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Introduction. The recent developments in the theory of

algebras showed

operator
the importance of the study of weights. A weight ¢
on a von Neumann algebra M is a linear map from M, to [0, +co]; @
is faithful if ¢(x) = 0 implies x = 0, normal if it commutes with the sup
operation, semi-finite when ¢(z)< + - on a g-strongly dense subset of M,.

Throughout this paper, a weight means a semi-finite normal one.

* This work was supported in part by NSF Grant, and accomplished while a Guggenheim

Fellow.
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The origin of this paper lies in the following relation between the
authors’ previous works [3] and [30]. Let F., be the type I, factor of
all bounded operators in L*R) and @ the weight on F, such that
@(x) = Trace (ox), © = 0, where p% is for any ¢ € R the translation by ¢ in
L*R). In [3; Lemma 1.2.5], it was shown that on M Q F., the weight
@ = @ @ w is independent, up to unitary equivalence, of the choice of the
faithful weight . In [30; Theorem 8.1] it was proven independently
that the crossed product of M by the modular automorphism group ¢*
is unaffected by changing ¢. In fact, the centralizer of @ is trivially
equal to the above crossed product. If V,eF, for any neR* is the
multiplication by the function: ¢ — A%, then 1 ®V, implements a unitary
equivalence between @ and A@. We shall show that the weight @ is
characterized, up to unitary equivalence, as the only faithful weight
with properly infinite centralizer, which is unitarily equivalent to A® for
any A€ R?%, in any properly infinite von Neumann algebra with separable
predual, Theorem II.1.1. To understand the meaning of this result, we
first develop an elementary comparison theory for weights, analogue to
the usual comparison theory of projections. Two weights ¢ and + are
by definition equivalent when there exists a partial isometry w with
initial projection the support s(p) of ¢ and final projection s(+y) such that

p(x) = Y(uzru™), we M, .
The set of equivalence classes of weights on a properly infinite von
Neumann algebra is endowed with the following natural addition:
class @ + class 4 = class (p + ¥) provided s(p) Ls(¥) .

The class of a weight ¢ is idempotent: class ¢ + class @ = class ¢ if and
only if the centralizer of ¢ is properly infinite. It is then shown that
such classes form a Boolean algebra isomorphic to the lattice of all
o-finite projections in a unique abelian von Neumann algebra p,. Thus
there exists a map p,, from weights to o-finite projections of p, such
that

Pu(@ + ¥) = @) V Du(¥) if 8(@) Ls(v) ;
Pu(@) = Pu(¥) if p~ap .
Each )\ € R} determines a unique automorphism %) of P, such that
Px(Mp) = Fipu(p) for any weight ¢ .

We shall call the couple {5, F*} the global flow of weights. The global
flow of weights depends functorially on M by its construction.
Let M be a properly infinite von Neumann algebra and @ as above.
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Then d, = py(®) is the largest o-finite projection of B, invariant under
%", and moreover the following three conditions are equivalent for any
weight @ on M: (i) py(p) = dy; (i1) the map: N — py(Ap) is o-strongly con-
tinuous; (iii) \of(-)d¢ has a weakly dense domain. The last condition

provides the name of integrable weight for . In Chapter II, we establish
their regularity properties and their density in the set of weights with
properly infinite centralizer.

By condition (ii), the restriction of §” to d, is a g-strongly continuous
flow F'¥ called the smooth flow of weights. So the smooth flow of
weights F'” is just the continuous part of the global one: class p— class Ap.
Hence it depends functorially on M, therefore defining a homomorphism
mod of Aut(M) into Aut(F¥) which corresponds to the fundamental
group of Murray and von Neumann in the semi-finite case. This functor
is exactly the analogue of the module of a locally compact group. For
instance, let G be a principal virtual group, and M = U(G) be the factor
arising from the left regular representation of G on L*G), [16]. Then
F is precisely the closure of the range of the module 4, as defined in
[16]. This allows us to understand better the meaning of the modular
automorphism and to extend it to the whole dual group of F'¥ considered
as a virtual group. This extended modular automorphism group yields
a one-to-one homomorphism 6, of H'(F')into Out(M) = Aut(M)/Int(M),
whose range is contained in the kernel of mod.

The work presented here has been undertaken since February 1973,
and most of the results wete obtained while the authors stayed at Le
Centre de Physique Théorique, CNRS, Marseille, France, from September
1973 through May 1974. The main results were announced in |7], 1974.
The authors would like to express their sincere gratitude to Professor
D. Kastler and his colleagues for their warm hospitality extended to
them, which made this collaboration possible and pleasant. The second
named author would like to thank the John Simon Guggenheim Memorial
Foundation for a generous support extended to him.

Preliminary. Given a factor M of type III,, A1, there exists a
von Neumann algebra N of type II. and an automorphism 6 of N such
that

M= W*(N,0),
where W*(N, 6) means the crossed product of N by a single automorphism
#. Here if A >0, then N is a factor and zo0 = nz for a faithful semi-

finite normal trace = on N; if » = 0, then N has a non-atomic center C
and there exists a faithful semi-finite normal trace z and 0 < A, < 1 such
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that 700 < \7. We shall call W*(N, ) or some times the covariant
system (N, 6} itself a dvscrete decomposition of M. If M is a von
Neumann algebra of type III, then there exists a von Neumann algebra
N of type II. and a one parameter automorphism group {f,} such that

M= W*(N, R, 6)

and 708, = ¢~°c for some faithful semi-finite normal trace = on N, where
W*(N, R, 0) means the crossed product of N by R the additive group
R with respect to the action §. We shall call this W*(N, R, 6) or the
covariant system {N, 6} a continuous decomposition of M.

In this paper, we consider often an action @ of a locally compact
group G on a measure space {I’, ¢t} preserving the family of null sets.
Throughout, we consider the action of G only from the left hand side.
The action of G on L>(I", ) induced by a of G on {I", ¢} means the one

defined by
(@, N)) = flag' ), ge G, fe LT, p),vel .

Let M be a von Neumann algebra. By Aut(M), we denote the group
of all automorphisms of M and Int(M) means the normal subgroup of
Aut(M) consisting of all inner automorphisms. We consider the quotient
group

Out(M) = Aut(M)/Int(M) .

The canonical homomorphism of Aut(d) onto Out(M) is denoted by ¢,.
Besides the norm topology, we consider the following topology in Aut(M):
a net {a;) in Aut(M) is said to converge to acAut(M) if for each
peM,,lim, ||pea; — poa|| = 0. Since Aut(M), or more precisely its
adjoint transformations, is contained in the group of isometries on M,,
Aut(M) is a topological group under this topology. If M, is separable,
then Aut(M) is a topological polish group under the two sided uniform
structure. We note, however, that the one sided uniform structure of

Aut(M) is not complete.
CHAPTER 1. THE GLOBAL FLOW OF WEIGHTS

1.0. Introduction. Let M be a von Neumann algebra with faithful
semi-finite normal trace z. Then the maph —7(h-) = + is a bijection
between positive self-adjoint operators affiliated with M and weights on
M. ZEach + being characterized by the representation: ¢— h* of the
real line, one sees immediately that the study of weights on such M
reduces to the study of representations of R in M. In particular, when
M = (9), the algebra of all bounded operators in §, the study of
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weights is thus the classical multiplicity theory of positive self adjoint
operators. When M is no longer semi-finite, so that such a = does not
exist, we shall establish a comparison theory for weights as a general-
ization of the comparison theory for representations of R. For each
faithful @, we regard the unitary cocycle: ¢t — u, = (Dy: Dp), as the
analogue of the above representation: ¢ — 2% = (D+r: D7),. This allows to
define equivalence, subequivalence, disjoint sums for weights. Moreover
those notions do not depend on the special choice of the reference weight
@. We then show that the set of idempotents for disjoint sum forms a
o-complete boolean lattice and that the map: (A, p) — Ay induces on this
lattice an action of R¥, the global flow of weights §¥ of M. With the
help of this construction we then, for factors M which are not of type
II1,, give an isomorphism of the global flow of weights of M with the
flow (%)’ where M = W*(, N) is a discrete decomposition of M, (cf.
Corollary 2.8. (iii)). This allows to show the normality of arbitrary
centralizers in III,-factors, and the existence of normal states with abelian
centralizers in all factors of non-type III,.

1.1. Elementary comparison of weights. In this section, we develope
an elementary dimension theory for weights on a o-finite properly infinite
von Neumann algebra which may be viewed as a generalization of the
usual dimension theory for projections.

Throughout this section, M denotes a fixed o-finite properly infinite
von Neumann algebra. By a weight on M we mean a normal semi-finite
weight on M, and by B, we denote the set of all weights on M. Since
we consider weights which are not necessarily faithful, we need some
modification in terminologies and definitions which were given to faithful
weights.

DEFINITION 1.1. For a weight @ on M, the support of ¢, denoted
by s(¢), means the projection ¢ of M such that (1 —¢) = 0 and that
the restriction of @ to M, is faithful.

The support s(@) of ¢ is also characterized as the projection e in M
such that M(1 —e) = {x € M: p(x*x) = 0}. The modular automorphism
group {of} of ¢ means the modular automorphism group of M, associated
with the restriction of ¢ to M,. The centralizer M, of @ is the von
Neumann subalgebra of M, which is the fixed point algebra under {o{}.

For a weight ¢ on M and a partial isometry « in M with e=wuu* € M,,
we define a new weight + = @, by

¥(x) = pluru*), weM, .
One checks that 4 is a weight with support s(y) = u*u and that + is
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isomorphic to the restriction of ¢ to M, disregarding the trivial part
where + vanishes. For a projection e e M,, ¢, is a weight with support
e, called a subweight of ¢. Note that ¢, is a weight on M not only on
M,.

We now introduce an equivalence and a partial ordering among all
weights as follows:

DEeFINITION 1.2. Let ¢, and ¢, be weights on M. We say that o,
and ¢, are equivalent and write ¢, ~q,, if there exists a partial isometry
we M with uu* = s(p,) and w*u = s(p,) such that ¢, = ¢,,. We say that
@, is subequivalent to ¢, and write ¢, < @, if @, is equivalent to a sub-
weight of ..

In other words, ¢, < ¢, if and only if ¢, = ¢,, for some partial
isometry u with wu* e M,,. It will be seen shortly that the equivalence
“~” ig the equivalence relation associated with the partial ordering ”<.”

LEmMMA 1.3. Let ¢ be a weight on M and u a partial isometry with
p=u*uecM, and q = uwu*cM,. We have ¢, = ¢, if and only if ueM,.

PrOOF. Let ¢ = s(p). Since u belongs to M,, we may restrict our
attention to M,, so that we may assume ¢ faithful.
Suppose that w belongs to M,. We have then n,u C 1, and n,u* C n,.
It follows then that
n, = {weM: au*eny};

n, ={reM:zpen,},

»
which implies that u, =mn,; hence m, =m,. It follows from [24;
Theorem 3.6] that for any xem, , prpem, and p(uru*) = p(uprpu*) =
p(pxp). Thus @, = @,.

Suppose ¢, = ¢,. We have for any xz¢M,, p(uzu™) = p(prp). Re-
placing z by w*zu, we get op(u*zu) = ¢p(qrqg). Therefore, we have
nu* Cn, and n,u Cn,; hence we get wm, cm, and mu Cm,. We have,

for any xem,,
p(uz) = plqua) = p(urq) = p(uruu™) = p(prup) = prw) ,
which implies by [24; Theorem 8.6] that u € M,. q.e.d.

We now extend the notion of the cocycle Radon-Nikodym derivative
(Dg: D+), [8; Lemma 1.2.1], to the case where 4 is faithful and ¢ is
not necessarily faithful. Let P = M @ F,, and set

0(1‘%1%:‘ X ei;) = "ﬁ‘(wu) + ?(xzz) .
We have s(@) = 1 ® e, + s(p) Q e, hence s(p) R e, € P, and there exists
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a unique one parameter family of partial isometries {u,} such that
wu! = s(p), uiw, = o{(s(p)) ;
0l(s(p) Q €y) = U; R €y teR.
We denote by (Dg: D), this u,, t€R.
LEMMA 1.4. Let @, @, and + be weights on M with  faithful.
Let P=M@Q F, and put
P35 2 ® o) = P(e) + Pio)
(a) For a partial isometry we M with w*w = s(p,) and ww* € M,,
the following statements are equivalent:
@y = Prp == W Q &, € P, = (Dp,: Dif), = w*(Dep,: Dir),0{(w), teR.

(0) @ < @, = 8(@:) ® € < s(@y) R 6, relative to P,.
©) @~ @ =38(p) ® e, ~ s(p) ® € relative to P,.
(d) For partial isometries u, ve M with wu* € M, and vv* e M,,

Pry < Prp = uu* < v0* relative to M,, .

Proor. (a) We have s(p) = s(p,) & e, + 8(@.) X €x, 50 that w K e;, € Pyy).
As (w R en)* (W R ey) = 8(9y) @ € and (w @ ex)(w R 6,)* = ww* R ey, both
belong to P,, it follows from Lemma 1.3 that w & e, € P, if and only if
for any xeM

P(w @ )@ @ €)W & €)*) = P((8(P2) B €22)(# Q) €x(3(2) & €20))
if and only if ¢,, = @,. Put now @ = M &® F, and

0(¢%1x“ X e;;) = ,@1(9311) + Po(%s) + V(@s3)

We note that

oi(s(p;) @ e55) = (Dpj: D), @ €55 , teR,j=1,2.
We have
ol(w D e.,) = 0l((8(p,) ® €)W R €:)(8(py) @ €x))
= (D@, Dyp) 0¥ (w)(D@y: D) Q e,y teR,
so that w Q e, e P, if and only if w Q e, € Q) if and only if
(D@p,: D), = w*(Dopy: Do) ot (w) teR,

where we consider P as the reduced von Neumann algebra Qg +iges)-
(b) By definition, ¢, < ¢, if and only if ¢, = ¢,, with a partial
isometry w € M satisfying the cond.tion in (a). Hence it follows from
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(a) that @, < @, implies s(p,) ® e, < s(p,) ® e, relative to P,. Suppose
3(ps) Q €y < 8(p) Q ey in P,. Let uw be a partial isometry in P, with
w*u = s(p,) ® e, and uu* < s(p,) Q e,,. Then there exists a partial iso-
metry weM such that v = w®e, By (a) we have ¢, = ¢,,; hence
@, < P1.

(¢) The same arguments as (b) work.

(d) Put p=wuu* and ¢ =wvv*. It follows that o¢,,~ ¢, and
P10~ Py Suppose p < q relative to M,. Let w be a partial isometry
in M, with p = w*w and ww* <¢. We have then by Lemma 1.3

Pro = Prw < Prg ~ Pro -

Conversely suppose ¢,, < ¢,,. There exists a partial isometry w in M
with w*w = p and ww* < ¢ such that ww* eM,, and ¢,, = @,,. By
Lemma 1.3, w belongs to M,, so that p < q relative to M,,. q.e.d.

Recalling the fact that for any pair e, f of projections in a von
Neumann algebra, ¢ = ¢(e)e(f), the product of the central support c(e)
of ¢ and ¢(f) of f, is the largest central projection such that ce and c¢f
are quasi-equivalent, and (1 — ¢)e¢ and (1 — ¢)f are centrally orthogonal,
we give the following definition which measures the “quasiequivalent”
piece of a given pair of weights.

DeFINITION 1.5. Let ¢, and @, be weights on M, and P = M Q F.
Put

2
‘P(”z;l . T Q e;) = ?1(9011) + @2(9022) .
We define ¢, (@,) as the unique projection ¢ in the center of M, such
that
¢ @ e, = (Central support of s(p,) X e, in P,)(s(p,) R e,) .

LeMMA 1.6. Let 4, 4, and +, be weights on M.

(a) For any partial isometry weM with ww* € My, cy(y,) s the
central support of ww* in My.

(b) For any partial isometry we M with ww* € My,

%(’sh) = w*cxl'("l"l)w .

(©) A < = cp(y) = cplyny).
(@) If {4} s & sequence of weights on M with pairwise orthogonal

supports and 4 = Sy, 4, then

ey(p) = g ey, (P) 5
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c‘?(“/") = Xl C?('ﬁb‘ﬂ)
Jor any other weight @ on M.

Proor. (a) Putting ¢, =+ and ¢, =+, We consider P=MQ F,
and ¢ as in Lemma 1.4. It follows then that s(p,) ® e, ~ ww* R e, in
P, by Lemma 1.4 (d).

(b) Putting @, = 4, @, = 4, and @; = 4, we define Q@ = M ® F, and
0 as in the proof of Lemma 1.4. Let ¢ be the central support of
s(py) Q€3 in Q. We have then

c(s(py) B €) = c(W*w X €) = c(w* Q) ex)(w &) ey) ,
= (w Q@ ey)*ec(w X e;,) by Lemma 1.4.(a)
= (w ® ex)*c(s(p) @ e,)(w R ey,)
= (w® 612)*(04’1(@3) ® e)(w X e,,)
= Wep(Pr)w Q) €y .
(¢) With @, =4, @, =4, and @, = o, Let @ and 6 be as before.
We have then s(p)®e, < s(p,)Xe, in Q by Lemma 1.4(b); so
Cop(P1) = Co (P)).
(d) Put P= M F, and
0({%1 Ti; X ey5) = P(X1) + Y @) -

Let ¢ be the central support of s(p) ® e, in P, Since s(y) = S, s(ir,),
we get

() ® ) = 3} (50) @ @) = 3, 03,(9) D e -

For the second equality, let P and 6 be as above, and d be the

central support of s(¢) X ey in Py As s(y) = Sin-; 8(4,,), d is the supremum

of the central supports of the S(a[/'n) X ¢, which proves our assertion.
g.e.d.

LemMA 1.7. Let ¢ be a faithful weight on M. If N s a factor of
tyve I contained in M,, then the temsor product decomposition
M=(N'"NM)R N splits @ into the temsor product weight ¢ = 4 & Tr
with v o foithful weight on N' N M and Tr the usual trace on N.

PrROOF. Put @ = N’ N M. It follows then that M is identified with
Q ® N. Let {¢,} be a sequence of orthogonal minimal projections in N
with 3. e, = 1. Let {u,} be a sequence of partial isometries in N with
e, = uiu, and e, = w,ux, n =1,2.... Choose an hem} with ehe, 0,
which is always possible due to the density of m, in M. Put
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o= > uhui Q. Multiplying ¢ by a scalar, we may assume that
@(ae,) = 1. Consider the function 7 on N given by 7(z) = p(ax). By
[24; Theorem 8.6], = is a normal trace on N and 7(¢,) = 1. Hence 7 is
the usual trace Tr on N. Put 4(b) = p(be,), be Q. It follows then that
o is faithful and normal on Q. Let {h;} be an approximate identity in
m$ with respect to the o-strong™* topology. Putting

k= 21 uhuy €Q,
n=

we obtain an approximate identity {k,} of @ with respect to the o-strong*
topology. Since (k,) = p(k.e,) = p(he,) < o, we have k,cmy; so 4 is
semi-finite on Q.

For each be @, put 7,(x) = @(bx), x € N. Since 7, is a faithful normal
trace, which may be purely infinite though, there is a scaler ), = 0 (with
possibility of + o) such that z,(z) = NTr(x) and A, = 7,(e,). Thus we
get for any x e N

pbx) = 7y(x) = Ty(e)Tr(x) = p(be)Tr(x) = Y(b)Tr(x) .
Therefore, we have the decomposition ¢ = & Tr, using [24; Prop. 5.9].
q.e.d.

DEFINITION 1.8. A weight ¢ on M is said to be of infinite multi-
plicity if the centralizer M, is properly infinite.

LEmmA 1.9. Suppose M = Q Q F., with @ isomorphic to M.

(a) For any weight « on Q, the weight o+ Q@ Tr on M is of infinite
multiplicity.

(b) Any faithful weight ¢ of infinite multiplicity on M is equi-
valent to a weight of the form + & Tr for some faithful weight » on @
which ts isomorphic to .

() If o is a weight on M, then there exists a sequence {p,} of
weights with pairwise orthogonal supports such that ¢, ~ @ and
P = Doy @y, 18 180MOTPhic to the weight ¢  Tr on M Q F..

(d) If {v.} is a sequence of weights on M, then the weight
=S 48 independent, up to equivalence, of the choice of a
sequence {y,} of weights on M with pairwise orthogonal supports such
that Ay ~ Ay m = 1,2, -+« . Moreover, we have r, < ', m = 1,2, «+«.

Proor. (a) We have s(¢» @ Tr) = s(v) ® 1 and Mygr = Qp Q F...

(b) Choose a type I., subfactor N < M, such that N'N M, is properly
infinite. Let % be a unitary in M such that *Nu = C® F,.. We have
then

M, = wMu>CQF,.
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Replacing ¢ by @,, we may assume that C Q F., say N, is contained
in M, and that N’ M, is properly infinite. By Lemma 1.7, we have
@ =4 @ Tr with « a faithful weight on Q. Thus we must show that
{M, p} = {Q, +}. With the notions of the proof of Lemma 1.7, the porperly
infiniteness of N’ N M, entails the existence of an isometry v e M, such
that vv* =e¢,. Let ©= be the isomorphism of M onto QRC=N'NM
defined by

w(x) = i_ U, VXV UY, xeM.
We have then for any xe€ M.,
Por(®) = p(r(x)e) = (3, wveviuie) = p(vav*) = p(w) .

Thus e = .

(¢) Let {w,} be a sequence of isometries in M with pairwise
orthogonal ranges such that Yw,w* = 1. For each =, w,s(p) is a partial
isometry with initial projection s(p), so that ¢, = @, . makes sense
as well as >\7, ¢, = ¢ because {s(p,)} are pairwise orthogonal. Let
{e;.,} be a system of matrix units in F.,, and put, for each ze M,

w(x) = ,Zc' (wizw,) Ke; e MR F., .
It follows that z# is an isomorphism of M onto M & F, and that
(p ® Tr)ow = .

(d) Putting ¥, = 9y, 0@, With w, as in (¢), we obtain a sequence

{4,}. Then the rest is trivial. q.e.d.

For each weight ¢ on M, we denote by ¢ the weight of infinite
multiplicity on M, unique up to equivalence, determined by Lemma 1.9 (c).

LEMMA 1.10. Let @ be a weight on M. The map ¢, of Definition
1.5 is an order isomorphism of the set of equivalence classes of weights
¥ of infinite multiplicity with + < @ onto the set of all projections of
the center C, of M,.

Proor. With the notations in Lemma 1.9(¢c) and ¢ = 32, p,, we
have, by Lemma 1.6 (b) and (d),
cy() = %Cm(’k”) = glwn%(%w:f

for every weight +. Hence z(cy(v)) = c.(y) ® 1, so that we may assume
that o is of infinite multiplicity. Suppose ¢, < ¢, . < @ and @; = @,;
with w; a partial isometry such that w,w}e M, for j =1,2. If ¢, is
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of infinite multiplicity, then w;w} = ¢; is properly infinite in M,, and
hence equivalent to its central support in M, which is ¢,(@;) by Lemma
1.6 (a). Thus it follows that c.(p,) =< ¢(p,) if and only if ¢, < ¢, for o,
and ¢, as above.

As the surjectivity of ¢, is obvious, we get the assertion. q.e.d.

The next result tells us that the set of all equivalence classes of
weights with infinite multiplicity form a o-complete Boolean lattice.

THEOREM 1.11. There exists a couple (py, vx) of an abelian von
Neumann algebra B, and a surjection p, from the set of weights on M
to the set of all o-finite projections of P with the following properties:

(i) For any weight ¢, ¢, and ¢, on M,

Pu(P) = Pu(P) ;
Pul(Py) = Dulps) = P, < Py«

(ii) For each @ on M if p, is the map from the central projections

e of M, to (Bi)y, defined by
py(6) = Dul®.) »

then v, is extended uniquely to an isomorphism of the center C, of M,
onto (B, and we have

Do(Ce(V) = Da(P) D)

for any weight 4 on M.
(ili) For any sequence of weights {p,} on M, with pairwise othogonal
supports, we have

(S, 2 = V palpy) -

The couple (i, Bx) s uniquely determined by property (i).

