
clearly an element of G,,.

Let E={4, ---, 4,} be a complete list of non-conjugate components
of {4} in G and let E, be the conjugacy class of 4,€ E in {4;}. Then
for each 4;€ E, there is an element h; € G such that h;(4;) = 4,. We
can prove the following.

LemMMmA 7. If N 04, consists of ome point 2, then the point h;;,(2,)
corresponds to a puncture of 2(G,)/Gy,.

ProoOF. Obviously it suffices to show that 2z, corresponds to a punc-
ture of 2(G4,;)/G,;. Let 4, (#4;) be a component of {4,} and let 4} be
the component of G,; which includes 4,. Then by Lemma 1, D,; C 4j.
On the other hand, D;,ND,; = ¢ and D; N 4% = ¢. Hence, if N4,
consists of one point z, then 2,€0d4;N 04, = oD,, N oD,;, so we have
z,€04%. By Lemma 6, there is a parabolic element of G,, with 2, as
the fixed point. By Theorem C, there is a parabolic element of G, with
z, as the fixed point, where GA;k is the component subgroup for 4} of
G,;. Since Gﬁ;k is a quasi-Fuchsian group, z, corresponds to a puncture
of 45/Gy;,. Since 4%/Gy;, is a component of 2G,,)/G,;, 2 corresponds
to a puncture of 2(G,;)/G,,. Thus Lemma 7 is proved.

Now we shall define an equivalence relation between components in
E; as follows: Let 4; and 4; be in E; and let h;, and hj; be elements of
G such that h;,(4;) = 4, and h),(4)) = 4,, respectively. Then we say that
4; and 4; are equivalent if h;(z2,) and hj(z,) correspond to the same
puncture of 2(G,,)/G,,. This equivalence relation is independent of choice
of hj; and hj. Denote by F;, = {4, ---, 4,;} a complete list of non-equi-
valent components of K. Then {h,(z,), -+, hi;i(2)} corresponds to a
subset of the (non-conjugate) punctures of 2(G,)/G,, where h,(4;)=4;,
1=1=<j. Let F be a set of all components of G belonging to F; for
some %2 (1 <1< m).

LEMMA 8. Each component of {4;} is equivarent to a component
of G in F by an element of G with z, as a fived point.

PrROOF. Let 4 be a component of {4;} and let h(4) = 4, € E for some
heG. Clearly 4e E;. By Lemma 7, h(z,) corresponds to a puncture of
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£(G4,)/G4, which corresponds to one of &, (z,), «+-, h, ;i(%0), say h;(2,), by
an element geG,. Set h* = hjjgh. Then 4 is equivalent to 4;, by
h* e @ with h*(z,) = z,. Thus Lemma 8 is proved.

LEMMA 9. There is a parabolic element g* € (Nser Gy satisfying
g*(zo) = %

PrOOF. Lemma 4 and Lemma 6 imply that for each 4 of F there
is a parabolic element g, of G, with 2z, as the fixed point. By the same
reasoning used already in the last step of the case I, we see that
{94}sc» are in the same cyclic subgroup G, of G. Since F is a finite set
of components of G, there is a parabolic element g* € G, which is denoted
by ¢%4 for some integer k(4). This element g* is a desired one.

LEMMA 10. Let g* be in Lemma 9. Then g*e€G,, for each com-
ponent 4, in {4;}.

ProoOF. By Lemma 8, 4, is equivalent to some 4e€F by an heG
with h(z,) = 2., We may assume 4, +# 4. Then g = h™'¢g*h is a parabolic
element of G, with g(z) =2, Since g* is a parabolic element of G
with z, as the fixed point, & is not loxodromic, for, otherwise G is not
Kleinian. If h is parabolic, then it is easy to see g = g*. Next consider
the case where £ is elliptic. By a suitable conjugation, we may suppose
g%(@) =2+ 1 and h(z) = ¢z, Then ¢(z) = z + ¢ *¥", If n # 2, then
an invariant curve in 4 under ¢* intersects an invariant curve in 4,
under g. This contradicts 4, + 4. Hence n = 2 and g = (¢*)"*. In both
cases, g*€G,. Thus Lemma 10 is proved.

Now we can prove the inclusion relation A( G,)D M d4; in the
case III. Namely, by Lemma 10, we see g* € G, and 2,€ 4(N Gy4),
which shows A(N G,) >N d4,. Thus we have completed the proof of
Theorem 2.

4. In the case where {4,} consists of an infinite number of compo-
nents, we can also show the following.

THEOREM 3. Let G be a finitely generated Kleinian group and let
{4,} be an infinite collection of the compoments of G. If N, 04, # ¢,
then (=, 04; comsists of one point z, Moreover, there is a parabolic
element h of G with z, as the fized point such that h does mot keep
imvariant any component of G.