Proor. (i) Consider the von Neumann algebra @ = M & S(*(L,)),
where T, means the set of all weights on M as mentioned at the
beginning of this section. Let {6, y: @, ¥ € W,} be the canonical matrix
units in SLA(Wy)). We define a weight @ on @ as follows:

O3 Tpp Q) €o,p) = 2, P(%y,0) «

Then, for any ¢ e ,, we have

> ep(p) R eq,y = Central support of s(p) Q e, in Q.
deMyr

We denote by P, the center of @y, and for each @ eW,, by »y(p) the
central support of s(p) ®e,, in Q. We have then, by Lemma 1.6(d),
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Pu(@) = Pu(@), peW,y. For any pair ¢, @, in Wy, there exists, by
Lemma 1.9(d), a W, with ¢p; < @, j =1, 2, which in turn shows by
Lemma 1.10 that:

P, < éz = Du(@) = Pulp,) -

We now show that p,(@), p € W, is o-finite in B, Let {¢;}ic; be an
orthogonal family of non-zero projections in B, with ¢, < py(p). For
each i eI, ¢,(s(p) ® e,,,) # 0, whence I is countable because M, is o-finite.

We now show that given a o-finite projection ce€p, there exists a
p e W, with py(p) = ¢. Since (D) = 3 s(p) Q €y,0, and ¢ < s(P), we have
¢ < V,py(p). Hence there is a sequence {p,} in B, such that
¢ = Vi, pu(@,), because ¢ is o-finite. We choose a weight + of infinite
multiplicity by Lemma 1.9(d) such that ¢, < 4, n =1,2, ..., It follows
that ¢ < py(v). By Lemma 1.10, there exists a weight ¢ < 4 such that
e(8(9) Q ep,p) = cp(@) Q eyp. Now ¢ and py(p) are both projections in
the center of @, dominated by the central support p,(¥) of s(¢¥) @ ey v
and such that ¢(s(¥) ® ey,y) = Pu(P)((¥) & ey,y). Hence ¢ = py(p).

(ii) Let (py, Bx) be as above. For each z e C,, (C, = the center of
M,), let p,(x) =1y be the unique element in (Py),, such that
Y(8(@) R €y0) = R €,,,. Clearly p, is an isomorphism of C, onto (B,),, -
For any weight « on M, we have

Co(P) @ €p,0 = Du(V)(8(P) @ €,0) = Pu(P)P(P)(8(P) & €y,0) ;

hence py(c,(¥)) = Du(P)PalP).
(iii) This follows from Lemma 1.6(d).

The uniqueness of (p,, L) follows from the fact that an isomorphism
of the lattices of o-finite projections of two abelian von Neumann
algebras extends uniquely to an isomorphism of the algebras. q.e.d.

DErFINITION 1.12.* The global flow of weights on M, denoted by
(B, T, is the couple of the abelian von Neumann algebra P, defined in
Theorem 1.11 and the action F* of the multiplicative group RZ* of
positive real numbers on B, determined by

%’ﬁ”pM(?’) = pMO\'@) ’ PE B, e RE .

Note that the construction of {{,, F*} is functorial in the sense that
to each a@e Aut(M) there corresponds a unique @ € Aut(P,) commuting
with §¥, € R%, defined by the condition:

apy(p) = pulp-a™), e, .

! We shall define later the smooth flow of weights as the “continuous” part of the global
flow of weights.
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We quote now a rather formal consequences of Theorem 1.11.

CorOLLARY 1.13. (i) For each ¢ € MY, there exists a normal positive
linear functional p, on B, uniquely determined by the equality:

to(Du(V) = p(ep(¥) » e Wy .
(i) If @, @, € ME, then

Pr < Py = o) = Mgy 5
Loiroy, = Mo, T o, 1 8(@) L8(@2) 5

Lap = Mo T MEREL.
Proor. (i) The restriction of ¢ to C,, the center of M,, is mapped
by »;* to a functional £, on (PBy),, satisfying the required condition.
(ii) By construction, y, only depends on the equivalence class of ¢.
Hence, to prove the first equivalence, we can assume that ¢; = Ve; for
some «r € Mj, where e¢;, j = 1, 2, are projections in My. For any projec-

tion e e Cy, we have

Coj(Ve) = Oy, (V) = e;ep()e; by Lemma 1.6(b)
= e;e by Lemma 1.6(a);

@i(Cp;(4re)) = pr(ese) ;
hence

l’z#’j(pﬂl("/pe)) = 7/"(6.7'6) .
As 4 is a faithful finite normal trace on My, this proves the first equi-
valence by making use of the center valued trace in My. The same
computation, with e, 1 e, proves the second equality. Noticing that
Cw(Mp) = c(y) for any €2, and N >0, we have

Lo Pu(¥) = Np(C2p(4)) = Np(Co(NT"))
= 7"#?'%{—1(?’5{("["))

for every ne R% and + € T, q.e.d.

I.2. The global flow of weights for factors of type III,, A == 1.
In this section, we examine the flow of weights on a factor of type
IIT;, 1, and describe it in terms of the flow of weights on the as-
sociated von Neumann algebra of type II, and its automorphism.

Throughout this section, we denote by M a fixed o-finite factor of
type III,, 0 S A < 1.

DEFINITION 2.1. A faithful weight @ on M is said to be lacunary
if 1 is an isolated point in the spectrum of the modular operator 4,.
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Let @ be a faithful lacunary weight of infinite multiplicity on M.
By [3; p. 238] there exists a unitary U € M(o¥%, ]1, oo[) such that UM, U*=M,,
and that M, and U together generate M. Moreover, by [3; p.241] this
unitary U is unique modulo M, as well as the element o of the center
C, of M, such that

Py = P(0+) .
We remark that 0 < o <)\, <1 for some X\,
We state here the main result of this section and prove it in several
steps.

THEOREM 2.2. Let M, p, U and p be as above, and let E be the
unique conditional expectation of M onto N = M,. Let t denote the
restriction of ¢ to N.

(i) For each he N, such that osth) =h <1 and 1—h is non-
singular, putting , = t(h-), we have

Mz = N,, .

(ii) For each weight « on M, there exists an h € N, satisfying the
conditions in (i) such that

a)h OE ~ ",b' .
(iii) The weight w, defined in (ii) is unique up to equivalence on N.

This theorem reduces the problem of comparison of weights on M
to the problem of comparison of weights on the von Neumann algebra
N of type II.. More precisely, the space of equivalence classes of
weights on M is isomorphic to the space of equivalence classes of weights
on N of the form w, with 2 described above, which means that this space
is determined only by N and p, and independent of the automorphism
on N induced by U.

LEMMA 2.3. Let M and ¢ be as above. If 4 be a weight of infinite
multiplicity, then there exists a positive h e M, such that p(h-) < .

Proor. Making use of [3; Corollary 3.2.5], we see that the spectrum
of the modular operator of a suitable subweight of 4 will not intersect
exp(]—2e,, —ef U [e, 2¢,]) for some ¢, > 0. We hence assume that + is
faithful and

Sp(Log 4y) N ([ —2&, —&] U [&, 2&]) = @ .

By |3; Lemma 5.2.8], there exists an He M, with —¢,/2 < H < ¢,/2 such
that the weight +, = 4r(¢™7-) is lacunary. As +r is of infinite multiplicity,
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we can choose 4, to be of infinite multiplicity because ¢ and 4, both
can be replaced by ' ® Tr and 4 @ Tr respectively by identifying M
and MQ F.. By [3; Lemma 5.4.6], there exists a non-zero projection e
in the center C, of M,, a non-zero projection f in the center Cy, of My,
and a partial isometry v e M such that

e=v*, w* = f;
vM,v* = My, , .
We have 4 = 4r(e”-); hence fe My and
Vi) = P(fo) = Pi(efr), wel,.

Put bk =e%f=0. We have then

keMy, ., and +; =, (k).
We then define a new weight +», on M by

Puo(x) = Ps(vav*), reM, .
It follows then that +, < 4, and that

Po(®) = Ay, (Bvav*) = 4y (ViEVE) xeM, .

Now 4, is lacunary and has the same centralizer as the lacunary
weight ¢,, so that by [3; Theoréme 5.2.1.b] there exists a positive
operator h, affiliated with the center C,, of M,, such that ¢, = @,(h,*).
We have now v*kveM,; so putting h = h,v*kv, which is affiliated to
M,, we get ¥, = @(h-). Cutting k by a spectral projection so that the
reduced A is bounded, and reducing «, further by the same projection,
we complete the proof because v, < 4. q.e.d.

Before stating the next lemma, we need some explanation on a
notation: Throughout this section, the symbol k&, <k, between two
positive operators k, and k, means that k, < k, and %k, — k, is non-singular

on the support of k..

LEMMA 2.4. Let N be a properly infinite von Neumann algebra
with o foithful semi-finite normal trace t. For each weight @ on N,
let h, denote the positive operator affiliated with N such that t(h,+) = .
If 6, and 08, are positive operators affiliated with the center of N such
that 8, < 0,, then there exists a unique projection [0, 0 € By such that
SJor any weight « of infinite multiplicity on N

Py(y) = [61, 32[ = 3(”‘%)‘% Shy < 3(h¢)52 .
Proor. Let & be the set of weights of infinite multiplicity on N
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which satisfy the condition on the right. Suppose that +, is a weight
in & and 4y~ We have =, ww* = s(yy) = s(hy,) and
w*w = s(y,) = s(hy,) where hy, = w*hyw. It follows then that

8(v)0; = w*wo, = w*o,w = w¥hy,w = hy, ;

by, = W*hyp w = w*s(hy,)0yw = 8(hy,)0, .
Since s(hy,)0; — hy, = wW*(s(hy,)0;, — hy)w, s(hy,)0, — hy, is non-singular by
the assumption on hy,; hence hy, < s(hy,)0,. Let 4, €& and ¢ be a pro-
jection in My,. Put o, = .. It follows that

by, = hy,e = ehy,, s(y;) = es(y) ;
hence s(y,) = ¢ and
8(y.)0; = es(:)0; = ehy,e = 8(42)0;
with 0, — hy, non-singular on e = s(y,). Therefore, we get hy, < 8(4)0,.

Now let {y,} be a sequence of elements of & with pairwise orthogonal
supports. Putting = 35, 4, We get

hy = 35 By, 80) = 35 80 ;

80, = 3 53 = 35 o, < 35 8205, = 800 ,

where we understand naturally the sum of infinitely many positive self-
adjoint operators {hy,} with pairwise orthogonal supports. Thus «
belongs to &. Therefore, the usual exhaustion arguments show that
the set of py(v), o€ &, is precisely the set of all o-finite subprojections

of V{py(¥): ¥ €&} = [0, 9] € Py q.e.d.

LEMMA 2.5. Let M be a general von Newmann algebra (not mneces-
sarily a factor of type III,) and E o faithful normal conditional expec-
tation of M onto a von Neumann subalgedbra N.

(a) For any weight  on N, o E is a weight on M with the same
support as apr.

(b) If 4, and 4, are weights on N with +r < 9, then or o0 B < 0 K.

(e) If {4} s o sequence of weights on N with pairwise orthogonal

supports, then D7 (fjo B) = (35, ;) o B

PrROOF. (a) Lete = s(y). We have then E(e) = ¢ and o E(1—¢)=0.
Moreover if xe M}, then E(x)e N}; hence 4o F is faithful on M,; so
s(ro B) = e.

(b) Let w be a partial isometry in N with wwu* € Ny, such that
Py, = 4, on N, Since the modular automorphism group of +,o K agrees
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on N with that of 4, by [ ], we have Ny, = My,., N N; hence uu* € My,.p.
For each xe M,, we get

oy o B(uzu™®) = J(uB(x)u*) = o E(z) ;
thus oo B < 4,0 K.

(¢) By (a), {4;o E} have pairwise orthogonal supports, and for each
x €M, we have

3o B)@) = (3 4)(E@) - a.e.d.

LEMMA 2.6. Let M, ¢, U and p be as in Theorem 2.2.

(@) If an heM; satisfies the condition ps(h) < h <1, then the cen-
tralizer of the weight + = @(h-) satisfies My C M,.

(b) If an he M} satisfies the condition in (a), then any subweight
of ¥ = @(h-) is of the form p(k-) for some ke M} with ps(k) =k < 1.

(e) Let; = p(h;+), § =1, 2, with hy, hy € M satisfying the condition
wn (@), If o, = 4, for a partial isometry we M with uuw* = s(y,) and
w*u = s(yr,) then we have w e M,.

ProOOF. (c) Put k; = p(1 — s(hy)) + h;, 3 =1,2. We have then
p=k; <1l. By Lemma 1.4(a), we have
wki = us(hy)k® = w(Dnry: Dp), = uu*(Dyry: D), 0f(w)
= s(h)hoi(u) = ki*s(h)ot(u) = k¥ai(u) , teR.
Hence we get
ukit = kiof(u) , teR.

Let 0 = Ad U be the automorphism of M induced by the unitary U.
We have then, as mentioned before Theorem 2.2,

pol = p(o-) .

For each n e Z, we define p, as the positive operator affiliated with the
center C, of M, satisfying @60 = p(0,:). We then have, for any z ¢ M,,

P 0 0u1n(x) = P(0,0™(2)) = @o™(07™(0,)%)
= P(0.07"(0,)) ,

hence 0,., = 0.07"(0,). Hence of(U*) = U"py since ¢, = @(0,-), and
0, =p=p, for n>0.

Recalling that M is the crossed product of M, by the automorphism
0|x,, we choose a sequence {z,} in M, such that u = 3= .»,U". We
have, for each % and ¢,
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ktof(u) = k' S\ w,U0% = 3 kitw,0n(0)U" ;

+o00 00
ki = >, x, Uk = 3, «,0"kiHU".

Thus, we get

kite,0(08) = wx,0"(kd) , teR;

kitx, = x,0"(ki05%) .
Fixing n # 0, we show that ki'y = y6"(ki'0,%), t € R, implies y = 0 for
any y € M,. If this were done, then w = x,€ M,; hence the conclusion.
Making use of the polar decomposition of y, we can assume that y is a

partial isometry such that yy* commutes with k%, ¢ € R, and y*y commutes
with 6*(ki0;%), te R. Let » > 0. We have

kityy* = yo"(e'on™)y* ,  teR.
Since o, < p < k,, the right hand side of the above equality extends to

an analytic function in the upper half plane:
2 — F(z) = y0"(ki0.*)y* with
IF@) = [|kFon 1| = [| (ko) | =1,

for Imz=0. But k, <1, so that the left hand side kiyy* extends to a
bounded analytic function in the lower half plane. By the Liouville
theorem, the function: ¢ k*yy* must be constant, which is possible
only in the case that yy* = 0. Next let » < 0. We use the equality
ktor(oi)y = yo" ki), t e R. As y*y commutes with 6*(ki), the same argu-
ments as above applies, provided that k06"(o,) =1. But we have
6~(p,) = p=» by the cocycle identity 1= p, = p_,0"0,). Hence the
inequality %,0"(0,) = 1 follows from the inequality o_, < 0, < k..

(a) If w is a partial isometry in My with uu* = s(¥) = u*u, then
4, = 4, hence above (c) implies w € M,, which shows that My C M,.

(b) A subweight of 4 is of the form +, with ¢ a projection in My.
As My c M,, e belongs to M, and ¢ commutes with h. It shows that
W, = @(eh+) and ps(eh) < eh = h <1. g.e.d.

Proor oF THEOREM 2.2. Let 6 and p, be as above, N= M, and ¢
be as in the theorem. We first claim that 37 _.[0,, 0._[=1 in P,. Let
4 be 7(h-) with h a positive operator affiliated to N. Then all o,s and
h commute, and o, = 0,_,07""(0) £ NMp,-, With A, <1, so that there
exists an orthogonal sequence {¢,} or projections such that 3> . e,=1, {e,}
commute with » and 0,5, and e,0, < ke, < 0,_¢,. Thus any weight
on N is decomposed as a sum + = >,» _. 4, such that {y,}.,.- is a
sequence of weights with orthogonal supports, and +, = z(h,-) with
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8(hu)0u = hy < 0y Hence py(¥) = VaezDx(¥4) = VaeslOns 0asl. Thus we
have V,cz0. 0...[=1. Suppose n#m. If h, and h, are positive elements
in N such that s(k,)0, < h, < p,_, and s(h,)0,, < h, < On-1, then no non-zero
subweights of +, = z(h,-) and 7(h,-) are equivalent; hence py(y,) and
py(y,) are orthogonal. Therefore, [0,, 0,_:] and [0,, 0. are orthogonal
and our claim follows.

For each o-finite projection ¢ By, put I(e) = py(yo E) where « is
an arbitrary weight of infinite multiplicity on N with py(¢) =e. By
Lemma 2.5, I(¢) does not depend on the choice of + and we have

6sa—Ie)SIe), KVe)=VIe).

for any sequence {¢;} of o-finite projections of ¥, because we can choose
¥; on N with py(;) = e; and s(y;)s(pr,) = 0 for j = k. We claim that
any o-finite projection in L, of the form I(e) with e <|p,, p._.[ is also
of the form I(f) with f<[o, 1[. We have

I(e) = pn{(@(h'))

for some ke N, with po,s(h) < h < po,_, by hypothesis. For every z < N,,
we get

phUrxU*™) = @ (07" (h)x) = p(0,0 " (h)x) .

It follows that I(e) = I(f,) with f, = py(z(0,07%(h):)) for keZ. From
the inequality p,s(h) < h < p,_,) it follows that

074(0,)07*(s(h)) = 07(h) < 07%(0,-1) ;
hence
Oial *(s8(R)) = 0,07%(0,)07(s(h)) = P07 (h) < P07 (00-1) = Ontrs -

Hence, taking k=1 —n, we get f=fi_,=[o, 1] and I(e) = I(f). An
application of Lemma 2.3 shows that for any o-finite non-zero projection
g € By there exists a non-zero o-finite projection ¢ € P, with I(e) = g, < g.
Let neZ be such that e, = ¢[p,, 0._.] # 0, and apply Lemma 2.5(b) to
show that g, = I(e,) < g,, and hence g, = I(f) for some f=/[po, 1[. There-
fore, the usual exaustion arguments show that any o-finite projection
g in py is a sum g = 3.7, I(f,) where {f,} is an orthogonal sequence of
o-finite projections in P, with f, <[o, 1[. Putting f= >, f., we get
I(f) =g and f=<|[p,1]. This proves the existence part for weights
of infinite multiplicity. Thus Lemma 2.6 assures the rest of the claim
in the theorem. q.e.d.

REMARK 2.7. In Theorem 2.2, the condition, ps(h) < h <1, can be
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replaced, for any » e Z, by the condition p,s(k) =<k < p,.; in particular,
for n =0, by s(h) < h < po_..

This follows from:

(i) For any weight @ on N and k€ Z, wo E ~ wo 6" E;

(ii) If @ = z(h-) on N, then wo-6* = z(0,07%(h)-), k € Z;

(iil) 0ui0""(0) = 0, and 0,0"(1) = O

To state the next consequence of Theorem 2.2, we must extend the
mapping I defined in the proof of Theorem 2.2. We put, for any pro-
jection e € by,

I(e) = V{I(f): f is a o-finite projection in B, with f = e¢}. It follows
easily that I(V e €.) = Vaea I(e,) for any family {e.: « € A} of projections
in py.

COROLLARY 2.8. Let M, p,U, o and 0 be as in Theorem 2.2.

(i) For each neZ, the mapping I is an isomorphism of (Bwie,.0p_it
onto Py.

(ii) Denoting by G the automorphism of By corresponding to 6, we
have

Iof(e) = I(e) for any projection e¢c Py ;
0([0us Pui]) = [On—ss Ouil -

(iii) The map I induces an isomorphism denoted by I again, of
(B onto Py intertwining the action of Ri:

IFI =T, NeR:.

ProOF. (i) It follows from Theorem 2.2, its proof, Lemma 2.6 and
Remark 2.7 that I is an isomorphism of the lattice of o-finite projections
of (B)io,.en_,r Onto that of o-finite projections of PB,; hence the conclusion.

(ii) By definition, P, (w) = Py(w-07"); hence (i) and (ii) following
Remark 2.7 entail the conclusion.

(iii) By (b), the fixed point algebra (PB,)? is isomorphic to (B)iowsonit
under the map: x € (By)? — [ 0., On-il € Br)io0,_,1» Whose inverse is given
by the map: ¥ € (Budio,.op_yt — Sinez 0*(¥) € (By)’. The intertwining property
follows from the simple computation:

%fIPN("/’) = %xpM("ﬁ“’E) = Py(Mjpo )
= Ipy(\p) = IFY py()
for any weight 4 on N. g.e.d.

COROLLARY 2.9. On a o-finite factor M of type III;, » %1, there
exists a faithful normal state + such that My is o maximal abelian
subalgebra of M.
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Proor. With the same notations as above, choose a projection ec N
with z(e)<+co and an h € N, such that pe = h < e and N,, is a maximal
abelian subalgebra of eNe. Put 4 = w,oE. By Theorem 2.2, we have
My = N,,. Since eNe is the centralizer of ¢,, it follows from [3; Lemma
4.2.3] that My is maximal abelian in eMe. Clearly « is a faithful normal
functional on eMe = M. g.e.d.

COROLLARY 2.10. In a o-finite factor M of type 111, the centralizer
My of any faithful weight + is the relative commutant C, N M of its
center Cy; namely

My, =CnNM and Cy,=M,NM.

PrROOF. Since the automorphism 6 = Ad U acts freely on the center
C of N, [8; 5.3], we have N = C'N M, which, together with Theorem 2.2,
yields the conclusion. q.e.d.

COROLLARY 2.11. If M s a o-finite factor of type III,, for any
Jatthful weights @, on M there exists a mon-singular positive self-
adjoint operator h affiliated with the center C, of the centralizer M,
such that :

Sp(4y4.y) < Sp(dy) .
CHAPTER II. INTEGRABLE WEIGHTS ON FACTORS OF TYPE III

11.0. Introduction. The aim here is to introduce and study a very
manageable class of faithful semi-finite normal weights (faithful weights
for short) on factors of type III. Those weights are called integrable

(p is integrable by definition if the integral r o{(-)dt has a weakly

dense domain in the von Neumann algebra in question). They play the
role of a substitute for almost periodic weights which may fail to exist
on factors of type III,. Like for almost periodic weights M is spanned
by the eigenelements for the modular automorphism group, which will
be shown using the Fourier transform of the function: ¢ — of(x). Though
no integrable weight is strictly semi-finite, there is still an unbounded
normal conditional expectation E, from M to the centralizer M,, and a
semi-finite normal trace 7, on M, such that 7,0 E, = @. Moreover, the
relative commutant of M, in M is the center C, of M,. Unlike almost
periodic weights, the integrable weights exist on any properly infinite
von Neumann algebra and even form a dense subset, for a very strict
topology, of the set of faithful weights of infinite multiplicity. In fact,
any faithful weights of infinite multiplicity is well approximated by
integrable weights commuting with it. Also unlike almost periodic
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weights, the integrable ones are easily classified, and among them there
is a largest one in the sense of the ordering defined in the preliminary
section 1.1, called the dominant weight. The dominant weight is uniquely
characterized, up to the conjugacy under the inner antomorphism group,
by the fact that it is invariant within equivalence under the multiplica-
tion by any positive number.

The dominant weights appeared in fact already in the authors’ pre-
vious works [3] and [30]. It is shown in [3] that if M is an arbitrary
von Neumann algebra, and w is a faithful weight on &(L*(R)) such that
(Dw: DTr),, te R, is the translation in L*(R) by ¢, then the weight
@ =p@w on MK YL R)) does not depend, within equivalence, on the
choice of a faithful weight @ on M. It turns out that ¢ ® @ is dominant.
In [30], the weight 7 dual to a trace z on a semi-finite von Neumann
algebra N (yielding the continuous decomposition M = W*(N, R, 6)) was
studied. In fact, ¥ is dominant also.

The integrable weights are characterized by the o-strong continuity
of the mapping: \ € R} — F¥(pu(®)) €PBy. Their study enables us to
determine the smooth flow of weights, i.e., the restriction on the flow of
weights ¥ to its o-strongly continuous part. Integrable weights are
then classified, up to equivalence, by their multiplicity: a normal weight,
not necessarily semi-finite, on the smooth flow of weights. The smooth
flow of weights (P,, F'™) is isomorphic, under a trivial change of scales,
to the restriction of the {#,} to the center C, of N in an arbitrary con-
tinuous decomposition M = W*(N, R,0). When M is a factor, it is
ergodic and its kernel is precisely the invariant S(M) N R%. In parti-
cular, it is trivial when M is of type III,, which has striking consequ-
ences on faithful weights @ of infinite multiplicity: for example their
domain m, is, up to conjugacy under inner automorphisms, indepzsndent
of . When M is a factor of type III,, the smooth flow of weights is
isomorphic to the flow built on the restriction of 6 to C = the center of
N under the ceiling function dzo67'/dz, in an arbitrary discrete decom-
position M = W*(N, 6).

II.1. Dominant weights. Throughout this chapter, we shall keep
the following notations:

The Plancherel measure on R is denoted by d#, ds, dp, dq, ---, i.e.,
1
v 2r
The unitary of ¥(L*(R)) = F. dzfining the Fourier transformation is
denoted by F, i.e.,

X the Lebesgue measure;
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Ff(p) = {67 fle)ds, £ L'B) N L(R) ;

For each se R, V, is the unitary of F.. such that
(V.f)p) = e**f(p), [feLXR), peR;
For each te R, U, is the unitary of F. such that
(US)p)=fp+1t), [feLXR), peR;
Also, V (resp. U) is the isomorphism of L~(R) into F'. such that
V(exp(it:)) = V,, teR,
(resp. U(exp(it:)) = U, ;
The usual trace on F. is denoted by Tr, and ® is the weight on F.
such that
(Dw: DTr), = U, , teR.
THEOREM 1.1. Let M be a properly infinite von Neuwmann algebrae
with separable predual.
(i) There exists a faithful weight @ of infinite multiplicity on M
such that

D ~ND . A>0.
(ii) The weight & satisfying (a) ts unique up to equivalence.
Proor. (i) Looking at @ on F., we have
() (Dwy,: Dw), = ViU, V,Uf = é**,

so that ®,, = ¢*w, sc¢ R. By the proper infiniteness of M, we identify
M with P& F., where P is a properly infinite von Neumann algebra
isomorphic to M. For any weight ¢ of infinite multiplicity on P,
@ = p @ w satisfies condition (i) on M since

MO =p RN ~p R0 =0, A>0.

(ii) Suppose @, and @, satisfy condition (i) on M = PQ F.. By
Lemma 1.9b, we choose weights ¢, and ¢, on P satisfying condition (i)
and such that

@;~p; ®Tr, 7j=12.
For each s€ R, there exists a unitary X;(s) € P such that
(%) Pixjw = €P; L.e., 0i(Xi(s)) = ' X(s) .
By the separability of the predual P, of P, we can select a Borel



FLOW OF WEIGHTS 497

map:se R— X;(s)eP, j =1,2, Let X; be the element of P& U(L~(R))=
1 ® U)L~(R, P)) corresponding to the above map: s — X;(s). We have
then

ofi%(Xy) = (07 Q (X)) = X;1® U,) .
Hence we get

X;oti®™(X;) = (D(p; ® ®): D(p; ® Tr)),,  teR.

Thus we have

P;iQO~p; QTr ~d;, J=12.
By [3: Lemma 1.2.5], we conclude that

(?)1"”;”1@0)"’@2@(0"’@2-
g.e.d.

DEFINITION 1.2. A dominant weight on a properly infinite von
Neumann algebra with separable predual is a faithful weight of infinite
multiplicity satisfying condition (i) in Theorem 1.1.

THEOREM 1.3. For a faithful weight @ on a properly infinite von
Neumann algebra M with separable predual, consider the conditions:

(1) @ is dominant;

(ii) @ =p R w in some factorization M = PQ F., where P = M,

(ili) @ s dual to the trace © on N in a continuous decomposition
M = W*(N, R, ) where t00, = ¢ °7,s€ R;

(iv) There exists o faithful weight @ on M which does not com-
mute with @ dbut such that

o;/0}, = 07,07, t, t,eR;

(V) @~ nw, N> 0.

Then (i)« (il) = (iii) = (iv). If M is a factor, then (iv)= (v). More-
over tf M s of type III, then (v)= (i).

LEMMA 1.4. Let P be a properly infinite von Neumann algebra
acting on the separable Hilbert space D, corresponding to a given faithful
weight o on P.

(a) The weight & = p Q w ts dominant on M = P& F..

(b) Mz; = W*(P, R, 0°) on 9, Q L*(R).

(¢) M; 1is generated by the L U, teR, and the element of
P Q V(L>(R)) corresponding to the function: te BR— c{(x)e P, xc P.

(d) The action 6¢ of R on W*(P, R, 0*) = M; dual to a* is given by:

0ix) = LRV )r(1R®V)*, xeM;, seckR.
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(e) There exists a foithful semi-finite normal trace © on M, such
that for any unitary w e M with @, = M@ we have

Tw = AT,

where 7, should be naturally understood since wMzw* = M.
(f) For any >0, there is a unique automorphism F? of the
center Cz of My such that

FP(x) = wrw* , reCy;,

with any unitary weM such that @, = No. Moreover, FP is the re-
striction of 0%1.q to Cs.

PrROOF. Assertion (a) follows from the proof of Theorem 1.1. (i) and
the definition of a dominant weight.

(b) Let 4, be the modular operator on §, associated with ¢. By
definition, we have

M; =Mn{4f ® U:teRY,

so that the commutant M; of M; in $, ® L*(R) is the von Neumann
algebra generated by M’ = P'®C and 4% ® U,, t€ R. It follows from
[30; Corollary 5.13] that M; = W*(P, R, 0*) on 9, X L*(R).

(¢) This is an immediate consequence of (b) and the definition of
W*(P, R, 0%).

(d) This is easily seen by checking directly that 6f and AdQ1 QV,)
agree on the generators considered in (c).

(e) If w, and w, are unitaries such that @,, = @,, then w,w! € M5;
so it is enough to find 7z with zo6¢ = ¢~°z, se R, which follows from
[30; Lemma 8.2].

(f) As in (e), we see that Ad w restricted to C; is independent, for
any )\ > 0, of the choice of the unitary we M with @, = n@. Choosing
w=1QV_1o1, We complete the proof. g.e.d.

ProOOF OF THEOREM 1.3. Both weights of the form ¢ ® @ and dual
weights ¥ to a trace ¢ on N such that 706, = e°z, s¢ R, are dominant
onM=PRF.and M = W*(N, R, §) respectively. Hence the equivalence
(i)« (ii) = (iii) follows easily from the uniqueness of dominant weights.

Let o' be the weight on F. such that (Dw': DTr), = V,tcR. It is
easy to check that (D(p Q @'): D(p ® w)), = 1R (Dw': Dw), is not a one
parameter unitary group; hence for each weight of the form ¢ &® ®
there exists a weight ¢ Q @ = @ which does not commute with ¢ @ @
but whose modular automorphism group o7 commutes with ¢?®*, s, t ¢ R.
Hence we have shown the implication (i) = (iv).
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Now, we show the implication (iv) = (v) when M is a factor. Let
U, = (D@'": D®),, t ¢ R. Foreachs, t ¢ BRandx € M, we have, by hypothesis,

e (Ui = 07 007(x) = 07 o 07 (%)
= 07(w07 (B)ul)
= 07(u)o7, ()05 (u)
Hence u, and ¢%(u,) give rise to the same inner automorphism of M, so
that o%(u,) is of the form f(s, t)u,, (M being a factor). Namely, u, is an
eigen operator of {0%}; hence f(s, + s,, t) = f(s,, t)f(s t) for each s, s,, t € R.
As Uy 4, = U, 07, (Us,), We get

f(s, tl + tZ) = f(37 tl)f(sy tz) 8, tl, tg € R .

Since f is a continuous function on R x R with modulus one, there exists
a real number @ e R such that f(s, t) = ¢!, As ® does not commute
with @', we have @ = 0. For » > 0, let s = (1/a) Logx. We have then

o (u,) = N, , teR;
therefore @,, = \®.

We postpone the proof of the implication: (v) = (i) for a von Neumann
algebra of type III until the end of the next section. q.e.d.

Given two weights @ and + on factor M with commuting modular
automorphism groups ¢¢ and ¢¥, we have seen in the above arguments
that there exists a constant @€ R such that

o{((Dy: Dp),) = e**"(Dy: Dp), , s, teR.

DEFINITION 1.5. The constant « is called the Stone-von Neumann
constant of the pair @ and 4, and denoted by a(p, ). It is clear that
@ and +» commute if a(p, ) = 0. When a(p, ¥) #= 0,  and + are said to
be quasi-commuting.

THEOREM 1.6. Let M be an infinite factor with separable predual.
Let {@,, @} and {®i, @;} be two pairs of quasi-commuting dominant
weights on M. Then the following two conditions are equivalent:

(1) There exists a unitary uwe M such that

@y, = @) and @,, = @; ;
(i) @, @) = a(®;, @) .
The implication: (i)= (ii) is trivial. The proof of the reversed

implication requires further analysis of dominant weights, so we postpone
it until the end of IIL5.
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1.2, Integrable weights and the smooth flow of weights. In the sequel
we shall meet expressions of the typeg 2(t)dt for a o-strongly continuous

00

function #(-) on R with values in the positive part of a von Neumann
algebra M. We write Sw x(t)dt € M to mean that the increasing net

x(t)dt, K compact subset of R, is bounded above in M,, and of
cgurse S:w(t)dt stands for the least upper bound.

DErFINITION 2.1. Let @ be a weight on a von Neumann algebra M
with support e = s(p). We say that ¢ is integrable if

Oy = jlac eM,: Sw of(x*x)dt exists}

—o00

is dense in M, for the o-weak topology.

As in the case of weights, we have the following properties:
(1°) q, is a left ideal;

(2°) p, = qkq, is a hereditary *-subalgebra of I,;
(8°) p, is linearly spanned by its positive part and
by = {xeMj: Sw

—c0

of(x)dt exists} ;
(4°) The integral
@) = | ottt

makes sense for every zep, and takes values in the centralizer M, of p;
(5°) p, is a two sided M,-module and

E,(axb) = aE,(x)b, x€P,, &, b€ M, ;
(6°) For any bounded increasing net {z;} in p; we have
E,(sup x;) = sup Ey(;) ,

where sup z; is not necessarily in p;, and so we understand the above
equality in the extended sense allowing + « as its value;

(7°) o is integrable if and only if p; contains an increasing net of
projections converging o-strongly to 1.

THEOREM 2.2. For a weight ¢ on a properly infinite von Neumann
algebra M with separable predual, the following three statements are
equivalent:

(i) o is integrabdle;

(ii) The map: M€ R — Fpu(p) € By ts o-strongly continuous;
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(iii) @ < @ for some, and hence all, dominant weight @ on M.
The proof of the implication: (i) = (iii) relies on the following:

LEMMA 2.3. For an integrable weight ¢ on a von Neumann algebra
M, the following statement hold:
(a) For all yep, and N e R¥, the integral
5=\ ot
belongs to M(o*, {\}), i.e., 0§(§,) = N'¥,;, teR;
(b) b, 18 a two sided module over M, with

(xy2); = 292, ¢, 2€ M, and yech, veRE;

(¢) Let YU, be the algebra of analytic, (entire), elements for a*. Then
A, N P, 18 @ o-weakly dense *-subalgebra of M and
1 S”A d\
= = ) e ’
Y o Jo Y. X Yy (4 ﬂ ‘pgo
(d) For any pair e, e, of projections in M, which are not centrally
orthogonal in M, there exist @ N > 0 and a partial isometry u € M(o*, {\})
such that

wru=<e and uu*=ZLe,.

ProoF. (a) This follows immediately from the observation that for
each o € M,, the function: ¢ € R — y(cf(y)) is integrable if y belongs to p,.

(b) If €9, and ye M,, then we have of(y*x*xy) = y*of(x*x)y, t €
R. Hence our assertion follows.

(¢) For any xzep) and non-negative f e L'(R), we have

oi(os@) = | fl@ot.e)ds

Hence a direct application of Fubini’s theorem shows that o%(py) < pj;
hence o%(p,) C p, for any f e L*(R). Choosing f to be n'/*z~** exp (—nt?),
we conclude the density of %, N p,. For any ye¥U, NP, and € M,, the
function: ¢ e Ri— 4(0%(y)) is analytic and integrable, so that the Fourier
inversion formula applies.

(d) There exists a ye M with eye, = 0. It follows from (c) that
there exists an x € W, NP, with e,xe, = 0. By (c) once again, z = (exe,); =0
for some A€ R¥. Now let z= uh be the polar decomposition of z.
We have then h e M, and u e M(o? {\}), and also e,u = ue, = u by con-
struction. q.e.d.
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LEMMA 2.4. If ¢ s an integrable weight on o von Neumann algebra
M, then we conclude the following:

(a) Any other weight  on M with ¢ < ¢ ts integrable;

(b) The tensor product weight ¢ & 4 on M & N with + an arbitrary
wetght on another von Neumann algebra N is tntegrable.

Proor. (a) It is clear that any weight equivalent to an integrable
one is integrable, and it follows from property (5°) fop p, that any
subweight of an integrable weight is integrable. Thus the assertion
follows.

(b) Use that the algebraic tensor product p, X N of p, and N is
contained in Pygy. g.e.d.

PrOOF OF THEOREM 2.2. (ii) = (iii): Let e = py(p) and f = V.o Fi(e).
By assumption, each Fi(e), » > 0, is a o-strong limit of F} (e) for some
sequence {\,} in @, so that f = V.., &Y (e) is a o-finite invariant projection.
By Theorem 1.1, we have f = p,(®) with @ a dominant weight. Hence
¢ < py(@). Therefore we get p < p < @.

(iii) = (i): Let w be the weight on F.. = £(L*R)) defined above. It
follows that for each f e L>(R), c¢(V(f)) =V(f,) where fi(s) = f(s + t),
so that we have V(L~(R) N L'(R)) Cp,. Hence w is integrable. Therefore
the integrability of a dominant weight @ follows from Theorem 1.3.iii
and Lemma 2.4.b. Hence Lemma 2.4.a entails the integrability of any ¢
with ¢ < @.

(i) = (iii): We first observe that given a dominant weight @ on M,
the weight «» on P = M Q F, defined by v} #:; Q €;;) = p(xy,) + @(%,,) is
integrable if ¢ is. Let eQ e, ecM,, be a non-zero subprojection of
s(p)®e, in Py. Since e@e, and 1&) e, are not centrally orthogonal in P,
there exists, by Lemma 2.3.d, a partial isometry v in P belonging to
P(g?, {\}) for some A > 0 such that v v < e@e, and vv* < 1R e, Let
w be a unitary in M(c®, {\"}), where the existence of w is granted by
Theorem 1.3. Then (w ) e,)v belongs to Py. Thus we have shown that
any nonzero subprojection of s(p) ® e, in Py is not disjoint from 1 &) e,,
with respect to Py. As @ is of infinite multiplicity 1 &) e, is a properly
infinite projection of Py, so that s(p) X e, <1 e, in Py, which means
that ¢ < @, cf(1.1.4.b).

(iii) = (ii): Since p,(p) = py(®) for any weight o, we may assume
that @ is of infinite multiplicity. It follows then that ¢ ~ @, for some
projection p in the center C; of the centralizer M;. By Theorem 1.3,
with a continuous decomposition M =W*(N, R, 0) of M, ® is dual to a
faithful semi-finite normal trace ¢ on N such that 706, = e¢°z. Denoting
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the one parameter unitary group generating M together with N by
{u(s): s€ R}, we have @, = e °’@. We have then

6_s¢ = 6F—s('t_‘):l-" = (e-—sa—))p = ((Du(s))p
= [a—)ﬁs(p)]u(s) .
Hence we have

Fits(0u(@)) = Pule™ @) = pM([a_)ﬂs(p)]u(s))
= pM((Dl?s(p)) = p;(0,(p)) ,

where p; is the isomorphism of C; into %3, defined in Theorem I.1.11.
Since the map: se R+ 0,(p) € C; is o-strongly continuous, the map: \ €
R¥ — F(pu(p)) is o-strongly continuous. g.e.d.

COROLLARY 2.5. For a properly infinite von Neumann algebra M
with separable predual, the following three statements hold:

(i) There exists a largest o-finite projection d, € B, such that the
map: N€ RY > FI(d) is a-strongly continuous;

(ii) (@) = dy , and
B (Biday = DsoFieops', NeRE,

where F¢ is the automorphism of C; defined in Lemma 1.4;

(iii) For each continuous decomposition M =W*(N, R, 0), the res-
triction of the action: N — 0_iz of R¥ to the center Cy of N is isomorphic
to the restriction of F" to (Pi)a,-

Proor. With d,, = p,(®), our assertions follow immediately from
Theorem 2.2 or its proof. g.e.d.

DEFINITION 2.6 For a properly infinite von Neumann algebra M with
separable predual, the couple {P,, F'*} consisting of the reduced von
Neumann algebra (), and the restriction F'” of the action F" of R*
is called the (smooth) flow of weights of M.

The map p, is clearly an order preserving bijection from the set of
equivalence classes of integrable weights of infinite multiplicity to the
set of projections of P,. We now describe the set of equivalence classes
of integrable weights of arbitrary multiplicity. To this end, we need the
following regularity property of integrable weights.

LEMMA 2.7. For an integrable weight ¢ on a properly infinite von
Neumann algebra M with separable predual, there exist @ g-weakly dense
*-subalgebrae c, of M contained in m, N p,, which ts o two sided M,~module,
and o unique faithful semi-finite normal trace t, on M, such that
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T¢°E¢(x) =), XTEC,

where E, is given by the integration:

B () = S:of(x)dt .

Proor. By Theorem 2.2, we may assume that ¢ is dominant, because
if the conclusion of this lemma holds for an integrable weight, then it is
also true for all subweight of this weight. By Theorem 1.3, a dominant
weight @ is dual to the trace ¢ on N in a continuous decomposition
M =W*(N, R, ) where 700, = ¢°z, s€ R. Therefore, we must show that
7 and @ are connected by the formula

ToEig(x) = d(x)

for each z in some o-weakly dense *-subalgebra c; of M, which is a two
sided N-module. This is not entirely trivial; but it can be shown by
a routine rearrangement of the arguments in [30; Lemma 5.19]. Thus
we leave it to the reader. q.e.d.

THEOREM 2.8. Let M be a properly infinite von Neumann olgebro
with separable predual and no type I component.

(i) For each integrable weight ¢ on M, there exists @& unique
normal, but not necessarily semi-finite, weight v, on P, such that

Yo(Du(¥)) = To(Co())
for every integrable weight  on M.

(ii) The map: pr—y, 18 a bijection from the set of equivalence
classes of integrable weights on M onto the set of normal, but not neces-
sarily semi-finite weights on Py, which enjoys the properties:

§D1<¢2‘i'”¢1§”¢2;
Vo,@oy = Yo, + Vg, ;
Ve = MWeo(FI)™, NeRE.

ProOF. (i) For each z e (Py)*, we put

Yo(x) = T4o05" (@0u(p)) -
Since pu(Co(¥)) = Du(P)Pu(+y) by Theorem I.1.11, we get
Vo(Du(¥) = To(Co(y)) -

(ii) By construction v, only depends on the equivalence class of .
Let @ be a dominant weight on M. Making use of p;, we identify P~®
with the center C; of M;. Every integrable weight is equivalent to a
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weight of the form @, for a projection e¢c M; by Theorem 2.2. Since
M has no type I component, M; is of type II, by [30; §8], so that any
normal weight v on the center C; of M; is of the form

v(x) = 5(ex)
with e a projection in M;. Hence the weight v is of the form v;. Thus
the map: ¢ >y, is surjective. Let ¢; = @,;, j = 1, 2, where ¢, and ¢, are
projections in M;. Then we have
vi(x) = t5(xe;), xeCi .
It follows then that e, < e, in M5 if and only if v, < v, and that if e,

and e, are orthogonal, then v, + v, =y, . Finally, for each \e R,
integrable weights ¢ and +, we have

Vio(03(¥)) = Tag(Cp()) = NTp(Co(N 1)
= Wy(Fihpu(p)) . g.e.d.

We now finish the proof of the implication: (v) = (i) in Theorem 1.3
for a von Neumann algebra M of type III. Suppose @ is a faithful
weight on M such that ¢ ~ Ap, X > 0. By definition, ¢ is dominant, so
that @ is integrable. By the last equality in Theorem 2.8.(ii), we have
Yoo F'Y = \y,. Identifying P, with the center C; of the centralizer
M; of a dominant weight, the largest projection e¢cC;, such that v,
is semi-finite on C5e, is invariant under F¥ )\ > 0. Hence it follows
from Lemma 1.4(f) and [30; Theorem 8.5] that e¢ is a central projection
of M. By [30; Lemmas 8.9 and 8.10] and [30; Theorem 8.6], M, must
be semi-finite. Hence we have ¢ = 0. Therefore, v, has no semi-finite
portion, which means that ¢ is of infinite multiplicity. Thus ¢ is dominant
by definition. This completes the proof.

11.3 Computation of the smooth flow of weights (1). First of all,
we state a consequence of §§8 and 9 of [30] in terms of the smooth flow
of weights as follows:

THEOREM 3.1. For a properly infinite von Neumann algebra M with
separable predual, the smooth flow of weights on M is ergodic if and
only if M 18 a factor. Moreover, FY = 1 if and only if »e S(M) N R*.

Therefore, we conclude another immediate result as follows.

COROLLARY 3.2. Let M be a factor of type I1I, with separable predual.

(i) Two integrable weights @, and ¢, are equivalent if and only
of 7o (1) = 7,,(1);

(ii) Any integrable faithful weight of infinite multiplicity <s
dominant.
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Thus, the smooth flow of weights on a factor of III, with separable
predual is trivial. We now compute the smooth flow of weights in the
other cases. First, let N be a semi-finite properly infinite von Neumann
algebra acting on a separable Hilbert space $, and 7 a faithful semi-finite
normal trace on N. We identify the center C of N with L=(2, ¢), where
2 is a compact metrizable space and g a positive Radon measure on Q.
Let

8 = [s@an@, N = ["Neiuw), « = | rduw

be the direct integral decompositions with respect to C. For a weight
@ on N, there exists a unique positive self-adjoint 7 affiliated with N
such that

h't = (Dw: D7),, teR.

Also, this gives rise to a measurable field h(a)* of continuous one par-
ameter unitary groups on 2 such that

th(a)“dg(a) —h¥*, teR.

LEMMA 3.3. In the above situation, if @ is integrable, then for almost
every a e, the weight w, on N(a) determined by (Dw,: Dt,), = h(@)* is
tntegrable.

Proor. Let x be an element of p} with
x = Siw(a)d,ﬁt(a) and E,(x) = Siy(a)d‘u(a) .
It follows then that
|" hah-dt < Bu(e) for n>0.

-

Hence we have, for almost every a e,

|" ma@ a@n@ it < y@) .

Therefore, K, (z(x)) = - (@) x(a)h(x)"dt exists for almost every a € 2.
Let A be a countable o-strongly dense subset of p:. Then we can choose
a null set F in 2 such that

gf @) a(e)h() dt = B, (1(c2))

exists for every x€ A and a ¢ E. Since we can choose another null set
F in 2 such that {z(a):xe A} is o-strongly dense in N(a), for every
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a¢F, we conclude that pf is o-strongly demse in N(a), for every
a¢ EU F. Thus almost every w, is integrable. g.e.d.