PrROOF. The first assertion was shown in Lemma 4. In order to
show the second assertion, we continue the discussion in the case III of
the proof of Theorem 2 under the notation used there.
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Since {4,} and F are an infinite set and a finite set, respectively,
there is a component 4€ F whose equivalence class consists of an infinite
number of components {4;} in {4). By Lemma 8, for each 4, €{4,}
there is an element A} €G such that hi(4,,) = 4 and hf(2,) = 2. As is
seen from the proof of Lemma 10, the set {r}} of those A}, consists of
parabolic elements and elliptic elements of order 2. Lemma 9 and Lemma
10 imply the existence of a parabolic element ¢* € Nsr G, such that
9*(z,) = 2, and such that g*e N G,. We may assume that z, = oo and
that g*:z+—2 + 1. First we shall show that G contains a parabolic ele-
ment # of the form h:z+ 2z + a with Ima = 0.

If {h}} contains an infinite number of the elliptic elements, then
each elliptic element A} in {h}} has the form h}:zi—~ —2z + a,;. We
assert that {Ima,} are not all the same. Assume that each a,;; has
the same imaginary part. Since for each integer m, we have

(g*)"hi(g*)™(4:;) = 4 and (g*)"h¥(g*) (o) = oo,
we may assume that 0 < Rea,; <2. Then the infinite set {A}} has a
convergent subsequence of distinct elements, which contradicts that G
is Kleinian. Hence we have the assertion that {Ima,;} are not all the
same. Thus there are two elliptic element h:*j: 2> —z + ay and h?j,: 22—
— 2%+ a;;, where Ima,;;, # Ima,;. Set h = hihiy:z—2 + a;; — a;;. This
is a desired parabolic element of G.

If {k¥} contains an infinite number of the parabolic elements, then
each parabolic element k¥ in {hZ‘j} has the form 2z + b;;. We assert
that there is a b,; with Imb,, # 0. Assume that Imb,; =0 for all b,,.
Since g* € G,, we see (g*)"hi(4;;) = 4 and (g*)"h{(c=) = o for any inte-
ger m. Hence we may assume that 0 < Reb, ; <1. In the same manner
as above, we arrive at the contradiction that G is not Kleinian. Thus
our assertion follows. Hence there is an k¥, with Imb,; + 0 and we
take this A as h.

In both cases we can show that i does not keep any component of
G invariant. Assume that there is a component 4* of G such that
h(4*) = 4*. Choose a component 4; in {4,} which is different from 4*.
Then an invariant curve in 4, under g* intersects an invariant curve
in 4* under h, which is impossible. Thus the second assertion follows
and Theorem 3 is proved.

5. Finally, we shall give a criterion for the intersection of bounda-
ries of the components of G to be one point or two points.

THEOREM 4. Let {4,} be a collection of more than two components
of a finitely generated Kleinitan group G and let the intersection of
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their boundaries be not empty. Then the intersection of their bounda-
ries consists of one (or two) point if and only if there is a triple (4, 4;,
4y) of the components of {4} such that D,; + D,, (or D,; = D, D;, = Dj;
and D, = D,;).

PROOF. Assume that () 04; consists of one point z,, where the inter-
section is taken over all elements of {4;}. Then by Theorem 2, A(N G,)=
2, Hence there is a parabolic element of G with 2z, as the fixed point.
Therefore for any triple (4,, 4;, 4,) it holds that 64, N 04, N a4, = z,. For,
if 04, N 04; N 04, contains another point z,, then, by Theorem 2, 4(G,, N
G,;;NG,) = {2z, 2} and hence there is a loxodromic element of G with
2, 2, as the fixed points, which contradicts the assumption () d4; = {z,}.
From the case I of the proof of Theorem 2, we see easily that there is
a triple (4,, 4;, 4,) such that D,; # D,,.

Assume that there is a triple (4,, 4;, 4,) such that D,; # D,,. Then,
by Proposition, 04, N 04; N 04, consists of one point. Hence [ d4; con-
sists of one point.

Assume that ()04, consists of two points. If there is a triple
(4, 4;, 4,) such that D,; # D, then, from Proposition, () 4, consists of
one point, which contradicts our assumption. Hence for any triple (4,,
4;, 4,) it holds that D,; = D,,, D;, = D;, and D,, = D,;.

Assume that there is a triple (4,, 4;, 4,) such that D,; = D,,, D;, =
D;, and D, = D,;. Then, by the fact stated in the case I of the proof
of Theorem 2, 04, N d4d; N d4, consists of two points, say z, 2. By
Theorem 2, there is a loxodromic element in G with 2z, z, as the fixed
points. On the other hand, if () d4; consists of one point, say 2, then,
by Theorem 2, 4(N G,,) = z,. Hence there is a parabolic element of G
with 2z, as the fixed point. Since G is Kleinian, this is not the case.
Hence (M 04, consists of two points.
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