Therefore, we may assume, deleting a suitable null set from 2, that
each w, is integrable. By Theorem 2.2, @, is subequivalent to a dominant
weight @, on N(«). By construction, see Theorem 1.3, the Radon-Nikodym
derivative of @, with respect to the trace 7, has a spectral measure
which is equivalent to the Lebesgue measure dn on R* in the sense of
absolute continuity. Therefore, h(a) has a spectral measure which is
absolutely continuous with respect to dn, and so equivalent to a measure
of the form e,d\ with ¢, the characteristic function of a measurable
subset E, of R*. We define a map p from the set of integral weights
on N to the set of projections in L=(2 X R¥, dur @ dx) by

P(®) = ﬁead;«a) e L2 x RY, dp @ dn) .

We observe then that p is an isomorphism of the smooth flow of weights
on N onto L=(2 x R}, dp @ dn) equipped with the flow defined by the
action: («, v) — (@, M7'v), v € R¥, of Rf on 2 X R%,

THEOREM 3.4. Let M be o factor of type 111, N==1, and @, N, 0, {0.} ez
E and I be as in 1.2. As above put L=(2, pt) = C = Center of N and let
0, be a. non-singular transformation of {2, y} corresponding to the res-
triction of 0 to C, that is, O(f)a) = f(6;'x), @ € R, for every feC.

(i) For any weight @ on N, woFE ts integrable if and only i+f @
18 integrable.

(ii) If 4 ts an integrable weight on M, then « ~ Wo K for some
integrable weight @ on N such that @ = t(h-) and s(h) < h < p_,s(h).

(iii) In statement (ii), p(®) only depends on + and the mapping:
= p(w) s an isomorphism of the smooth flow of weights on M onto
the flow built on the transformation 0, under the ceiling function p~.

Proor. (i) Let = woE. It follows then that the restriction of
oY to N is nothing but ¢v. Hence if @ is integrable, then p, contains a
sequence of projections converging o-strongly to the identity 1. But
Po C py. Hence 4 is integrable. Conversely, suppose « is integrable.
Put ¢ = py(®w) and ¢ = V3__.. 0"(e), where 4 is the automorphism of P
corresponding to §. By Corollary 1.2.8, we have I(¢) = I(¢). By assumption,
we have I(¢) = py(y) < dy. Since I is an isomorphism of (P,)’ onto P,
intertwining the flows ¥"|y,7 and F”, the map: rneRf—Fi(e) is o-
strongly continuous by the o-strong contnu’ty of the map: MeR*+—
BiI(e) e L. Hence we get ¢ < dy, and so ¢ < d,. Thus w is integrable.
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(i) This is a direct consequence of Remark I.2.7 and (i).

(iii) By virtue of Theorem I.2.2 and Remark 1.2.7, the equivalence
class of w is uniquely determined by the equivalence class of o = @oE
under the condition that s(h) < h < p_;s(h) and ® = t(h-). Hence p(w)
is uniquely determined by the equivalence class of 4. Denoting by d
the projection in L~(2 X R¥, dp¢t R d\) corresponding to the set I' = {(a, \) €
QX R::1=M<p ™)}, the condition, s(h)<h<p_,s(h), is equivalent to the
condition, p(w) <d. We identify, by means of p, the smooth flow of
weights on N with L>(2 X R¥, dp¢ @ d\) equipped with the flow given
by the multiplication of R¥ on the second component. We have then
Op(w) = p(w-6") for every integrable weight @ on N. Since w0~ =
®,_om With @, = 7(h-), § corresponds to the non-singular transformation:
(@, M) e 2 X RY — (0(@), po_,(0,(@))N) = (B,(@), o~ (@)\) e 2 X R¥. Thus, our
assertion follows from Corollary I.2.8. (iii). q.e.d.

We now summarize what we know about the smooth flow of weights
for infinite factors with separable predual:

Type II.: The flow (P, F'") is isomorphic to the flow coming from
the action (by multiplication) of R} on RI.

Type III,;; For any continuous decomposition M = W*(N, R, 6),
(Py, F'™) is isomorphic to (C = the center of N, ..., restricted to C).
For any discrete decomposition M = W*(N, 60), (Py, F'™) is isomorphic to
the flow built on the restriction of 7' to C = the center of N, under
the ceiling function dz-67/dz.

Type III;,, » == 0: The flow (P, F¥) is isomorphic to the flow coming
from the action, by multiplication, of B¥ on R¥/S(M) N R%.

II.4. Regularization of weights of infinite multiplicity. We show in
this section how to approximate, by integrable weights, an arbitrary
weight ¢ of infinite multiplicity on a fixed von Neumann algebra M with
separable predual. In fact, the approximation will take place in a very
strict topology on the set of weights that we shall discuss first.

DEFINITION 4.1. (One Parameter Family of Orderings) For a positive
real number A >0 and a couple ¢, @, of weights on a von Nummann
algebra M, we write

P = P(N)

if the map: t € R — (Dp,: Dp,), = u, is extendable to a continuous function
u, on the horizontal ssrip D_; = {z€C: —\ < Imz < 0} which is holo-
morphic inside D_; = {z€C: —A <Im2 < 0} and ||u,|| <1, 2eD_,.
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LEMMA 4.2. The relation “p, < @,(\)” on the set of faithful weights
1s tndeed an order relation.

Proor. Trivially ¢ < @(\). Suppose ¢, < @,(\) and @, < p;(\). Let
uy? = (Do Dp;), 1, 7 =1, 2, 8. By assumption, u?* and u}* have extensions
u¥' and u®* on D_,. It follows then that w, = u®*u?' is a continuous
function on D_, holomorphic in D_,, and wu, = u®' by the chain rule on
the cocycle Radon-Nikodym derivatives. Obviously, [|u,| <||wd?|] ||u?t|] <
1. Thus ¢, < @,(\).

Suppose ¢, < @,(\) and @, < o,(\). Then u}' and u;* have extensions

u?* and u!® on D_,. But we have u}' = (u}®)*. Let + be a normal state

on M, and put f(2) = ¥(u2') and g(z) = y(ul?), z€ D_,. Since f(t) = g(t)

for real ¢, f is extended to a continuous function on
D,={zcC:0<Imz <)}

which is holomorphic inside the strip D,. Hence f is holomorphic in
DU D_;UR. But we have f(0) =1 = f(?) for every z. Hence by the
maximal modulus principle, we have f(z) = 1 for every z. Hence u?'=1,
that is, ¢, = @.. q.e.d.

The ordering corresponding to N = 1/4 was analyzed in [5; Lemma
3.13] for states on M, and the one corresponding to A = 1/2 was shown,
in [6], to be the usual ordering on weights: ¢, < 9,(1/2) if and only if

P.(%) = @y(w), v € M,.

PROPOSITION 4.83. Let M be a von Neumann algebra and let P =
MQ F,. For faithful weights ¢, and @, on M, put

7’(2 r; & e;) = pu(2y) + ?2(“’22) .

The condition, ¢, < @,(o), s equivalent to the condition that 1R e, e
P(o*, [0, =)).

ProOOF. Our assertion follows from a more general one. With an
arbitrary continuous action @ of R on P, x belongs to P(«, [0, «)) if and
only if for each o€ P,, the Fourier transform, in the sense of tempered
distributions, of the function: ¢ € R+ 4(a,(x)) has its support contained in
[0, ); hence by the Paley-Wiener theorem, if and only if the function:
teR— a,(x)c P is extended to a bounded holomorphic function on the
upper half plane D.. Taking o0,=0f and z =1 X e,, our assertion
follows. g.e.d.

DEFINITION 4.4. For a pair of faithful weights ¢, and ¢, on M,
we put
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Apy, p,) = inf {@ > 0: @, < epy(0) and @, = e“p,(0)} .

From Lemma 4.2, it follows that d is a distance function on the set
L), of faithful weights on M with values in the extended positive reals
[0, c]. We note that if d(p,, ;)< + oo, then the function ¢ € R (Dep,: Dp,),
extends to an entire function. The topology on T associated with d
will be called the uniform topology.

PROPOSITION 4.5. (i) The set T, of all faithful weights on a von
Neumann algebra M with metric d is complete, and the function: @€
WS, — p(x) € R, is continuous for every xe M,.

(ii) For any normal states ¢, and ¢, on M,

“@1 - g’z“ = 4d(§01’ @z) .
We need the following lemma in order to prove the above result:
LEMMA 4.6. For any € >0 and R > 0 there exists 6 = d(c, B) > 0

such that if f 1s a Banach space valued entire function such that
1 f(@)]| < '™, zeC, then we have

[[f(z) — fOO)|=e, [2|=R.

Proor. Let H be the space of all entire functions equipped with
the compact open topology. Let D, A»>0, be the set of all entire func-
tions f with | f(2)] < /™, zeC. It follows then that D, is a compact

subset of H for each x>0, and N, D, = {al:|a| =<1, aeC} = D,. Put
G.r={feH:|f(z) — f(0)] <e¢, |2| = R}.

Clearly G, is an open subset of H and G, ;> D, Hence, by compactness,
there exists 6 = d(¢, R) such that D; C G, .

Now, let E be a Banach space and f be an E-valued entire function
such that || f(2)|| < e, zeC. For any pe E*, ||p|| =1, the function:
zeC— o f(z) e C belongs to D;; hence to G,z so that

lp(f(2) — p(fO) | =e, [2|=R.
Thus we get, for any [z| = R,

[[f(2) — £O)|| = sup {|p(f(2)) — 2(f(O)|: pe E*, [|p|| = 1} <e.
q.e.d

THE PROOF OF PROPOSITION 4.5. (i) Let ¢, and ¢, be faithful weights
on M and 6 > 0. Assume that ¢, < é’p,(c0) and @, < €’p,(). Let {u,, 2€C}
be an entire function such that u, = (Dgp,: Dg,),, t € R. Since

(Dep,: D(65§Dl>)t = ¢ "y,
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and (Dgp,: D(€’p,)), = e “*u} we have
Nu, || < e'™, zeC.
Hence, if 6 = d(¢, R) for any & > 0, then
lu, —1l[=¢e, [2|=ER,

by Lemma 4.6. Therefore, with a fixed faithful weight ¢ on M such
that d(p,, @) = @ < + <, we have

|(Dgy: D), — (Dopy: D). || = ||{(Dpy: Dp).(Dop,: Do);* — 1}(De,: Do), ||
é “(DQZ: D?l)z —_— l”eallmz]
é Geallm:l . {zl _S_ R .

This shows that if {@,} is a Cauchy sequence in ¥ with respect to the
metric d, then (Dp,: Dp), converges to v, uniformly on every bounded
part of C; hence the function: z € C+— v, € M is entire, v,,, = v,00(v,), 8, t €
R, and each v, is a unitary. By [3; Théoréme 1.2.4], there exists a
faithful weight 4 on M such that (Dy: Dp), = v,€ R. In other words,
for any faithful weight ¢ on M, (Dp,: D), converges to (Dir: Dp), uni-
formly for |z| < R. For any ¢ > 0, choose m > 0 such that [|(Dp,: Dp,).|| =
e¢'™ for any n = m. It follows then that ||(Dy: Dg,),|| = '™, zeC.
Hence we have d(v, ¢,.) < ¢e. Thus « is the limit of {p,}, that is, the
metric d is complete.

The continuity of the function: ¢ +— @(x), x € M, follows from the
observation:

e pi(x) £ py(x) = efpy(w) , xeM,,

if d(py, @) = &.
(ii) If d(p,, ,) = &, then we have

(6_e - 1)901 = Py — Py = (ee - 1)@1 in M: H
hence for faithful normal states ¢, and ¢,, we get
llp. — ]| < 2sup {|pu(2) — pi(@)|: w € My, ||2]| = 1}
<2max{e—1,1— ¢} < 4e. q.e.d.

THEOREM 4.7. If @ is a faithful weight of infinite multiplicity on
o von Neuwmann algebra M, then for any € > 0 there exists an integrable
wetght & of infinite multiplicity commuting with @ such that d(p, ¥) < e.

Proor. Let ¢ > 0 and ¢ be given. Let F,, be a type L. subfactor
of M, and h,1 — e < h £1+ ¢, be an element of F,, which has absolutely
continuous spectrum only and such that {h} N F. is properly infinite.
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We claim that the weight Tr(h-) on F', is integrable, that is, there exists
an increasing sequence {e,} of projections in F, such that Sw hite b~ dt
exists for each n =1,2, ---and lime, = 1. If this is the D::ase, then
o = @(h+) is an integrable weight because (Dy: Do), = k' and ¥ (x) =
hi*ef(x)h~*, hence o)(e,) = hie,h~%*; thus e, € py, and we have d(p, ¥) <e.
Therefore, we must show the above claim. Since the quasi-equivalence
class of a unitary representation of R is completely determined by the
equivalence class of the spectral measure in the sense of absolute con-
tinuity of measures, the one parameter unitary group h%, ¢t € R, is quasi-
equivalent to a subrepresentation of the regular representation U, of R.
This means that the weight Tr(kh-) is quasi-equivalent to a subweight of
a dominant weight on F.. Therefore, our claim follows. g.e.d.

COROLLARY 4.8. If M is a factor of type 111, with separable predual,
then for any pair @, @, of faithful weights of infinite multiplicity on
M and any € > 0 there exists a unitary w such that d(p,,., p.) < &.

PROOF. Let +; be integrable weights of infinite multiplicity such
that d(@;, ;) < €/2, j = 1, 2. By Corollary 3.2, (ii), there exists a unitary
we€M such that +, = 4 Now, we have d(p,., ¥.,.) = d(py, ¥,), and
hence

APy P2) = APy, Y1) + A, P2) < €. q.e.d.

REMARK 4.9. In the same situation as above, for any ¢ > 0 there

exist h,e M,,1 —¢ = h, =1+ ¢ and a unitary » €M such that

Po(@) = py(huhxchw*h,),  xeM, .

COROLLARY 4.10. If M is a factor of type III,, » > 0, with separable
predual, then for any pair ¢, @, of weights of infinite multinlicity on M
(p;(1) = 4+, 5 =1,2, is enough when ) # 1) there exists a unitary we M
such that

un, w* = m,, ,
where m,, means, of course, the domain of @;.

PrOOF. The case » = 1. In the proof of Corollary 4.8, +; was taken
to be @;(h;+) with h;jeM,,1 —e=h; =1+¢,j=1,2. By [24; Prop.
3.8. ii], we have my, =m,, 7 = 1,2. Since ¥, = 9, for some unitary
we M, we have

n,, = Ny, = ulty,u* = witt, u™ .

The case N # 1, and o,(1) = p,(1) = + . Let T = —2x/log ), and

Iy hoy M = h; = 1, be elements of M,, such that
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ofi(x) = hixh;*" xeM. (cf.[24; Chapter III].)
Then «+; = @;(h;'-) is a generalized trace on M for j = 1, 2, because
¥i(1) = @;i(h;") = +co. Sinece m,; = my, our assertion follows from [3;
Théoréme 4.3.2]. g.e.d.

CONJECTURE. A factor M is of type III, if and only if the orbit
{p,:wely} of any normal state ¢ is dense in the set of all normal states
in the norm topology; more precisely if and only if for any pair o, ¢
of normal faithful state and ¢ > 0 there exists a unitary w € M such that

A=y =p, =1+ e
I1I.5. Relative commutant theorem.

THEOREM 5.1. If + 1is an integrable faithful weight on a von
Neumann algebra M with separable predual, then

MynNnMc M, .

Proor. We first note that the existence of an integrable faithful
weight implies the proper infiniteness of M. We shall use the notations
and the conventions established at the beginning of I1.1. Let M = PR F.,
where P is isomorphic to M and fix a faithful normal state ¢. Considering
the cyclic representation of P induced by @, we assume that P acts on
a Hilbert space § containing a cyclic and separating vector &, such that
@ = ... We then represent M = P F., on L, R) =  Q L*(R). Let
® be the weight on F,, such that (Dw: DTr), =U,tcR, and & = p Y w.

We observe next that, replacing + by ¢, one can assume that « is
of infinite multiplicity. As ¢ @ w is a dominant weight on M, Theorem
2.2 shows that + is isomorphic to a subweight of » ® ®@. It is hence
enough to prove the theorem for ¢ X w. By Lemma 1.4, M; is generated
by 1QU(L~(R)) =1X F, and 7 (P), where = is the faithful normal
representation of P on L*9; R) defined by

m(w)(s) = 02 (v)é(s), Ee L(D; R), meP.

Since F, is maximal abelian in F,, it is sufficient to prove the following
inclusion:

(") P QU(L=(R)) N n(P) < P, QU(L(R)) .

We denote by U the isomorphism 1 ®U of P® L*(R) = L=(P; R) onto
PRU(L~(R)) and put 8, = AdQ ®V,), te R. Since V. U)VF =U(f,), f €
L~(R), where fi(s) = f(s — t), we have

0(0(a) =0,), aeL™(P;R),
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where a;(s) = a(s —t). For every continuous function f on R with
compact support, we have, for each a € L*(P; R),

0,0@) = \FoOtandt = Ua ,

where a;(s) = Sf (®)a(s — t)dt. Since 1 ®V, and n(P) commute, 6, leaves
n(P) pointwise fixed; hence 6, leaves w(P)’ globally invariant, and hence
0T(L>(P: R)) N n(P)) < U(L=(P: R)) N n(P) .
Therefore, if U(a) belongs to U(L=(P; R)) N «(P), U(a;) belongs to
U(L=(P; R)) N ©(PY

for each continuous function f with compact support. Since a; approxi-
mate ¢ arbitrarily well in the o-strong™ topology, in order to prove (*)
it suffices to verify that U(C(P; R)) N n(P)’ < U(C(P,; R)), where C(P; R)
(resp. €(P,; R)) denotes the *-algebra of all o-strong* continuous bounded
P-valued (resp. P,-valued) functions on R. Since FU,F* =V, tcR, we
have (1 ® F)U(C(P; R))(1 ® F)* = C(P; R), where C(P; R) is represented
on L¥9; R) by

aé(s) = a(s)&(s), a € C(P; R), £ € L¥(9; R) .
Therefore, putting ¥ = 1 ® F, we must show the following inclusion:
**) C(P; R) N Fa(PYFc C(P,; R) .
The proof of (**) follows from the next two lemmas:

LEMMA 5.2. Let a cC(P; R), xc P and f, geC?, where C; = C2(R),
the space of all C*-functions on R with compact support.

® Fr@)FE® Nle'€® o) = ||| r@r@ea@ore) dpdads,
where for p and q the order of integrations is irrelevant.
() If a commutes with Fr(x)F*, then we have

[{{eesoo-nrmpg@etamor @)dpdqds
= |{[eoarmo@etatgor @)dvdqds.
Proor. (a) We have
[7@) F*(6 ® HIE) = o @) F*FO%
[Fr(@)F*(6 ® (@) = | or @) POkt

- Sge-iwe“pf(pwa(x)sodpdt ,
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where the order of integration does matter. Then assertions (a) follows
from the definition of the scalar product in L*9; R) and the equality:

(024(2)& | a*(q)&,) = p(alg)a? (x)) , ¢, teR.
(b) By hypothesis, we have
({{emerg@pa@or @)apdads)
= (Fr@)F*E® Nl E® 7)) = Fr@E*)FE Q D)lE Q1))
= (| [ a@T@eta wior (@) dpdads .

But ¢¢ is the modular automorphism group for ¢, so that for each p e R,
there exists a bounded holomorphic function G(z, p) on the strip, 0 <
Imz < 1, such that

G(s, p) = @(o?,(x)a(p)), G(s + 1, ) = p(a(p)o?(x)) .
We have then

SSS@"“""“’f (p)9(Q)p(0? (x)a(p))dpdqds
= Sggeis‘””“’f (p)g(@)G(s, p)dpdgds
= ([ o)/ w65, p)dpas

= gSe“”(Fg)(s) S (0)G(s, p)dsdp by Fubini’s theorem .

Since the function: z — e*?(Fg)(2)G(z, ) is holomorphic in the strip, 0 <
Imz <1, and decays exponentially along horizontal line, the above integral
becomes

“em”)p( Fg)(s + 1)f(0)G(s + 4, p)dsdp

= gge"“““(Fg)(s + ) F(D)G(s + 1, p)dpds
by Fubini’s theorem ,

= gSSew<p—«>f<p)g<q>¢<a<p>ags(m))dpdqu
by Fubini’s theorem. q.e.d.

LeEMMA 5.3. If H(q, s) 1s a bounded continuous function of two real
variables (q, s) € R X R such that for each f, g€ C?,

[V oo ro@H, dpdeds = [{[e 50 rp)g@ Hta, s)apdads
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then H(q, s) = H(q, 0), (¢, s)e R X R.
ProOF. Let H, and H, be the distributions on R x R defined by

By = ((\e#o 010, oM, ipdeds,  f OB ;
f Hy = me"“‘”"’"“f (v, QH(p, s)dpdqds .

By hypothesis, we have (f ® g, H> = (f ® g, H, f, g€ C*(R), so that
H, = H, by the density of C=(R)® C=(R) in C=(R*). Hence we have, for
any feCI(R%),

W\le s @+ » o, drdgds = (\{ees(q + r, H@ + 1, s)drdgds .
Since the functions: (, q) — f(q¢ + 7, ¢) exhaust all of C2(R?), we have
SSSeWg(r, q)H(q, s)drdgds = meme—rg(r, t — ¥)H(t, s)drdtds
for every gcC2(RY). Let H be the distribution on R* given by

(0, B = ({{e"a(p, 0H(q, 5)dpdads,  geCz®).

Being the partial Fourier transform of the bounded continuous function
H, the distribution H is tempered. We define a linear transformation

T on C?(R? by

(Tg)p, @) = e9(w,q —p), geCIR).
We have then ((1 — T)g, H) =0, g C2(R». For an f e C(R? with supp
S Nn{0} x R= @, we define a sequence {g,} in C?(R?) by

Sevfpa—kp) i pz0,
9.(p, @) = .
= kZ_Oe””””f(p, g+ &+ Lp if p<O.

It follows then that

[A - D.lw @)= fp,q) —e“™2f(p,q — (n + 1L)p) for »p=0;
[A — Dg.lp, @) = f(p, ) — e "?f(p, ¢+ (n + 1)p) for p=0.

Hence (1 — T)g, — f, as n— o in the space S(R?), so that
(fy Hy =lim (1 — T)g,, H) = 0.

This means that supp H < {0} x R, so that
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“e*’”’f (p)H(q, s)dpds = 0

for every feCy(R) with supp f30. Therefore, H(g, s) is a polynomial
in s for each fixed ¢, but being bounded, it has to be independent of s.
q.e.d.

~END OF THE PrOOF OF THEOREM 5.1. If o €C(P; R) commutes with
all Fn(x)F*, x € P, then the combination of Lemmas 5.2(b) and 5.3 shows
that

p(a(p)o (%)) = p(a(p)x), (v, s)eR X R.
Hence we get
p(oi(a(p))x) = pla(p)x), se R, xe P,

which means that a(p) = of(a(p)), s€ R; and hence a(p)€P,. Thus (**)
follows. q.e.d.

PROPOSITION 5.4. Let @ be a faithful weight on o von Neumann
algebra M and @ be the weight on F. as before. If M,NM = C,C M,,
then the center C.g, of Pes, with P= M@ F.. is contained in C, &
U(L~(R)).

Proor. We keep the notations in the proof of Theorem 5.1. We
know that P,g, is generated by n(M) and C QU(L=(R)). Since U(L~(R))
is maximal abelian in F., C.,s, is contained in M QU(L(R)). On the
other hand, n(x) = 2 Q1 for every x € M,. Hence we have n(M) N PC
M. N"M)QF..=C,Q F,. Thus we get

Coso © M QU(L*(R)) N C, ® F.. = C, QU(L(R)) . q.e.d.

11.6. Computation of the smooth flow of weights (2). In Theorem 3.1,
we saw that the modular spectrum S(M), or more precisely S(M) N R%,
of a properly infinite factor M with separable predual is precisely the
kernel of the smooth flow F of weights on M. In Mackey’s terminology
[16], each ergodic action of a separable locally compact group G on a
standard measure space would have a “non-trivial kernel”, called a virtual
subgroup of G. Following his theory, the smooth flow F* of weights
on M may be called the wvirtual modular spectrum of M and may be
denoted by S,(M). As a matter of fact, Mackey’s theory of virtual
groups provides us very useful strategic technique in computing the
smooth flow F” of weights in the case where M is given by the so-called
group measure space construction.

Let G be a separable locally compact group acting on a standard
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measure space {[', #}. Let C denote the abelian von Neumann algebra
L>(I", pr). The action of G on I" gives rise to a continuous action « of
G on C as follows:

a,(x) = 2(97),9€G,xeC,v7el .

Let o be a 1l-cocycle for the action of G on {I', 4} with coefficients in
another separable locally compact group H, that is, o is an H-valued
Borel function of G x I' such that

009:95 ) = 0(gs, 9:MO(Ge )y 91 9:€G,  TeTI.

In Mackey’s theory, o, or more precisely its cohomologus equivalence
class, is regarded as a homomorphism of the virtual subgroup {G, I', ¢}
of G into H. To this p, there correspond a virtual subgroup of G, called
the “kernel” of o, and a virtual subgroup of H, called the “closure of
the range” of p, which are defined as follows:

Consider the cartesian product measure space {I" X H, ¢t X A} with
» the left Haar measure in H, and define the actions of G and H on
I' x H by

g(h//; h) = (97’ P(g, 'Y)h), geG: vel, heH;
k(v, h) = (v, hk™),vel’,h,kc H.

We note that the actions of G and H commute. Let D= L=(I" X H, ¢t X \).
The action of G on I' X H, or the action & of G on D induced by that
of G on I' x H, corresponds to the “kernel” of p, and the action 8 of H on
the fixed point subalgebra D* of D under @ corresponds to the “closure
of the range” of p. We denote this “closure of the range” of p by
o(G, I') or o(G, C).

REMARK 6.1. The closure of the range o(G, I") and the kernel of
© depends, within equivalence, only on the cohomologus class of p. We
also observe that o(G, I') is independent of the topology in G, and that
0(Gy, I') = p(G, I') for any dense subgroup G, of G.

We now apply the above Mackey’s procedure to the computation
of the smooth flow F* of weights on M.

We now apply the above Mackey’s procedure to the computation of
the smooth flow F™ of weights on M.

THEOREM 6.2. Let M be an infinite factor with separable predual,
and @ a faithful weight on M. Suppose that N is a wvon Neumann
subalgebra of M, with relative commutant N' N M = C contained in N.

(i) If a unitery uw €M normalizes N, i.e., uNu* = N, then there
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exists a nmon-singular self-adjoint positive operator o, affiliated with C
such that
Py = P(0,+) and of(u) = upit, teR.

(ii) If the normalizer N(N) of N generates M, then for each countable
subgroup G of N(N) such that M = (NU Q)" there exists a canonial
isomorphism of the closure o~ (G, C) of the range of p~* onto the smooth
flow F™ of weights on M.

Proor. (i) We have (Do,: Dp), = u*of(u), t € R and M, = w*M,u>
w*Nu = N. For each xe N, we get

& = of«(x) = w*o;(woi(@)oi(w )u = u*of(w)roi(w*)u ;
hence w*of(u)e NN M = C. As we have

w*o?(w)u*ot(u) = uwrof(uu*of(u)) = u*o? (u), s, te R,
there exists a non-singular self-adjoint positive operator o, affiliated with
C such that

o = uot(u) = (Dp,: Do), ,
so that
Pu = P(0u*) -

It is straightforward to observe that the map: we G+ o, is a l-cocycle
with values in the multiplicative commutative group of non-singular self

adjoint positive operators affiliated with C with respect to the action of
G on C given by Ad(u), weG.

(ii) Representing M on a Hilbert space , we consider the tensor
product P = M Q F., on L¥9, R) and the weight ® = ¢ @ @ on P, where
 is the weighe on F, defined in §1. Let U and V be as before. It follows
then that the centralizer P; of ® is generated by n(M) and 1&® U,
te R, where

T(x)5(s) = pLy(x)5(s), w € M, se R, s ¢ L¥D; R) .

By Proposition 5.4, the center C; of P, is contained in C Q U(L>(R)).
Since 7#(M) is generated by N ® C and 7(G), C; is the fixed point sub-
algebra of C ®U(L=(R)) under the automorphism group {Ad(u): u < G},
that is

Cs = [C QU(L~(R))I* .
We now compute the action of G on C QU(L*(R)). For each u <G,

xeC and te R, we have
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[Ad w(u)(x @UNEN(s) = m(u)(x @ U)m(u)*5(s)
= 0% (W(z @U)r(u)*El(s) = wox “x[n(w*)El(s + ?)
= wo; “roitu*é(s + t)
= [(wolzu* ®U)ES) ;
hence
Ad 7(u)(x QU,) = upilzu* QU,, x€C,tc R, ueG.

Let {I', ¢} be a standard measure space with L=(I", #) = C. The auto-
morphism Adwu, u €@, of C gives rise to a non-singular transformation
a, of {I', ¢t} such that

[Ad (w)x](7) = x(a;"Y), ueG, xcC,vel .

Identifying C® U(L>(R)) with L=(I" X R, d/t® dt) under the correspondence:
x Q@U, — {x(7)e?: (v, p) eI’ X R}, we have

[Ad (w)x](7, p) = x(a;™, p + log o, ('), € L>(I" X R, dp @ dt) .
Therefore, G acts on I' X R by

B.(7, p) = (@, p —log 0u(7)), ue G, (Y, p) €' X R .
It follows from the proof of Theorem 5.1 that
[0.()](7, ) = 2(¥, p — t), te R, x € L°(I" X R).
Hence the action of R on I" X R is given by
or(r, p) =, p+1).

By Corollary 2.5, the smooth flow F™ of weights on M is isomorphic to
the action {6_p.:: M€ R%} of R* on C;. Therefore, replacing I X R by
I’ x R} under the correspondence: (7, p) — (7, ¢?), G and R} act on I' X
R* respectively as follows:

Bu( N) = (@7, 0 (N), u e G ;
_To(’y’ N =N, M MeRE, TET .

Therefore, the smooth flow F*¥ of weights on M is isomorphic to the

action of R* corresponding to the closure o7'(G, I') of the range of p™.
g.e.d.

COROLLARY 6.3. Let N be a semi-finite von Neumann algebra with
separable predual, and 6 a continuous action on N of a separable locally
compact group G such that the restriction of 6 to the center C of N 1is
ergodic. Let p, ge G, be the non-singular self-adjoint positive operator
affiliated with C such that to0, = t(0,-) for a faithful semi-finite normal
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trace T on N. Let M= W*(N,G,0). If the relative commutant N'NM of
N in M is contained in N, and hence must be C, then the smooth flow F™
of wetghts on M 1s isomorphic to the closure (4,0)7'(G, C) of the range
of (440)7%, where 4. is the modular function of G.

ProOOF. Let ¢ be the weight on M dual to trace 7 on N in the sense
of [8]. Let {u(g): g € G} be the unitary representation of G in M which,
together with N, generates M. By a result of [8], we have

o{(x) =x,xeN,teR
oi(w(g)) = 4.9)*u(g)py, 9€G .

Hence the quartet, M, ¢, N and {u(g): g € G} satisfies the assumption in
Theorem 6.2 with 0, = 4¢(9)0,, 9 €G. g.e.d.

The assumption that N’ N M = C is satisfied if either (a) G is discrete
and 6 is free, or (b) the restriction of 6 to C is free. Case (a) when N
is abelian goes back to the classical work of Murray and von Neumann
[19], and when N is a factor it is due to Nakamura and Takeda [21]
and Suzuki [27]. Case (b) is relatively new, shown independently by
Sauvageot, [26], and the authors, [7]. Since Sauvageot’s paper [26] is
now available, we will omit the proof for Case (b). However, it is still
an open question as to when N' N M = C holds with a non-discrete group
G.

COROLLARY 6.4. In the same situation as in Corollary 6.3 with
G = Z, the smooth flow F of weights on M 1is isomorphic to the ergodic
Sflow built from the ergodic automorphism 6 on C under the ceiling func-
tion o, where p = dro07"/dr.

One should compare this result with Theorem 3.4.

We now turn to the study of an explicit construction of the continuous
decomposition of a factor M of type III when M is the crossed product
of a semi-finite von Neumann algebra N by a locally compact group G.

Let N be a von Neumann algebra with separable predual, and C the
center of N. Let {I", ¢t} be a standard measure space with C = L=(I", t).
Let

[©]
N = S N ()
r
be the central decomposition of N. Let a be a continuous action of a

separable locally compact group G on N. Discarding a null set from 7,
we may assume that G acts on [ in such a way that

a,(x)(7) = x(g™), 9eG, xeC,vel .
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Furthermore, the action a, gives rise to a family {«,, 7v: ¥ € I'} of isomor-
phisms from N(7) onto N(g7), v eI such that

{ag(x)(’y) = ag,g‘lr(w(g—l/y))’ HAS Ny vel ’
agh,r = ag,lbroalz,Tr gy h € G .

Suppose that p is a 1-cocycle on G X I" with coefficients in a separable locally
compact group H. We then consider the tensor product N & L>(H), and
denote it by N. The central decomposition of N is given by

N= S® N, hydp(dh
I'KH

where N(7, h) = N(¥),7el', he H. We now define actions G of G and «
of H on N respectively as follows:

@,(x)(Y, h) = &, ,—1(x(g™™, (g7, Vh)), xeN, geG, he H,vel ;
Bi(x)(7, h) = (7, hk), h, ke H .

Obviously, the actions @ and 8 commute. Asa straightforward generaliza-
tion of Mackey’s definition, we say that the action @ on N of G is the
kernel of p and the action B of H on the fixed point subalgebra N¢ of
N under @ is the closure of the range of p.

COROLLARY 6.5. Let N be a semi-finite von Neumann algebra with
separable predual, and « a continuous action of a separable locally
compact groun G on N such that the restriction of « to the center C of
N s ergodic. Let p,, gc@, be a mnon-singular self-adjoint positive
operator affiliated with C such that toa, = t(0,+) for a faithful semi-
finite normal trace © on N. Let M=W*(N, G, @). Let M =W*(M, R, 6)
be a continuous decomposition of M. Then M, ts isomorphic to the
crossed product of the kernel {N, &} of the l-cocycle Log (440)7, where
dg means of course the modular function of G. The action 6 of R on
M, is isomorphic to the canonical extemsion B of the action B of R on
N to the crossed product W*(N, G, @).

The proof does not require much change in the proof of Theorem
6.2; so we leave it to the reader. However, we should observe the
following:

REMARK 6.6. In the previous result, we did not require that N’
M = C. This is because we consider the extended action B8 of R on
W*(N, G, &). There are many evidences that the crossed product
W*(N, G, @) of the kernel of p in general will be a better substitute of
the fixed point subalgebra N¢ of N under &. We quote Corollary III.2.15
for a reference to this statement.
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REMARK 6.7. A slight modification of the above argument shows
that if M =U(G) is the von Neumann algebra generated by the left
regular representation of a principal virtual group G, then the smooth
flow F™ of weights on M is precisely the closure of the range of the
module 4; of G, where 4, is the natural analogue for G of the classical
module for a locally compact group—see [26; page 198 (B) and page 203
(i)]. Furthermore the von Neumann algebra N generated by the left
regular representation of the kernel of the module 4, is precisely the
II..-von Neumann algebra appearing in the continuous decompositionof M.

We apply now Theorem 6.2 to the tensor product of factors of type
III. On the modular spectrum, there is no formula for S(M, ® M,) in
terms of S(M,) and S(M,). However, we do have a formula for computing
the virtual modular spectrum S,(M, ® M,) out of S,(M,) and S,(M;). Once
again following Mackey’s formalism, we will construct the product of
two virtual subgroups of an abelian group G.

Let G be a separable locally compact abelian group acting ergodically
on standard measure spaces {I', p} and {I',, t;}. Let a and B be the
actions of G on I', X I'; given by the following:

a, (Y, @) = (975, Vo), By(Vyy Vo) = (977, 972) geG.

The virtual subgroup of G corresponding to the restriction of a to
LIy, X Ty 4y X ts)?, the fixed point subalgebra of Le(I", X I'y, tt, X )
under B, will be called the closure of the product of the virtual subgroups
of G corresponding to the actions of G on I', and [,

COROLLARY 6.8. For two factors M, and M, of type III with separable
predual, the virtual modular spectrum S,(M, Q M,) is the closure of the
product of S,(M,) end S,(M,).

PrOOF. Let M, =W*(N, R, 6") and M, = W*(N,, R, 6?) be continuous
decomposition of M, and M, respectively. We have then M, ® M, =
W*(N,Q N, R, ' R 6%). Let M =M, Q M, N=N,Q®N,, and C, and C,
be the centers of N, and N, respectively, and let C = C,Q C,. We have
then, by Theorem 5.1,

N'NM={N,QNy)NMDMKM) = (N/NM)R N, N M)
=C®RC,=C.
Therefore, we can apply Corollary 6.8 to M, N, § = 6*Q 6* and R®. Let 7,
and 7, be faithful semi-finite normal traces on N, and N, respectively

with 7,060} = e¢™*z, and 7,00} = ¢~ *z,, Put 7z =17,® 7, It follows then that
7o, = e “tir, (s, t) € R, hence p,, = ¢~“*9, By Corollary 6.3, we must
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compute the closure of the range of this o with respect to {C, R 6}.
Let {I,, 1t} and {I',, tt,} be standard measure spaces with C, = L>(I",, &,) and
Cy= LT, ). Put (T, iy ={I", iy ={I', tt} X (I, ). Then C=L(T, o).
In order to avoid possible confusion, we denote by {6} and {67} the flows
in I, and I', induced by {C,, 6'} and {C,, *}. We then have

03 (71 Yoy N) = (057, 077, €N), 5, te R, NERY 5
a(Vy Yo N) = (Vi Yoy MgN), (Vyy Vo) €L, X Iy My RY

Put
Ty, Yoy N) = (OLog Vs, Yes M)y (Vs Yoy M) €L, X 17y X RY .

We have then
T0x,T(Y, Vo N) = (0217, 057, €7N) ;
T Ty Yoy M) = (OFogzg Ty Yoy N) q.e.d.

Therefore, our assertion follows.

CHAPTER III. NON-ABELIAN COHOMOLOGY IN PROPERLY
INFINITE VON NEUMANN ALGEBRAS

II1.0. Introduction. So far we have studied the flow of weights on
a factor. As the reader has already noticed, what we have treated there
is nothing else but the first cohomology of R in the unitary group of a
factor with respzct to the modular automorphism group. The techniques
developed there can also be applied to the general case, not only to the
modular automorphism group. The first cohomology of a locally compact
group G in the unitary group 11 of a von Neumann algebra M with
respect to an action @ of G on M is related to the structure of the crossed
product W*(M, G, @) and its automorphism group. We shall regard a
one cocycle in the unitary group as a twisted unitary representation and
then follow the well-established multiplicity theory of unitary representa-
tions, instead of following the algebraic theory of cohomology. Of course,
integrable actions of the group in question will play the role corresponding
to that of integrable weights. The result of particular interest is the
stability of the single automorphism or of the one parameter automorphism
group appearing in the discrete or the continuous decomposition of a
factor type III, (see Section 5).

In §1, developing elementary properties of twisted *-representations,
we shall lay down our strategic point of view. We shall see in §2 that,
as for weights, there exists a unique square integrable twisted unitary
representation, called dominant, which dominates all other square inte-
grable twisted representations, Theorem 2.12. As a corollary, it will be
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seen that the fixed point subalgebra of an integrable action is isomorphic
to the reduced algebra of the crossed product. Section 3 is devoted to
the case of abelian groups. A characterization of a dominant action
will be given in terms of the spectrum; and also it will be shown that
I'(), the exterior invariant of « ({3, part II]) is the kernel of the
restriction of the dual action & to the center of the crossed product
W*(M, G, ), a generalization of [30; Theorem 9.6].

In §4, we shall study the Galois type correspondence between the
closed subgroups and the intermediate von Neumann subalgebras for an
integrable action of an abelian group. Section 5 is devoted to the study
of stability of automorphisms (or one parameter groups of automorphisms)
of semi-finite von Neumann algebras.

III.1. Elementary properties of twisted *-representation. Let M
be a properly infinite von Neumann algebra equipped with a continuous
action « of a locally compact group G. We assume the o-finiteness of
M always.

DEFINITION 1.1. A o-strong® continuous function a:se€Gr+—a(s)e M
is called an a-twisted *-representation of G in M if the following con-
ditions are satisfied:

a(st) = a(s)a,(a(t)), s, teG ;

a(s™) = a7 (a(s)*) .
If all a(s) are unitaries, then it is called an a-twisted unitary represen-
tation of G in M.

We denote by Z.(G, M) (resp. Z.(G, W(M))) the set of all a-twisted
*.representations (resp. unitary representation) of G in M, where W(M)
denotes the unitary group of M. A straightforward computation gives
the following:

LeEMMA 1.2, If a€ Z (G, M), then all a(s) are partial isometries such

that
a(s)a(s)* = a(l) and a(s)*a(s) = a,lal)), seG,

where 1 means, of course, the identity of G.

We denote a(l) by e,. It is also straightforward to observe that by
the formula:

2(T) = a(s)a(x)a(s)*, xeM, , seG,

we can define a new action ,& of G on the reduced von Neumann algebra

Meu(zeGMea). We denote the fixed point subalgebra of M, under this
new action ,a by M° If p is a projection in M° then the map: se G
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pa(s) e M is also an a-twisted *-representation of G in M, which will be
called the reduced a-twisted *-representation by p and denoted by ar.
We call it also a subrepresentation of a.

DEFINITION 1.3. We say that ¢ and b in Z, (G, M) are equivalent
and write ¢ = b if there exists an element ¢ e M such that

a(s) = ¢*b(s)a,(e) , se@;
b(s) = ca(s)a,(c*) .
We write a < b if o = b? for some projection ¢ in M°®.
The reader should be aware of the following 2 X 2-matrix arguments:

LemMMA 1.4, Let P= MQ F, be the 2 x 2-matriz algebra over M,
and & be the action «a @1 of G on P. Given &, be Z (G, M), we define
c€ Z4@, P) by

0(8) = a(s) ® e, + b(S) ® €22 se ’

with o fized matriz unit {e;;} in F,. Then the following two statements
are equivalent:

(1) a<b (resp. a =b):
(ii) 6. Qe =<e Xe, (resp.e,Qe,~e,Qey) in P
We leave the proof to the reader.

DEFINITION 1.5. With the same notations as in Lemma 1.4, we call
a and b disjoint and write a { b if ¢, ® e, and ¢, ® ¢,, are centrally or-
thogonal in P°. We say that o and b are quasi-equivalent and write a~b
if ¢,Qe, and e, @ e, have the same central support, (namely e, Q e, +
e, Q ey), in P°.
Given ¢ and b in Z,(G, M), we set
I(a, b) = {x € ¢,Me,: xb(s) = a(s)a,(x), s G} .
It is not hard to see the following properties of I(a, b):
I(b, a) = I(a, b)* ; I(a,a)=M*; Ib,b)=M";
2 ©, € I(a, a) , %, € I{a, b) ,
== . . Pc <=
= g i e {xneI(b, ),  wucldb);
a ) b= Ia,d) = {0}.
LEMMA 1.6. (i) Given a,b and, ¢ in Z (G, M), we have
I(a, b)I(b, ¢) C Ia, ¢) .

(ii) If x = wh 1s the polar decomposition of = € I(a, b), then we have
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hellb,b) and wuecla,b).
The proof is straightforward, so we leave it to the reader.

DEFINITION 1.7. We say that a € Z.(G, M) is of infinite multiplicity
if M* is properly infinite.

LEMMA 1.8. If a and b in Z,(G, M) are of infinite multiplicity, then

a=b=a~b.

{3 2

Proor. The implication “=" is trivial.

—=: Suppose a ~b. Let P=MK F,, @ and c€ Zz(G, M) be as in
Lemma 1.4. It follows then that ¢, ® e, and ¢, ® e,, are both properly
infinite projections in P° by assumption; so they are equivalent to their
central support in P°, P being o-finite. Therefore, we have

e, Qe ~e,Re,+e,QRe,~e,Re, in P, q.e.d.
We close this section with the following:

REMARK 1.9. If a is a continuous action of a separable locally
compact group G on a von Neumann algebra M with separable predual,
then for an M-valued function a:se€ G — a(s) e M to agree almost every-
where with an a-twisted *-representation o’ of G in M, it is sufficient
that a satisfies the conditions in Definition 1.1 for almost every pair s, ¢
in G, cf [18].

II1.2. Tensor product and integrability of twisted *-representations.

Let M and N be von Neumann algebras equipped with continuous
actions @ and B of a locally compact group G respectively. We understand
naturally the covariant system (M @ N, a ® B} on G. Given a € Z,(G, M)
and be Z,G, N), we define ¢ ® b€ Z,5,(G, M N) by

(@ ®Db)s) =als) Rb(s), seG.

It is of our particular interest when N = £(R) and 8 = 1. This means
that b is an ordinary unitary representation of G of the Hilbert space R.

THEOREM 2.1. Let M be a von Neumann algebre equipped with a
continuous action a of a locally compact group G. Put P = M Q (LY G)).
If N, is the right regular representation of G on L¥G), then L@ N\, €
Z (G, P) and

W*(M, G, @) = P& |

ProOF. We may assume that M acts on a Hilbert space § in such
a way that {M, §} is standard, so that there exists canonically a uni-
tary representation U of G on $ such that a,(x) =U(s)xU(s)*, x €M,
s€G. The crossed product W*(M, G, @) of M by « acts on the Hilbert
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space ® Q LX(G). In this situation, the recent result of Digernes, [8],
says that the commutant W*(M, G, @)’ of W*(M, G, &) is generated by
M @1 and U(s) ® n,(s), seG.
Hence we have
W*(M, G, @) =W*M, G, @)" = {M' QLU {U(s) @ N\(s): s€ G}
= M & ¥LXG) N {U(s) ® N.(s): s € GY
— Pusi) g.e.d.
Since the left and right regular representations of G are equivalent
in ¥(LAG)) as twisted unitary representation with respect to the trivial
action of G on ¥(L*@G)), we have also
P = W*(M, G, )
with the left regular representation ), of G.
The next proposition is classical in homological algebra.
PROPOSITION 2.2. For any o € Z,(G, WM)), we have
a@N =1QRN, m P=MQIYLNG)).

PrRoOOF. Suppose that M acts on a Hilbert space $. Then P acts on
SR ILNG) = LX(9; G). We define a unitary b in M Q L*(G) C P by the
following:

(b8)(s) = a(s™)&(s), € LH(Y; G), se G .
We compute then
[6(1 @ N(8))E](s) = a(s7)&(st) 5

{[a(®) @ M (D] ® 1).(b)é}(s) = alt)a(al(st)™)E(sE) ,
where we use the right invariant Haar measure d,s in the construction
of L¥9; G). We compute further the last term:

a(t)a(a((st)™) = a)a(at™s7) = alf)a (et (a(s™)
= a(®)a(a(t™)a(s™) = a(s™) .

Hence we get

b1 @ N, (2) = [a(®) @ NN @ 1)(b), teCG.
Therefore, our assertion follows, since b is unitary. g.e.d.

DEFINITION 2.3. Given a o-finite properly infinite von Neumann

algebra M equipped with a continuous action a of a separable locally
compact group G, an a-twisted unitary representation a of G in M is
said to be dominant if e @ N, = a®1 in M Q YLXG)) and «a is of infinite
multiplicity.
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From now on, we assume always that the von Neumann algebras and
the groups in question are o-finite and separable respectively.

COROLLARY 2.4. Any dominant a-twisted unitary representations
are equivalent.

ProoF. Let ¢ and b be dominant a-twisted unitary representations
of G in M. By Theorem 2.2, we have
eRLIZa@N ZLRON, ZI@N =2b®1
in M&Q YL¥G)). Therefore, we have only to show that if ¢ and b in
Z (G, W(M)) are of infinite multiplicity, then e Q1 = bdRX1 in MR F.,
implies ¢ = b in M with F,, a factor of type I.. But a ®1 =561 in
M F., means that @ ~ b; hence ¢ = b by Lemma 1.8. g.e.d.

COROLLARY 2.5. If ae Z /G, WM)) is dominant, then
M*=W*M, G, «) .
DEFINITION 2.6. A continuous action « of G on M is said to be
integrable if the set q, of all # in M such that the integral Saws(x*x)dls
exists in M with respect to the left invariant Haar measure d;s in G, is

o-weakly dense in M. We say that ac Z. (G, M) is square integrable if
the action ,ax of G on M, is integrable.

We note here that the integral | «,(x*x)d;s is defined as the limit of
G
the increasing net S a(z*x)d;s indexed by the net of compact subsets K
K

of G. The very much similar arguments as those in the case of weights
show that

a) g, is a left ideal of M;

b) p. = qq. = {y*x:2, yeq,} is a hereditary *-subalgebra of M
generated linearly by the positive part pf = p, N M,;

c) pf= {x eM,: S a(x)d;s exists};

G
d) The integral

B = | a.@ads

makes sense for any z & p,.
The following further properties of E, are easily verified:
e) E,(x) lies in the fix point algebra M=
) E,(uxv) = wE, (x)v, x€P,, u, ve M
g) E,(x*z) =0 and E,(z*z) = 0=z = 0;
h) E,(supx;) = sup E.(x;,) for any increasing bounded net {z,} in M,,
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where E,(x) = + if x€ M, is not in p}, and sup y, = + if {y;} is
not bounded in M=
From property (f), we conclude immediately the following:

LEMMA 2.7. Any subrepresentation of a square integrable a-twisted
*-representation of G in M is also square integrable.

ExampLE 2.8. Let M = ¥(9) and « = 1. For a unitary representation
{U, 9} of G on 9, U is square integrable as a twisted unitary represen-
tation with respect to the trivial action « in the sense of Definition 2.6
if and only if {U, 9} is square integrable in the sense that

[,|@@e19) ks < +oo

for a dense set of & in 9.

ExampLE 2.9. Let M = L~(G) and a be the translation action of G
from the right. It is immediately seen that p, = L~(G) N LYG, d;8) and

E(f) = | f@dis.

LEMMA 2.10. Let M and N be von Neumann algebras equipped with
continuous actions & and B of G respectively. If either & or B is inte-
grable, then the temsor product @ @ B on M@ N is integrable. g.e.d.

We leave the proof to the reader.

LEMMA 2.11. The regular representation of G s square integrable
in Z(G, EL(G)))-

Proor. Let A, be the right regular representation of G on L*G).
Let @, = Ad (\,(s)), seG. It follows that the action « leaves the maximal
abelian algebra L>(G) = U globally invariant and «|, is the right transla-
tion action of G on A. Hence p, N U = L~(G) N LG, d;s), which contains
a net converging o-strongly to 1. Therefore, p,, hence q,, is o-weakly
dense in &(L*G)), which means that ), is square integrable in

Z(G, &(LXG))) - g.e.d.

THEOREM 2.12. Let M be a o-finite properly infinite von Neumann
algebra equipped with a continuous action « of o separable locally
compact group G.

(i) There exists o dominant a-twisted unitary representation a
of G in M, which is unique up to equivalence.

(ii) An a-twisted *-representation b of G in M is square integrable
of and only if b < a.
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Proor. Since M is properly infinite, replacing « by ,®, we may
assume that M* is properly infinite. Choosing a factor F, of type I,
contained in M® we may identify {M, a} with a covariant system
{(NQ F.,8R®1} on G. Identifying once again F'., with the tensor product
YLYG)) ® B of ¥L¥G)) and a factor B of type I., we can consider a
(B ® 1)-twisted unitary representation L @1, ® 1 of G in N R (L¥G)) R
B =M. We have then

M@ 2 NFRQN(G) R B .

Hence 1 ® N, ®1 is of infinite multiplicity. Therefore, 1@ N X1 is
dominant.
For the second assertion, we need the following results:

LEMMA 2.18. If be Z,(G, M) is square integrable, then
V {suppz*z: x € I @ N, bQ@Q D} =¢, QL in MR YLXG)).

ProOF. Let ¢ denote the left hand side of the equality. By Lemma
1.6, e belongs to [M ® (L G))]*®". For any unitary » €[ M &Q &(G))]*®",
we have IO @ N,, b @ Lu = I(b ® N\, b ® 1); hence u*eu = e, so that ¢
is a central projection in [M & LXG))]*®. Since I(b R N, b X 1e =
IbQ® N, b® 1), we have only to show

IO ® N, b ®L)Sf + {0}

for any non-zero central projection f in [M® S(L*(G))]*®". Since
[MQ LG = M* Q {(LXG)), f is of the form p»p ® 1 with a central
projection p in M® We consider now M on a Hilbert space § and L*G)
with respect to the right Haar measure d,.s on G. We note, however,
that d,s™* = d;s. Then M ® L G)) acts on L 9; G). Choose an x € P,

with zp = 2 # 0 and a continuous function f on G with compact support.
Put

(¥&)(s) = a7 (w) Saf BEt)d,t, e LH(9; G) .
We have then
2drs

o (o)(], F00ae)

S
|

=\ o] lhar@eirds )i
7@ 1], L@ irdis)ae
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= | 1f OBt z)et) eona,t

= | 1f Ol Butaoy ot 1t
S 1] Brala @) || [|E] .
Hence 4 is bounded; so ye M Q ¥L¥G)). Furthermore, we have, for
any £e L*$; G) and 7, s€@,
[y(pb(r) @ L)E](s) = () 0b(r) SGf (D&t

= @) | FOstd
(1b(r) ® v (8)lle ® LIw)ENs) = birl(e ® Hw)El(sr)
= b L@ | foewd.t

= e @b(r) | FOuOE

= a7 (@) | FOEed .

Hence y belongs to IGX®N\,, b Q@ 1) and y(» ®1) = y. Clearly y = 0 if
f=0. q.e.d.

LEMMA 2.14. For any be Z.(G, M), there exists be Zu(G, WM)) with
mnfinite multiplicity such thatvb <b. If b is square integrable, then we
can chose o square integrable b.

PrROOF. Let ¢ = ¢, and 2z be the central support of ¢ in the whole
algebra M. Since a,(z) is the central support of a,(e) = b(s)*b(s), se@,
we have a,(z2) = z. Therefore, we have {M, a} = {M, a} P{M,_,, &} in
the obvious sense. It follows from Theorem 2.12 (i) that there exists a
dominant b,€ Z,(M,_,, W(M,_,)). We then restrict our attention to {M,, a}.
Let {e,} and {u,} be families of orthogonal projections and partial isome-
tries in M respectively such that 3.7, ¢, = 2, ufu, = ¢ and w,u; = ¢,, n =
1,2, ---, where the existence of such families is guaranteed by the proper
infiniteness and the o-finiteness of M. Put

b(s) = 3 wb(@)er,(ur) -
It follows that for any s, te@,

bs)a b)) = [ Sub@au || S awab®)mws |
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U b(8) 0 (U3 U )0(B(8)) ()

1

unb(s)as(eb(t))ast(u:)

i Il
Ms 3[Ms

s
8 1
N

= 2, wab(s)a, (b)), (ux)
bi(st) ;
b(s") = Z u,b(s e (uk) = Z,u a7 (b(s)* ) (k)

= a7 (3 on(wb(e) uz ) = @i b)) ;
by(1) = ﬁ:}lunb(l)u;’: - 2 W, our = 2 e, = 2.

Since the map: s e G — b,(s) € M is o-strongly continuous, b, is an a-twisted
unitary representation of G in M,. Put

b(s) = by(s) + by(s) .

It follows that M® = (M,)" + (M, ). By the definition of a dominant
representation, (M,_,)* is properly infinite. We will show that (M) is
properly infinite. Put w,,, = w,uk, n, m = 1.2, --.. It follows that

Wi Wa = € BN W, WS, = 6,
bu(8)ar (w0, b (5" = (35 00 (5)et, () et (0, ) (35 wib()er ()

= 31 (usb(s)er, (3w, w1 )o(5) )

= U b(8), (U W, W) D(S) * U,
= u,b(8),(6)b(8)* U = U,6U = W,y -

Hence w,, . € (M,)"; so b, is of infinite multiplicity. By construction, b < b,;
hence b < b.

Suppose now b is square integrable. Since b, is square integrable
by definition, we need only to show that b, is square integrable. Let
{x;} be a net in p,« such that lim, x; = e. Let x;, = u,x,ur. We have then

by(s)ex,(;,,)b(8)* = u,b(s)a,(w)b(s)us ;

hence Li,n € Poge Since lim; z;,, = e,, the o- strong closure Poz contains all
¢,’s; hence b is integrable. Thus, b, is square integrable, and so is b.
g.e.d.

ProOF OF THEOREM 2.12. (ii). By Lemma 2.14, we may assume that
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b is a square integrable a-twisted unitary representation of G in M with
infinite multiplicity. Consider M @ (L¥G)), b @, and b @ 1 as well as
P=MQ YL G) R F,. Let

¢(8) = b(8) @ M(s) @ 61 + b(8) ¥ 1 R €5 .

It follows from Lemma 2.13 that the central support of 1®1®e, in
P° majorizes 1 Q@1 e, Since M*®1®e, is contained in Pigigess
1®1®e, is properly infinite in P° because M® is. Hence 1®1 X e, >
1®1®e,in P s0o b1 <b@N,. By Proposition 2.2, we have

bRL<IQN =1QRQN =aRl

if a € Z (G, W(M)) is dominant. Thus b < a¢ because a is of infinite mul-
tiplicity. q.e.d.

COROLLARY 2.15. Let M be a o-finite von Newmann algebra and G
a separable locally compact group. If a is an integrable action of G
on M, then the fixed point algebra M= of M wunder a is isomorphic
to a reduced algebra of the crossed product W*(M, G, «).

Proor. Seeing that @« @1 is integrable on M & F., with a factor
F,, of type I., and that (M Q F..)*®** = M*® F.,, we may assume that
M= is properly infinite. Let b(s) = 1, s€ @G, and a be a dominant a-twisted
unitary representation of G in M. By Theorem 2.12, b < a, that is,
there exists an isometry w in M such that w*u = 1, uu* € M* and
w*a(s)a,(uw) = 1,s€G. Let ¢ = uu*. It follows that a,(x) = « if and only
if ,a,(uzu*) = uxu*., Hence M*= M. On the other hand, we have
Me* =W*(M, G, «) by Corollary 2.5. g.e.d.

COROLLARY 2.16. Let M be a o-finite von Neumann algebra and G
a finite group. If & is o free action of G on M in the semse that
a,(x)e = ax for every x € M implies either g = e or a = 0, then any pair
of a-twisted representations of G in M are equivalent; i.e., the equivalence
classes in ZXG, M) reduces to a singleton.

ProOOF. The discreteness and the free action of G yield, [21], that
the relative commutant of M in W*(M, G, @) is M*N C, where C denotes
the center of M. This means that if M is properly infinite then every
a € ZX@G, 0) is quasi-equivalent to a dominant one by Theorem 2.12. The
finiteness of G implies that M is properly infinite if and only if M* is
also. Hence any a e Z)G, 1) is dominant if M is properly infinite.

Suppose M is finite. Considering M & F, and a & ¢, we conclude from
the above arguments that M*NC is the center of M* Hence the uni-
queness of the center valued trace in a finite von Neumann algebra implies
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that the restriction of the center valued trace of M to M* is indeed the
center valued trace of M*® which means that for any projections
e, feMe~f in M if and only if e ~ f in M* Thus our assertions
follows from the well exposed 2 X 2 matrix arguments. q.e.d.

DEFINITION 2.17. A continuous action « of a locally compact group
G on a von Neumann algebra M is said to be stable if for every ae
Z G, 0,) there exists bell, such that a, = bxe,(b). A single automor-
phism « of M is said to be stable if every wel, is of the form u =
v*a(v) for some vel,.

Of course, the stability of an automorphism « of M implies that any
automorphism S of the form Ad (u)-a (and in particular any B with
[l — Bl < 2, [11]) is conjugate to @ under Int (M). The converse is also
true when M is an infinite factor, (cf. Theorem 3.1).

We will discuss further the stability of a single automorphism and
a one parameter automorphism group together with its application in
Section 5.

II1.3. Integrable action of abelian groups, duality and invariant
I". In this section, we study integrable actions of an abelian group. Let
G be a separable locally compact abelian group with dual group G. We
choose Haar measures ds in G and dv in G so that the Plancherel formula
holds. We denote by (s, 7> the value of Ye G at seG. An action @ of G
on M is by definition dominant if the trivial a-twisted unitary represention
1 of G in M is dominant.

THEOREM 3.1. Let M be a properly infinite von Neumann algebra
with separable M,. For a continuous action a of a separable locally
compact abelian group G on M with properly infinite M®, the following
conditions are equivalent:

(i) a is dominant;

(ii) For any v e@, there exists w € W(M) such that a,(u) = <s, Vou,
seq;

(iii) There exists o continuous action B of G on M* such that

(W*(M*, G, B), By = (M, o .
PrOOF. (i) = (ii): Since M* is properly infinite,
{M, e} = {M Q (L(G)), « ¥ 1} .
Denoting the regular representation of G on LXG) by A, we have
(M YLNG)), a @1} = {M Q YLAG)), « Q@ Ad N} .
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For each 7e@, let p(7) denote the unitary on L*G) given by

UME(s) = (s, DE(s), e LN(@), s€ G .
It follows then that

Ad (M) = (s, V()

Hence, putting «(v) = 1 ® p(7), we have

{a, ® Ad (MeNHu(7)) = s, Vyu() .
Thus, the isomorphism {M, a} = {M Q ¥(L(G)), @ ® Ad \} assures the ex-
istence of a unitary we M with a,(u) = <{s, Y u.

(ii) = (i): Suppose that for any ve@, there exists a unitary we M
with a,(u) = (s, Y>u for any s€G. Put

E = {(,w)eG x ul): a,(u) = (s, Vu, seG}.

It follows then that E is a closed subset of the polish space G x 1W(M)
whose projection to the first coordinate G covers the whole dual group
G. Therefore, there exists a 1(M)-valued measurable function u(-) on
G such that a,(u(?)) = {s, Y>u(r). Put

w= [ umdre M® L=(G) c M@ ALXG)) -
Since A(s) € L=() such that A(s)(7) = (s, ¥), we have
1® Ms) = Sf<s, v5d, e MQ L) .
Hence we have
wre, @ L)(u) = Sju(v)*as(u(v))d“/ - Sf (s, Vydy
=1QNMs8), seiG.
Therefore we have 1Q1=1Q@N in Z,4,(G, WM Q ¥L*G))). Thus, we get

{M Q YLNG)), ¢ @ Ad A} = (M ® ¥LHG)), a ® 1}
={M, o},
since M* is properly infinite.
(iii) = (ii): This follows from the definition of the dual action 5.
(i) = (iii): If @ is dominant, then we have, by [30; Theorem 4.6],
{M, e} = {M @ ¥LNG)), « @ Ad N} = {M ® ¥LAG)), « @ Ad \*}
= (M Q &LXG)), &} .
Identifying @ with @&, the action & = 8 is the desired action of G on
M=, g.e.d.
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As in [3; Definition 2.2.1], we define the invariant I'(a) of « as follows:
I'@)=N{Spa’:e runs fhrough all non-zero projections in M*}.

We note here that the arguments for [3; Proposition 2.2.2. and Theorem
2.2.4 (c)] do not require the fact that M is a factor. Hence we have

I'(e) = N {Spa’: e runs through all non-zero central projections in M} .

THEOREM 3.2. Let M be a o-finite von Neumann algebra equipped
with a continuous action & of a separable locally compact abelian group
G. The invariont I'(@) is the kernel of the restriction of the dual action
& of G on W* (M, G, @) to the center of W*(M, G, a). (Hence it is, in
particular, a closed subgroup of @.)

PrRoOF. We consider M ® J¥(LAG)), a®1 and a @ Ad N as before.
Trivially, we have I'(e) = I'(@ @ 1); hence I'(a) = I'(a Q@ Ad \) by [3, 2.2.4].
Hence we may assume that M is properly infinite and « is dominant.
It follows from the previous section that there exists a continuous action
0 of the dual group G on M* such that

{M, @} = (W*(M, G, 0), 6} ;

{M*, 6} = (W*(M, G, ), &}
by [30; Theorems 4.5 and 4.6], where @ and # mean the dual action of
« and 6 in the sense of [30; Definition 4.1]. Representing M* on a Hilbert
space 9, we see that M acting on LX(9; @) is generated by the operators:

T@)E(0) = 0,(2)E(), a0 M*, & & LH(; G) ;
w(Y)EM) = E(Y + 7o), 7, T €G .
The action &« on M is implemented by the unitary representation
{v, L¥$; G}
of G defined by
V(EM) = (8, EM), seG.
Hence have we a,(u(7)) = (s, Y>u(7), so that M(e, 7) = M*u(7), ¥ € G, where
M(e, 7) = {x € M: a(z) = <s, V)u(?)} .
If e is a central projection in M% then we have
eM(e, Ve = eb,(e)Mu(7), v e G ;
M, (a, 7) = eb,(e)Miu(7) .

Hence M,(a®, 7) + {0} if and only if ef,(e) # 0. If 6, = ¢ on the center of
M=, then ef,(¢) = 0 for any non-zero central projection e in M?*; hence
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vel'(@). A slight modification of the arguments for [30; Lemma 9.5]
shows that if 0, # ¢ on the center of M*, then there exists a neighborhood
V of 7, in G and a non-zero projection e in the center of M= such that
ed,(e) = 0 for every Ye V. Hence we have M, (a’, ¥) = {0} for every e V.
Since a@° is integrable, our assertion follows from the next lemma.
q.e.d.

LemmA 3.3. If @ is an integrable action of o locally compact abelian
group G on M, then for any open subset V of G, the spectral subspace
M(e, V) = {0} «f and only &f M(e, 7) + {0} for some Ye V.

Proor. Trivially, M(e, v) C M(e, V) for any ve@G. Hence we have
only to prove that M(e, 7) = {0} for every Y€V implies M(e, V) = {0}.
By a simple application of Fubini’s theorem, we conclude that a,(x) e p}
for any feLYG), f =0, and x€p), where a;(z) = Saf(s)a“(x)dS; hence
s (p,) Cp, by the linearity for f e LYG). Put

i) = | Gawds,  wep..

We have then x(7) € M(«, v) for any xzep,. Suppose that M(e, v) = {0}
for any ve V. ThenAwe have x(7) =0 for every ve€ V. If f is aAfunction
in LYG) with supp fCV, then we have for any z€p, and Y€ G

(@) (") = FNE) = 0.
Hence ay(x) =0 for every zep, so a;M)= {0} since @, is o-weakly
continuous and P, is o-weakly dense in M. Hence a, =0 whenever
supp f V. Thus M(e, V) = {0}. q.e.d.

COROLLARY 3.4. Let @ be a continuous action of a separable locally
compact abelian group G on a o-finite von Neumann algebra M. Then
the crossed product W*(M, G, &) is a factor if and only if I'(e) = G and
@ 18 ergodic on the center of M.

Proor. Suppose that W*(M, G, ) is a factor. By Theorem 3.2,
I'(e@) = G. Since W*(M, G, @) = [M ® YL G))]"®**, for any central fixed
point « under @, x ®1 is in [M Q {(LG))]*®*4%%. Hence @1 must be
a scalar. Hence « is ergodic on the center of M.

Suppose that I'(@) = G and « is ergodic on the center of M. Since
a® Adn on ¥(L*G)) enjoys the same property, we may assume that
M is properly infinite and « is dominant. Then there exists an action
0 of G on M* such that {M, @} = {W*(M*, G, 6), }. By Theorem 3.2, ¢
acts trivially on the center C* of M*®. Therefore, C* is contained in the
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center C of M. But a acts ergodically on C, so that CN M* = {\1};
Hence C* = {\1}. Thus M* is a factor. g.e.d.

COROLLARY 3.5. If @ is a continuous action of o separable locally
compact abelian group G on a o-finite von Neumann algebra M with
I'e) = @, then any square integrable a-twisted unitary representation
of G in M with infinite multiplicity s dominant.

ProOF. Replacing @ by a dominant action of G of the form ,a, we
may assume that a is dominant. By Theorem 2.12.ii, every square
integrable a-twisted unitary representation of G in M is majorized by a
dominant one in the ordering “<”. We have only to prove that a° on
M* is dominant for any properly infinite projection e of M* such that
e~1in M. Let {u("):veI} be a unitary representation of G in M such
that a,(w() = (s, HOu(), so that Ad u(7)|;« = 6, is a continuous action
of G on M= with {W*(M*, G, 0), 6} = {M, a}. By Theorem 3.2, the action
of 6 on the center C* of M<* is trivial. Hence ¢ and 6,(¢) have the
same central support in M% and are properly infinite in M* hence ¢ ~
0,(e). Therefore, there exists a partial isometry v, in M* such that
v¥v, = 0,(e) and v,vFf =e. Let w, = v,u(¥)e. Then we have wiw, = ¢
and w,w} = e, and also ai(w,) = <s, V>w,. Hence {M,, a‘} satisfies condition
(ii) in Theorem 3.1. Thus a° is dominant. q.e.d.

We close this section with the following:

REMARK 8.6. So far we have mainly dealt with actions and/or weights
of infinite multiplicity. The contrast between the following two state-
ments (i) and (ii) might illustrate some of the reasons why the infinite
multiplicity has been useful.

(i) If @ is a continuous action of a separable locally compact group
G on M with infinite multiplicity, then M(e, V) contains a non-zero partial
isometry for any open subset V of G with VNI'(@)= @. More strongly,
if INa) = G in addition, then M(«, V) contains a unitary for every non-
empty open subset V of G.

(ii) Let M be an abelian von Neumann algebra and « an ergodic
continuous action of R. If u is a non-zero partial isometry in M(a, V)
for a bounded interval V, then w is unitary and a,(u) = e¢***u for some
seV.

The first assertion can be proven by approximating a with inte-
grable actions. The second statement can be shown by some modification
of the Paley-Wiener Theorem for the Fourier transform of distribution
with compact support.
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III.4. Galois correspondence. In this section, we shall show that
given an integrable action a of a locally compact abelian group G on a
von Neumann algebra M with M= a factor, there is a Galois type cor-
respondence between closed subgroups of G and globally a-invariant von
Neumann subalgebras of M containing M<% which generalizes a result
in [30; §T7].

THEOREM 4.1. Let M, be a factor equinped with a continuous action
a of a locally compact abelian group G. Let M = W*(M,, G, @). If N
is o won Newmann subalgebra of M such that M,C N and @,(N)= N
for every pe@, where & means the dual action of G on M then there
is a closed subgroup H of G such that

N = {zeM: @,(x) = x for every pe H};
H={peG:a,x) =x for every xcN};
therefore N is of the form N = W*(M, H, &) with H = H".
We divide the proof into a few steps.
LeMMA 4.2. Let P be a factor and A an abelian von Neumann algebra.
If Q is o factor such that PR 1lCQC PR A, then @ =P 1.

Proor. Representing A as a maximal abelian von Neumann algebra

on ©, we have

PRLNPRA=[PRQYUI]IN PR A)

=1R A4;

hence

PRINVNAC1®AHNQ=CLcPRL.
Therefore, there is at most only one normal conditional expectation from
Q onto P®1 by [3; Théoréme 1.5.5(a)]. Since there are in general
many normal conditional expectations from P Q A onto P® 1, there
exists a unique normal conditional expectation, say ¢, from @ onto
PR A. To each normal state w on A, there corresponds a normal con-
ditional expectation &, of P® A onto P® 1 by the formula:

QD(S(H(III)) = (qn@a))(x) ’ xeP®A! QDGP* .
By the uniqueness of a conditional expectation, we have, for any z€@,
&(x) = e,(x), so that

(p ® w)(e(@) @ 1) = p(eu(x)) = (P @ W)() .
Therefore, we get e(x) ® 1 = x for every x€@Q; thus @Q = P® 1. q.e.d.
ProOF OF THEOREM 4.1. We put
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A= {pe@: a,(x) = x for every x € N}.

By [30; Theorem 7.1], the algebra M# of all fixed points in M under
&, peH, is W*(M, H, @) with H = {geG:{g, p) =1 for every pc H},
where the technical assumption in [30; Theorem 7.1] on the existence of
a relatively invariant weight on M, is not essential because of the com-
mutation theorem for the general crossed product due to T. Digerness
[8]. Replacing G by H and M by W*(H, H, @), we may assume that
H= {0}, and must show that N = M. . ~

We consider the crossed products, W*(M, G, &) = I, W*(N, G, &) = N
and W*(M, G, &) = M,. We have then

M,=M,QL(G) cNcl.

The action & of G on N is faithful, and thNe fixed point algebra N¢ in
N under & is M,, hence a factor. Hence N is a factor by Corollary 3.4.
By [30; Theorem 4.5], we have

M= M, Q@ (LXG)) .
Therefore, if we can identify the algebras i, and M with M, ® L=(G)
and M0®~ YLAGF)), then Lemma 4.2 is applied to. the commutants: M, X
L*G)>N'>M,®1. Hence N'=M,®1, so N = M. Since N is the
fixed point algebra in N = I under the action @ of G, we have M = N.
Thus, we must show that I is identified with M, ® X G)) in such a
way that I, coincides with M, ® L=(G) under this identification.

Let § be the Hilbert space on which M, acts. Then M acts on the
Hilbert space L*9; G), and I acts on L*9; G X G) and is generated by
the following three types of operators:

555(8, t) = a;l(w)é(s, t) y X eMo ’

w(r)E(s, t) =& —rt—17r), reG;

v(D)E(s, 1) = (& DYE(s, t), peG. (cf. [30; (4.10)]).
It follows then that I7, is generated by {Z, v(p); z € M,, pe@} and iden-
tified with M, ® L~(G) = L°(M,; G), where the action of LM, G) is
given by the following:

2&(s, 1) = a7 (x(8))(s, ©)
for every z(-) e L°(M,; G). We define an automorphism = of L*(M,; G) by
n(@)(s) = a,(x(s)), x(-) € L*(My; G) .

It follows from the proof of [30; Theorem 4.5] that 7 is the tensor
product of w(M, ® 1) and its relative commutant B in I where B is
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generated by w(G) and »(G). Thus we have

M, = n(M, ® L™(®) = n(M, ® 1) ® LG ;
M=2M,Q1)QB>N>zM,Q1) Q L(G) = M, .
q.e.d.

THEOREM 4.3. Let M be a factor equipped with an integrable ac-
tion a of a locally compact abelian group G. If I'(a) = G, then there
extsts a bijective inclusion reversing correspondence between the closed
subgroups H of G and the a-invariant von Newmann subalgebras N of
M containing the fixed point algebra M* im such o way that

Ny,={zxeM: a,x) =2 scH};
H,={seG ax) =z 2xeN}.
Proor. We put
M=M®F, and @, =a,®¢, sc@G,

with F, a factor of type I.. It follows then that @ is dominant, since

the fixed point algebra //* under & is M*® F.. Hence, by Theorem
4.1, the correspondence between H and a-invariant von Neumann sub-

algebras N of I containing I* given by
Ny ={xelM:ax) =x scH};
Hy ={seG:a,(x) =2, xc N}
is bijective and inclusion reversing. It is now trivial that Ny, D N and
Hy,DH. For a given N, we put N=N@® F.. Trivially we have
Hy = Hy. If €Ny, then t®1e N,y s0o t®1eN equivalently z e N.
Hence N = Ny,. For a given H, we have N, = Ny ® F.(=(Ng)).
Hence we get
H = HﬁH = H(NH®F00) = HNH . q.e.d.
ExAMPLE 4.4. Let G be a locally compact abelian group, and M =
YLXGF)). Putting
(wW(8)E)t) = &t — 8), £eLXG),s,teG;
((P)E)E) =Tt py&(t) , £eIX@), peC, teG,
we obtain unitary representations w of G and v of G with
w(s)v(p)u(s)*v(p)* = (s, p)1, seG, pel.
Thus we may define an action @ of G x G on M by
a, (x) = u(s)v(p)xv(p)*u(s)*, seqG,pe @, xeM.



FLOW OF WEIGHTS 543

Since u(s), se @, and v(p), pe@, together generate M, we have
M= {\l:\neC};
hence I'(@) = (G x G)" = G x G.
For a pair f, g of functions in L*G), we define an operator z;,cM
by
mf,gs = (glf)g .
We have then

wryo(@)es o) utr)€|7) = || =% DT@a(s)e(t + 1) + idsdt .
Therefore, by the Plancherel formula, we get
[\ weyowse,. owyueryeimapdr = [ o + v + nidsdr

= (gl /)&l ,
so that

[utr@)s,. o urapdr = @11 .

This means that the action @ of G x G is integrable. Thus, the a-
invariant von Neumann algebras on L*G) are labeled by the closed sub-
groups of G X G by Theorem 4.3. The von Neumann algebras considered
in [28] are of the special case where the corresponding subgroups are
of the form H x K with H a closed subgroup of G and K a closed
subgroup of G.

Since there are many von Neumann algebras not corresponding to
any closed subgroup of G x G, the invariance of a von Neumann algebra
under the action @« in Theorem 4.3 is not removable in this general
setting. The same is true for Theorem 4.1 because the tensor product
with F,, a factor of type I. gives counter examples for the Galois cor-
respondence without a-invariance.

The following result strengthens and refines a generalized commuta-
tion theorem [28].

PROPOSITION 4.4. In the setting of Example 4.4, let H be a closed
subgroup of G x G and H* ={(q, t)eG x G: (s, q) = (t, p) for every
(s, p) € H. The fixed point algebra M¥* wunder c,, for every (s, v)e H
18 generated by w(t)v(q) with (q,t)e H*.

ProOOF. In general, we have
a, (u(t)v(q)) = &, py<s, Dut)v(@), s teG, p, qeC.
Hence u(t)v(q) belongs to M7 if and only if (q, t) € H.
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The action of (G x G)/H on M¥, denoted by the same notation «,
induced by the original action of G x G is integrable; hence M¥ is gen-
erated by the eigen operators. Let x be an eigen operator in M# cor-
responding to (g, £) € (G X G)/H)" = H*. It forllows then that (u(t)v(g))*x
belongs to the fixed point algebra M= = {\1}. Hence z = nu(t)v(q) for
some A €C. Thus M¥ is generated by {u(t)v(q): (q, t) € H'}. q.e.d.

IILI.5. Stability of automorphisms. In this section, we shall show
that if « is an automorphism (resp. one parameter automorphism group)
of a semi-finite von Neumann algebra N scaling a trace down, then
every unitary one cocycle is a coboundary. This, in turn, improves the
isomorphism criterion for the factors of type III in terms of the con-
jugacy of discrete as well as continuous decompositions.

THEOREM 5.1. Let N be a semi-finite von Neumann algebra.

(i) If 6 is an automorphism of N such that there exists a faithful
semi-finite normal trace © on N such that T00 < At for some 0 <\ <1,
then (a) there exists a continuous action a of the torus T on the fized
point algebra N such that

{W*(N’, T, @), @} = {N, 6} ;

(b) every unitary w e N is of the form u = v*0(v) for some unitary v N.

(ii) If {6,} is a one parameter automorphism group of N such that
Tol, = ¢7*r for some faithful semi-finite normal trace T on N, then (a)
there exists a one parameter automorphism group {a.} of the fixed point
algebra N such that

{W*(N’, R, @), &) = {N, 6} ;
(b) every a-twisted unitary representation {u,} of R in N s of the form
uy, = v*a,(v) for some unitary v e N.

ProoF. (i) Let 6 be an automorphism of N with 7060 < xz. We
first claim that for any non-zero projection pe N? there exists a non-
zero projection ¢ < p such that {6"(q)} is orthogonal. Let e¢ be a non-
zero projection such that e < p and 7(e) < + . Let f= Vi 0%e).
We have then

1

o(f) £ 5 20"0) s Fnele) = T

0(f) =f and 7(0(f)) = M(f) <z(f);
g=f—060f)+0.

It is clear that {6"(q): » € Z} is orthogonal. Therefore, the usual exhaus-

7(e) < + oo ;
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tion arguments entail the existence of a projection g€ N such that
{6*(q): n € Z} is orthogonal and 3,.,6"(q) = 1.
We put, for 0<s <1,

u(S) znezz 6-—2zisn0n(q) .

It follows then that 6(u(s)) = e**u(s), 0 <s <1l. Therefore, {u(s): 0=s <1}
induces a continuous action @ of the torus T = R/Z on N’ by

a,(x) = u(s)zxu(s)*, seT,

where we identify the torus 7' with the half open unit interval [0, 1).
Thus, our assertion (a) follows from [15].

For the second assertion, (b), we observe first that if N’ is properly
infinite, then 6 is dominant. But we claim that N is properly infinite
if and only if N’ is also. By the usual reduction arguments, it is suf-
ficient to prove the claim that the finiteness of N’ implies that of N.
Suppose N’ is finite. Let @ be a faithful semi-finite normal trace on
N? invariant under «, the existence of such a ¢ being guaranteed by
the compactness of 7. Let @ be the weight on N dual to . It follows
from [30; Proposition 5.16] that @ is invariant under 4. Since ¢ is a
faithful semi-finite normal trace on N, & is of the form: & = z(h-) for
some non-singular positive self-adjoint operator h affiliated with the
center C of N. We have then

T(6(R)Z) = 70 6RO (x)) < (6 (x))
= NP0~ (x)) = MP(x) = Ne(he) , x€ N, .

Hence we get 0(h) < Mh. From this, repeating more or less the same
arguments as above, we can construct a continuous unitary representa-
tion v(s) of T in C such that

O(v(s)) = e=*v(s) .

Hence the action @’ of T on N’ induced by {v(s)} is trivial, and ¢ is
still dual to this new «’. This means that N= N’Q[°(Z) and 6 = 1R
(translation on [<(Z)). Thus N must be finite. In this case, let u be
an arbitrary unitary in N, and % = {u,} in the decomposition N = N?Q >,
Put v,y = v, if n=1and v,=1, v, = v,,,u, if ® <0. We have then
v*0(v) = w. If N is properly infinite, then every 6 with 706 < Az is
dominant, so that for any w ¢, the new action § = Ad %06 is dominant;
hence the f-twisted unitary representation of Z in N generated by u is
dominant, which means that u = v*6(v) for some v ell,.

(ii) We apply (i) to {f,: ne€ Z}. Let N, denote the fixed point sub-
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algebra of N under {0,: ne Z}. It follows then that the restriction @],
of 6 to N, is periodic with period one. The action {#,:n€Z} of Z on
N is integrable by (i) and 0|y, is integrable as an action of the torus
T = R/Z. Hence 0 itself is integrable, because

B(x) = S:ﬁt(x)dt - S:ﬂt( S 0.@)dt, weN, .

Let 4 be a strictly semi-finite faithful weight on N’ It follows then
that the weight ¢ = 4o F is a faithful weight on N invariant under 4.
By [30; Theorem 5.4], there exists a non-singular self-adjoint operator
h affiliated with N such that ¢ = z(h-). For any xze N,, we have

(0, (h)x) = T o 0,(RO_(%)) = e7°T(hO_,(x)) = 6~ *p(6_,(%))
= e °p(x) = e~*t(hx) ; .
hence we have 0,(h) = e*h. Putting u(t) = h™*, te R, we have
0,(u(t)) = e*'u(t) .

Thus, the one parameter unitary group {u(f):¢<c R} gives rise to a one
parameter automorphism group {a,;:teR} of N’ such that {N, 6} =
{W*(N?’ R, @), & by [15]. This proves (a).

To prove the second assertion (b), we first show that N’ is semi-
finite if and only if {N, 6} = {N’® L~(R), ¢ translation}. Let P =
NQ®F, and §,=0,Q¢, teR. It follows then that § is dominant and
N°® F.. = P?. If N’ is semi-finite then sois P?. Hence W*(N, R, 6) =
P7 is semi-finite. Our claim then follows from [30; Section 9], and as-
sertion (b) in this case is standard.

If N’ is properly infinite, then N° is also for every ac ZiR, Uy),
which means that o is dominant since 70,0, = e¢7'z, te R. Thus o = 1.

q.e.d.

COROLLARY 5.2. (i) Let N, and N, be properly infinite semi-finite
von Neumann algebras equipped with one parameter automorphism
groups 6 and 6° respectively which transform some faithful semi-finite
normal traces T, and T, respectively im such o waoy thaot

7,00t =e7't, and T,°0:=¢e¢"°t,, SER.

Then W*(N, R, 6') = W*(N,, R, 8*) if and only if there exists an isomor-
phism 7w of N, onto N, such that 0, = w™'cfioxm, s€R.

(ii) If {N, 6} and {N,, 6.} are discrete decompositions of the same
Jactor of type III;, 0 < N < 1, then there exists an isomorphism 7 of N,
onto N, such that 0, = w~'ob,0T.
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(iii) If {N, 0.} and {N,, 6,} are discrete decompositions of the same
factor of type 111, then there exist central projections e, € N, and e, N,,
and an tsomorphism w of N,, onto N, such that 0,, = w"cf,, 7,
where 0,,, (resp. 0,.,) is an automorphism of N, (resp. N,.,) induced
by 6, (resp. d,) as described in [3; Definition 5.4.1.].

ProOF. This is a straightforward consequence of Theorem 5.1 and
[30; §8] and [3, Theorems 4.4.1 and 5.4.2]. g.e.d.

COROLLARY 5.8. Amn automorphism & of a factor M of type I, is
stable ©f and only if a does not preserve the trace v of M.

PrROOF. Suppose a does not preserve the trace = on M. It follows
that zoa = nz for some )\ > 0 by the uniqueness of the trace. Con-
sidering a™*, we may assume A < 1. Let 8 = Ad (w)ca with u a unitary
in M. Then we have W*(M, a) = W*(M, 8), and they are of type III,.
By Theorem 5.1, we have M*Q R¥(*Z)) = W*(M, @), so that M*=
W*(M, ). Thus M* and M’ are both properly infinite, which means
that a and B are both dominant. Therefore, there exists a unitary ve M
such that w = v*a(v), which means that 8 = Ad (v) oo Ad (v).

Suppose conversely « preserves the trace z. Let ¢ be a projection
in M with 7z(e) < + c. Since e ~ a(e), there exists a unitary welM
such that ¢ = ua(e)u*, where we note here that the equivalence between
finite projections is unitarily implemented. Let 8= Ad (w)oa. It follows
then that B preserves a normal positive linear functional ¢ = z(e-).
Hence {8": n € Z} is not integrable, so that {8"} is not conjugate to any
integrable action of Z. But there is a unitary ve M as seen in §2 that
{(Ad v B)"} is integrable, even dominant. Hence B and Ad(v)-B are
not conjugate; therefore either 8 = Ad (w)oa or Ad(v)o8 = Ad (vu)o
is not conjugate to a. Therefore, « is not stable. q.e.d.

ProoOF or THEOREM II.1.6. Let {®,, @,} and {&;, @;} be two quasi-
commuting pair of dominant weights on an infinite factor M with sep-
arable predual such that «(®,, ®,) = a(d®], @}), say « for short. By the
uniqueness of a dominant weight, there exists a unitary w e M such that
@, = @, ,. Replacing @&, by @;,, we reduce the situation to the following:
given three dominant weights @, ¢, and 4 on M such that {®, ¢} and
{@, v} are quasi-commuting with a(®, ) = @(®, ) = @, we must show
that there exists a unitary « in M; such that ¢ = @,.

Let M = W*(N, R, 6) and {u(s): sR} be a continuous decomposition
of M and the one parameter unitary group in M associated with this
decomposition. We may assume that @ is the weight on M dual to a
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trace o0, =e67't, t € R. For short, put v, = (Dgp: D®),, and w, = (Dy: D®),,
scR. We have then

oi(v,) = ey, and o(w,) = 6w, ;
Vops = D0, ,  W,p, = 6w W, .
For each se R, put
a, = e7* 2y y(as)* and b, = e uas)* .

It is easily seen that {a,} and {b,} are both continuous and parameter
families of unitaries in N such that

Gors = Q0,(a;) and b,., = b,0,,(b,) .
By Theorem 5.1, there exists a unitary # € N such that
a, = ub0,,(u*), seR.
Hence we get, for any s€R,
v, = 6 2q uas) = 6" 2ub,0,,(u*)u(as)
= ¢"™2yb u(as)u* = uw,u* .
Thus it follows that ¢ = 4. q.e.d.

CHAPTER IV. THE FLOW OF WEIGHTS AND THE
AUTOMORPHISM GROUP OF A
FACTOR OF TYPE III

IV.0. Introduction. The aim of this chapter is to extend the exact
sequence of [3, 4.5] to the general case from type III, case, 0 <M <1, for
the automorphism group Aut (M) and/or the outer automorphism group
Out (M) = Aut (M)/Int (M) of a factor M of type III in terms of the
flow F'y of weights on M and a continuous decomosition M = W*(N, R, 6)
of M. Since F” is functorial to each @ e Aut (M) there corresponds a
unique automorphism mod (@) of the flow F* as the restriction of @ e
Aut () to P,. Assuming M to be a factor of type IL,, we will see
that mod (@) is precisely the translation of L*(R¥) by multiplying Ma) > 0
where this positive number \(a) is determined by 7oa = Ma)r for the
trace ¢ on M. With this evidence, we call mod the fundamental homo-
morphism of Aut (M) in general. Considering the topologies in Aut (M)
and Aut (F'¥) as in preliminary, we will show that mod is continuous;
hence ker mod contains the closure of Int (M).

We next extend the modular automorphism group {o¢{} from the ad-
ditive group R to the multiplicative group Z'(F™) of unitary one cocycles
with respect to the flow F™ of weights. To each ce Z'(F™) and a
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faithful integrable weight @ on M, we associate an automorphism &¢ of
M by 6i(z) = p,'(,px(@))x for each e M(o% {\}). The relative com-
mutant theorem, Theorem II.5.1, then enables us to characterize these
automorphisms as those which leave the centralizer ejementwise fixed.
We then show that for a smooth ce Z'(F™) there exist a map: ¢ — ¢
from the space B of faithful weights to Aut (M) and a map: (@, ) —
(Dg: BWy), from WY, X W), into the unitary group U of M such that

o%(x) = (Dy: Dp),oi(x)(Dy: Dp); ,  weM,

which coincide with ¢f and (D+y: Do), if ¢; = A*. In this setting, the
modular period group T(M) of M is generalized to B'(F™) in the sence
that 7 is inner if and only if ce B(F™), see [30; Theorem 9.4]. Thus
we obtain a homomorphism 6, of H'(F¥), the first unitary cohomology
group of the flow F'¥, into Out (M) = Aut (M)/Int (M). Assuming M to
be semi-finite, we will see that (Dp: DTr), = f(1)*f(h) with ¢ = Tr(h-)
and ¢; = fFy(f*), fe L°(R}). From this, we view ¢ and (Dgp: D), as
functional calculus of the “generator” of the modular automorphism
group {of}.

In the last section, fixing a continuous decomposition M= W*(N, R, 6),
we obtain an exact sequence:

{1} — H(F") 22, Out (M) —> Out,, (N) —> {1} ,
where
Out,,. (N) = {@eOut (N): ex(0,)a = aey(0,), o = 7}

and &, is the canonical homomorphism of Aut (IN) onto Out (N).

IV.1. The fundamental homomorphism. Let M be an infinite factor
with separable predual, and F'* the smooth flow of weights on M.
Recall that F'¥ is just the action: ¢ —Ap of R* on the classes of in-
tegrable weights of infinite multiplicity. Let Aut (F'¥) be the group of
automorphisms F¥, (i.e., automorphisms of the abelian von Neumann
algebra P, which commute with the action F'” of R}). For any ac
Aut (M), the permutation: ¢ —@oa™ of classes of integrable weights of
infinite multiplicity defines a unique element mod (@) of Aut (F¥) such
that

mod (@) p,(p) = py(poa™), aeAut (M) .
DEFINITION 1.1. We call mod the fundamental homomorphism.
This name comes from the following:
ProposITION 1.2. If M s a factor of type II, with separable
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predual, then the map: M€ RX — F¥ e Aut (F¥) is an isomorphism and
for any e Aut (M) and o faithful semi-finite normal trace T we have

Teoa™ = mod ()7
where mod (@) is identified to N € R¥ with mod (@) =

ProoF. By assumption, F'” is transitive with trivial kernel, so that
every automorphism of F'” is of the form F¥, neR%. Hence for any
a € Aut (M) there exists A > 0 such that poa™ ~ np for every integrable
weight @ of infinite multiplicity. Since M is a factor, we have toa™ =
pt for some p>0. Let ¢ >0. As in the proof of Theorem II.4.7,
choose an heM, 1 —e = h <1+ ¢, such that ¢ = z(h-) is an integrable
weight of infinite multiplicity. We have then Ap = poatoAd (u) for
some unitary u € M, so that for every zec M,,

A(he) = Mp(x) = t(ha  (uru™)) = o a (a(h)uru™)
= pr(a(h)uzu*) = pc(u*alh)uz) .

Thus we get M = pu*a(h)u; hence (1 —e)h < (1 + e)p and (1 — &) <
(1 + e)n. Therefore, M = y, ¢ being arbitrary. q.e.d.

ProrosiTION 1.8. (i) If M 1is a factor of type III;, 0 <\ <1,
with separable predual, then the map: » € R — F¥ ¢ Aut (F*) is a homo-
morphism of R¥ onto Aut (F'™) with kernel S(M)N R¥, and for any
ac Aut (M) and o generalized trace ¢ on M, [3; 4.3], we have

o™ ~ANp with mod(a) =

(ii) If M is of type III, instead, then mod (o) = 1 for every ae
Aut (M).

Proor. (i) We know that the flow F'* is transitive with kernel

S(M) N R¥, so that the first assertion follows. Now let @ e Aut (M) and
@ be as above, and A, N, € RY be such that

poa ™t ~ N and oat ~ Ay

for any integrable weight + of infinite multiplicity on M. As above,
for any e >0 there exists an heM,, 1—e¢=h =<1+ ¢, such that
@(h+) = 4 is integrable and of infinite multiplicity. For some unitaries
u, ve€M we have dro@™ = Ny, and poa™ = N, so that for any x e M,

MoP(hUBU™) = Nypa() = (@ () = p(ha(x))
= pla(@(h)r)) = Mp(va(h)zv™) ;
NP u(U*hu) = Mpy((h)x) .
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Hence we get (Do, (u*hu-): Dp,(a(h)+)), = MA;", teR. Let T, be the
generator of the modular period group T(M). Then

(Dp(w*hu-+): Dp,)r (Dpy: Dpy)r(Dp,: Dp(a(h)+))r, = MIOATHo .
As we have
(Dpy: Dp,)r, = (Dpy: Dp)ry(Dpy: D)7,
= w*of,(w)of (v v =1,
we get
MO0 = (Do, (u*hw+): Dp,)r(Dp,: Dp,(ah)))r, -

The right hand side tends to 1 when ¢— 0, so that M ;" belongs to S(IM).
(ii) We know that the flow F'” is trivial for a factor of type III.
q.e.d.

PropoSITION 1.4. (i) If M s an infintte factor with separable
predual, then Aut (F'¥), equipped with the simple convergence topology
with respect to the norm topology in (Py)y, 8 a polish topological group.

(i) If M vs o factor of type III,, N # 0, with separable predual,
then the isomorphism of R¥/S(M) N Ri onto Aut (F'¥), given by Proposi-
tion 1.8, is a topological isomorphism.

PrROOF. (i) This follows from the fact that Aut (F¥) is a closed
subgroup of the automorphism group Aut (P,) of the separable abelian
von Neumann algebra P,,.

(i) The map: v e R — F'{ € Aut (F'™) is continuous, so the isomor-
phism of R*/Ri N S(M) onto Aut (F¥) is continuous whose domain is
compact. Hence it is a homomorphism. q.e.d.

We are now going to show the continuity of the fundamental homo-
morphism mod. Let M be an infinite factor with separable predual.
We represent Aut (M) on the predual M, by considering the transpose
of each automorphism, then consider the pointwise convergence topology
in Aut (M) as in the preliminary. What we are going to prove is that
mod is a continuous homomorphism of Aut (M) into Aut (F'¥).

LeMMA 1.5. Let M be a von Neumann algebra with separable predual,
and N the unitary group of M with the uwiform structure of the o-
strong® convergence. Let a be a continuous action of a separable locally
compact group on M. Then the set ZL(G, N) of all V-valued continuous
Junctions on G such that wu,, = u,,(u,), 9, h € G, s @ Polish space with
respect to the uniform convergence topology on compact sets in G.

ProoF. Let d be a bounded complete metric of 1l giving the uni-
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form structure of the o-strong™ convergence. Let {K,} be an increasing

sequence of compact sets in G such that G = U, IQ{,,, where I°{,, means
the interior of K,. Put

o, v) = 3 sup duy v,), w, v e ZG 1) .

2=12"geK,

It is not hard to see that ¢ is a complete metric on Z.(G, 1) giving the
uniform structure in question. Furthermore, Z.(G, 1) is a closed subset
of the separable complete metric space of C(G, 1) of all continuous U-
valued functions on G with the same metric o. q.e.d.

PrOPOSITION 1.6. In the same situation as above, let U, = {ucl:
a,(u) =u,9g€G}. Then the map d: well —dwe Z (G, N) with (dw), =
w*a,(w) induces a Borel isomorphism d of the quotient Borel space M\
onto a Borel subset B of Z.(G,1N).

Proor. Since 11, is a closed subspace, U\l is a Polish space. Now
we claim that the map d is continuous. By Akemann’s result [1], the
o-strong* topology in a bounded set in M is given by the uniform con-
vergence topology on every weakly compact set in M,. It follows then
that the map: (@, 9) e L X G—poa, € M, is continuous on every weakly
compact set L in M,, where we consider the weak topology in M,;
hence the set {poa,:peL,gc K} is weakly compact in M, for any
compact subset K of G and weakly compact subset L of M,. Hence if
{w,} is a sequence in U converging to w, then {{a,(w,), )} converges
to {(a,(w), ) uniformly for ge K and peL as m— oo; hence a,(w,)
tends to a,(w) uniformly in 1l for ge K. Since 1l is a topological group,
wre,(w,) converges to w*a,(w) uniformly for ge K. Hence d(w,) con-
verges to d(w) in Zi(G, ), which means that d is continuous. Further-
more, d(w,) = d(w,), w, w,el, if and only if wwy e, Therefore, d
induces a continuous injective map d from U\U into ZL(G,1). Hence
it follows from [17] that the induced map d is a Borel isomorphism from
U\l onto a Borel subset B of Z,(G, 1). q.e.d.

ProPoOSITION 1.7. Let M and W be as before.

(1) The space TS, of all faithful weights » on M is a Polish space
with respect to the topology of wuniform convergence of the (D+r: Dp),
in N on compact subsets of R with e, fixed; and this topology is
independent of the choice of o.

(ii) For a faithful weight @ on M, the set {yecBWy:p ~y} = W,
18 a Borel subset of ,, and there exists a Borel map u:y€ W,—
u(yp) €W such that @,y = 4, ¥ € W.
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ProoF. (i) With e, fixed, the topology in W, is identified
with that in Z!s(R, 1) under the correspondence: « — (D: Dp) € Z'o(R, 1),
Hence the first half of the assertion follows from Lemma 1.5. Let {y-,}
be a sequence in W, converging to . Then (D+r,: D), — (D: Dp), in
U uniformly on compact subsets of R. For any other faithful weight ¢’,

(Dvrn: D), = (Dt Dp)(Dp: Do), — (Do: Dp)(Dp: Dp'), = (Djr: Do),
in U uniformly on compact subsets of R. Hence the topology in B, is
independent of the choice of .

(ii) We apply Proposition 1.6 to G = R and a = ¢°. It follows then
that @ ~ 4, v €W, if and only if (Dy: Dp)ed(ll). Let f be a Borel
cross-section from U\ to U, and put u(y) = fo d"(D+: Dp). Then w is
a Borel map and ¢, = 4+ by construction. q.e.d.

PROPOSITION 1.8. Let M be as above, and Aut (M) be equipped with
the stmple norm convergence topology in M,. For any ¢, the map:
acAut (M) —poa e, is continuous n the topology on B, defined
above.

PROOF. Let «+ be a faithful normal state on M. If @,— ¢, in
Aut (M), then [[4roa; —poa™||—0. Hence by [4], (Do a;*: Dapoayt),—1,
# — oo, uniformly on compact subsets of R. For any ¢e2,, we have

(Dpoaz': Dpoas™), = (Dpoty's Dapot)(Dpocy*s Dapocy™) (Dot : Dpoaty ™),
= @, (Dp: D) )(Dyp o az*s Do o a) 0o (Dp: Dp),)

Thus we have only to prove that «,(Dp: Dy,) — a((Dp: Dy),) in 1 uni-
formly on compact subsets of R. Hence we will show that a,(u) — a(u)
in 1 uniformly for w in a compact subset of K of . For any u, vell,
«, feAut (M) and we M,, we have

Ka(u') — B(v), (l)>i = Ku, Worx — (00,8>l + |<u -, CO°,8>|
= ”(00(,15 - Q)OBH + K% -, (00,8>l ’

80 that the map: (@, u)e Aut (M) X U —a(u)ell is continuous, because
the o-strong® topology and the o-weak topology in 1 coincide. Hence
A={a,u);:uecK,n=0,1,- .-}l is compact, so that the o-weak uni-
form structure and the o-strong® uniform structure agree in A. For
any fixed weM,, the set B={w-a,:n=20,1,---} is compact in the
norm topology. For any ¢ > 0, there exist w,, uy -+, %, in K such that
inf cicm [{u—u;, woe,y|<e for every u € K and n=0, 1, ---, by Akemann’s
characterization [1] of the o-strong® topology in M. Let n, be large
enough so that [{u;, woa,—woa,| <e for every n=n,and 1 =1,2, - -, m.
We have then, for any we K and % > n,,
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[Kw, o, — woat)| < Kt — Uy, Wo, — Wo)| + [{ty, Wo, — @)
<2 +e=3¢. :

Thus {a,(u)} converges to a,(u) o-weakly and uniformly for u e K; hence
it converges to a,(u) o-strongly* uniformly on K. g.e.d.

We are now at the position to state the continuity of 7.

THEOREM 1.9. Let M be an infinite factor with separable predual.
Then the fundamental homomorphism mod s a continuous homomor-
phism of Aut (M) into Aut (F'), where we consider the simple norm
convergence topologies im M, for Aut (M) and in (Py). for Aut (F¥)
respectively. Hence mod () = ¢ for every aclInt (M).

PrROOF. We know, as in the preliminary, that Aut (M) is a Polish
topological group as well as Aut (F'¥). Hence we just have to prove
that v, is a Borel map.

By construction, mod (a) = ¢ for every aclInt(M). Let @ be a
dominant weight on M, and p; be the isomorphism of the center C; of
M; onto P, defined in Theorem I.1.11 and the proof of Theorem II.2.2.
We claim that for any ac Aut (M) with @oa™ = @

(%) p3' mod (@)p; = &g .
To see this, let w be an isometry in M with ¢ = uu™* € C;. Then we have
mod (a)<p)1(@u>) = pM((Du"a—l) = pM(a—)a(u))
= pa(ale)) by Theorem I.1.11 (ii);

hence

mod (@)(pi(e)) = pu(ale)) .
Let u(-) be the Borel map from the set W, of dominant weights on M
to the unitary group 1 of M defined in Proposition 1.7(ii) such that
@,y = 4 for any dominant weight +. By Proposition 1.8, the map
h:acAut (M) — h(a) = Ad (u(@oa))oaec Aut (M) is a Borel map, since
the map Ad:vell— Adve Aut (M) is continuous. We then have

mod (&) = mod (Ad (w(® -« %)) mod (@), @ € Aut (M) ;
(Doh(&{)_l = ((Doa—l)u(aoa"i) = d-) ;
therefore
p3' mod (A)p; = h(@)|e; by (%).

This shows that mod is a Borel map. q.e.d.

THEOREM 1.10. Let M be a factor of type III,, » # 1, with separa-
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ble predual. Viewing the fundamental homomorphism mod as a homo-
morphism of Out (M) = Aut (M)/Int (M) into Aut (F¥) by the trivial
identification, the following three conditions for @cOut (M) are equi-
valent:

(i) mod (@) = ¢

(i1) There exists a faithful normal state @ on M and o represen-
tative a, of & such that

Py =@ and Gy, =c¢;

(iii) For any & > 1 such that le™*, e[ N S(M) = {1}, there exists a
Jaithful mormal state @ on M and a representative «, of @ satisfying
(ii) and

Sp (4,) N Je™, e[ = {1} .

To prove the theorem, we need the following lemma which is a

slight refinement of Lemma 1.2.3 and [3; Lemma 5.2.4].

LEMMA 1.11. If + is a faithful weight on o factor of type III,,
N #= 1, then for any ¢ > 1 with le7, e[ N S(M) = {1} there exists a posi-
tive h<Cy such that, with ¢ = 4 (h+) and e = s(h),

Sp (4,) N ]e™, ] = {1},
where 4, means of course the modular operator corresponding to {M,, p}.

Proor. This follows from Lemma I.2.8 and the observation that the
operator H e My, in the proof of Lemma I.2.3 is indeed in Cy, because
each spectral projection of H is given by the left support projection of
M(o¥, V') for each closed subset V of R which belongs to Cy. q.e.d.

Proor oF THEOREM 1.10. (i) = (iii): Suppose 7,(@) =¢ and @ is a
dominant weight on M. There exists a representative a, of & such that
o, =@ and @,|,; =¢ Let heC; be a positive operator such that
@ = @(h-) satisfies the condition in Lemma 1.11. It follows then that
poa, = @. Since M,D M;, with ¢ = s(h), we have C,cC;, = C;,. by
Theorem II.5.1. Therefore, we have

poa,=¢ and g, =¢.

Being lacunary, ¢ is strictly semi-finite, so that the restriction z of ¢
to M, is a faithful semi-finite normal trace. Since a, leaves 7 invariant
and C, elementwise fixed, we have a,(p) ~ » in M, for every projection
peM,. Let p be a projection in M, such that ¢(p) < + . It follows
then that ¢ = (1/p(p))p, is a normal state of M. Let w be a unitary
in M, such that upu* = a,(p). Put a, = Ad(u)toa,c@ We have then
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Jroa, = +p and that a, leaves Cy elementwise fixed. Let w be an isometry
of M such that ww* = p. Put
a(x) = w*a(wrxw*)w , reM;
Yo = Py
We have that +, is a faithful normal state on M, +,oa, = 4, and &,
leaves Cy, elementwise fixed. Since @, = Ad (w*a,(w))o, and w*a,(w)
is unitary, «, belongs to @. Thus (iii) follows.

(iii) = (ii): Trivial.

(ii) = (i): Let a,c Aut (M) and @ be a faithful normal state on M
satisfying the condition in (ii). We consider the tensor products M =
MQRF., d=pQRQwo and a,®¢ = &,. From the proof of Theorem II.5.1,
it follows that the center C; of I is a von Neumann subalgebra of
C, ® U(L(R)). Since alq, =¢, a, leaves C, ® U(L™(R)) elementwise
fixed. Hence C; is fixed elementwise by &, Therefore, we have
mod (&,) = mod (a,) = 1. q.e.d.

IV.2. The extended modular automorphism groups. Throughout this
section, let M be an infinite factor with separable predual, P,, 0., F™
and so on be as before. Let Z(F*) be the set of all o-strongly* con-
tinuous functions {¢;} on R* with values in the unitary group of P,
such that

Cip = ckFﬁl(c#) ’ A, eRi ’

and B!'(F™) be the set of all elements in Z'(F¥) of the form: Ae R} —
v*F¥(v) for some unitary veP,. Under the pointwise multiplication,
ZYF™) is an abelian group, and B'(F'Y) is a subgroup of Z'(F™). Put

HY(F™) = Z\(F*)|B\(F™) .
For each tc R, let ¢ denote the element in Z'(F™) defined by
T(\) = A, rMeRE .

PROPOSITION 2.1. If @ is an integrable faithful weight on M, then
to each ¢ € Z'(F™) there corresponds a unique automorphism ¢ of M such
that

(1) 6iz) = pi'(cwu(@)w for every xe M(a?, {A}), N> 0;

(ii) @od? =@ and 6f,, = 0;°0%, ¢, ;€ Z(F");

(iii) 6% =o?, teR.

PrOOF. (i) The uniqueness of ¢ follows from Lemma II.2.3. Let
M = W*(N, R, 6) be a continuous decomposition of M, and = be a faithful
semi-finite normal trace on N such that t00,=¢7°7, se R. Let {u(s): s € R}
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be the one parameter unitary group in M canonically associated with
the decomposition W*(N, R, 6) = M. We know that the dual weight
® =7 is dominant, and that @,, = ¢ @ and F¥op;(x) = Dz°0_roei(®)
for every x in the center C of N and M > 0. For a fixed ¢e Z'(F¥),
we put
bs = pEl(cea) ’ sER.
It follows then that b, is a unitary in C and
bs+t = baaa(bt) ’ 8, te R .
Hence there exists a unique automorphism &, of M = W*(N, R, §) such
that
7, (au(s)) = b,au(s) , aeN,seR.

Thus we have shown that ¢° exists for a dominant weight @ on M.

Now, let v be an isometry in M with vv* = ec M; = N such that

@ = @,. Observing that ¢ is fixed under 6°, we define an automorphism
a of M by

a(x) = v*oe(vev*)v , xeM.
Since the map: 2 ¢ M — vxv* € M, is an isomorphism of M onto M, which
brings @ to 6° and ¢¢ to o7, te R, we have
a(x) = v*p3i(c)vxe,  weM(o® {A).
Thus we must show that
vz @)y = P (apu(P)) ,  acPy.
To this end, we may assume that a = P,(y) for some integrable o,
since py(4r)’s generate P,. We have then
p,(v*p3'(a)v) = p,(v*cz(v)v) by Theorem I.1.11,
= py(c;,(v)) by Lemma I.1.6,
= Pp(Co(¥)) = Du(¥)Du(p) by Theorem I.1.11,
= aPu(P) -
Thus « satisfies the requirement for &¢.
(ii) We know that @o6? = @ by construction. Thus &%, namely
¢, preserves ¢ by definition.
(iii) If ¢ = %, then ¢; = A%, so that we get
Po(Cipu(®)) =A%,  A>0.
Hence ¢ = o}, g.e.d.

THEOREM 2.2. Let ¢ be an integrable weight on M. If ac Aut (M)
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leaves M, elementwise fixed, then o = 67 for some ce Z'(F™).

ProOF. Let @ be dominant, and M = W*(N, R, 6) be the associated
continuous decomposition of M and {u(s)} the one parameter unitary
group in M appearing in the decomposition. First we assume that «
is an automorphism of M leaving N elementwise fixed. For each s€ R,
let b, = a(u(s))u(s)*. By Theorem IL.5.1, b, belongs to the center C of
N and

by = b,0,(by) , s, teR.
Furthermore, we have
a(xzu(s)) = b,xu(s) , xeN,seR.

Hence, putting ¢; = p5(b_rog2), M > 0, we get @ = G5,

In the general case, there is an isometry u with uu* = e€ N such
that ¢ = @,. Suppose that e Aut (M) leaves M, elementwise invariant.
Considering the automorphism: ¢ € M, — ua(u*zu)u* ¢ M,, we may assume
that a e Aut (M,) leaves N, elementwise invariant.

For every ze N, and sc R, we have

zaeu(s)e)eu(s) e = a(reu(s)e)eu(s) e
= aleu(s)ed_,(xe))eu(s)*e
= a(eu(s)e)d_,(xe)eu(s)*e
= a(eu(s)e)eu(s)*exed (e) ,
so that b, = a(eu(s)e)eu(s)*e € Ced,(¢). A direct computation shows that
bs+tﬁs(e) = bsax(bt) ’ 8, te R .
Thus there exists, by Proposition A.1, b’ € Z}(R, 11;) such that b, = b,eb,(e),
scR. Define an o’ ¢ Aut (M) by
' (xu(s)) = bixu(s) , xeN,secR.
We have then
a(x) = a'(x) for every xzelM,.
Putting ¢; = p;(b1.¢2), We have & = 7, so that a = g¢. q.e.d.

ExaMpPLE 2.3. Let N be an infinite semi-finite factor with separable
predual. We identify {Py, F¥} with L*(R%, d\) acted by the translation
of R¥ as in II.2. We then conclude the following:

(i) For every ce Z'(F”) there exists a unique, up to scalar multi-
ple, unitary fe L*(R¥, d\) such that ¢; = fF,(f*), » > 0.

(ii) With ¢ = df as in (i), and ¢ = 7(h,+) as integrable weight, we
have
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6¢ = Ad (f(hy)) .

Proor. (i) This is known.

(ii) We have first that ¢f = Ad (h¥), t€ R. The integrability of ¢
implies that the spectrum of h, is absolutely continuous with respect to
the Lebesgue measure, so that f(h,) = u makes sence. Let a be a
partial isometry in N(o%, {\}), A>0. We have then hlah;*=\"a, tcR,
so that a*ha = (Ah,)*a*a. Therefore, we get

a*f(hy)a = f(Zhy)a*a ;
F(hp)af(he)* = af(he)* f(Nhy)a*a

= F(\V'he)* f(Ry)a = D5 (Cpu(P))a

= d%(a) .
Therefore, ¢ and Ad(f(h,)) agree on the set of partial isometries in
N(o?, {\}), »>0. But any element of N(o? {\}) is the product of a
positive element in N, = {h,}’ " N and a partial isometry in N(o*, {\})
by polar decomposition. Thus ¢ = Ad (f(h,)). q.e.d.

This example shows what we deal with by considering &¢: it may
be called a “functional calculus” of the “generator” of the modular auto-
morphism group.

Il

THEOREM 2.4. Let ¢, and @, be faithful integrable weights on an
wmfinite factor M with separable predual, eand P= M & F,. Put

3 2
o( i;.__lxi,j R e.,7) = P(xy) + Po@s), * = Mzzlxm' Xe;,;€P.

We then conclude the following:
(i) To each ce Z'(F™), there corresponds a unique unitary u, =
(D@,: Dop,), in M such that
i1l Rey) = u R ey ;
(i) We have
a2 (x) = w00 (x)ulk , xeM, ceZ'(F™);
Woyoy = W, 001 (Uey) » Cy C, €LY (F™) .

PrRoOF. The integrability of ¢ follows from that of ¢, and @,
Noticing that 1 ®e,;€P,, 1 = 1,2, and /(xR e;;)) = 604 (x) R ey, © =1, 2,
we follow the arguments for the unitary cocycle Radon-Nikodym theo-
rem, without any alteration. q.e.d.

COROLLARY 2.5. Let M be an infinite factor with separable predual.
Let ¢, denote the canonical homomorphism of Aut (M) onto Out (M) =
Aut (M)/Int (M).



560 A. CONNES AND M. TAKESAKI

(i) For every ce ZYF™), the element ¢,(¢?) of Out (M) is inde-
pendent o]_” the choice of anm integrable weight @. Put dy(c) = €,4(3%).

(ii) 0y 18 an extension of the modular homomorphism (8,(t) =
0,4(t), te R) and Ker d,, = B'(F™).

(ili) The range of 6, 8 a normal subgroup of Out (M) with

ad(c)a™ = 8, (mod (@)c) , aecOut (M) .

ProOF. (i) Trivial from the previous theorem.

(ii) The first half follows from Proposition 2.1(iii). Let @ be a
dominant weight and ce Z'(F¥). Assume that ¢° = Ad (u). Since 7
leaves M; pointwise fixed, we have 4 ¢ C; by Theorem II.5.1. It follows
then that

¢ = pa(u)* F¥(ps(u)), N>0.
The converse is proven the same way.

(iii) Let @ be dominant as before, and @€ Aut (M). Multiplying «
by an inner automorphism, we assume @oa& = ®, so that

p3'omod (@) o p; = &gy .

If 2 is an element of M(o® {\}), then a ‘(x)e M(c°, {\}), because a and
0° commute; hence
o o7 o (x) = a(p="(cpa™(w) = a(p3'(c))w
= p=' (mod (@)cy)x . g.e.d.

THEOREM 2.6. Let M be an infinite factor with separable predual,
and WYy the space of all faithful weights on M with the metric d de-
fined in I1.4. If ce Z'(F¥) is twice continuously differentiable in norm,
then there exist umiquely maps: @ € By — 67 € Aut (M) and (p, ) € By, X
WY — (Dp: D), e WM), the unitary group of M, with the following
properties:

(i) If @ 1s integrable, then G¢ satisfies condition (i) in Proposi-
tion 2.1. If @ and + are both integrable, then (Do: D), is given by
Theorem 2.4(i);

(ii) The both maps are continuous with respect to the norm to-
pvologies in Aut (M) and UM);

(iii) For each x €M, we have

G¢(x) = (Dp: D) 6%x)(Dp: Dip)s
(iv) For each o, ¢, ¢, €Ty, we have

(Do, Dpy), = (Dp,: Do) (Dp,: Dpy),
(D¢13 D@z)c = (Do, D%)Z‘ H
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(v) For any acAut (M) and wecW(M), we have
0% = 000w °Q ;
(Dpea: Do), = a”(Dp: DY)moaarc) 5
(D@t Dap), = w*(Dp: Dap),05(w) ;
(vi) If e, c,e€ Z(F™) are twice differentiable in norm, then
Gley = 05,°08,;
(Dp: DY)ey, = (Dp: DY), 5%(Dp: Dp).,) -

The uniqueness of these maps follows from Proposition 2.1 and the
density of integrable weights in T8,.

LeMMA 2.7. Let cc Z'(F™) be as vn the theorem. For any ¢ > 0
there exists 7 > 0 such that for any faithful integrable weight ¢ on M:

x € M(o?, [e77, e7]) = [|6¢(x) — x| = el[=]] .

Proor. Without loss of generality, we may assume that ¢ is domi-
nant. Put b, = p,'(c.s), s€ B. Let {u(s)} be the one parameter unitary
group in M which, together with M,, generate M as a continuous de-
composition M = W*(M,, R, §). We then have

at(u(s)) = bu(s) , seER.

If f is a function in the Schwartz space S7(R), then the M-valued func-
tion: seR—\| e 7 f(p)b,dpe M is integrable by the twice differenti-
ability of {b,} and we have

arai@) = " (|7 e s, )otwis,  wen,

where we recall that the measures dp and ds are the Plancherel measures
on R. Put

a, = Sw e~ f(p)b,dp , seR.
It follows then that
o}@) = 6t ooiw) = | (Fs) — a)ot(@)ds .

Let g be a function in L'(R) such that g(p) = 1 for » in a neighborhood
of 0. If f(0) =1, then

[ " (7t6) = adatwiozisdt = (70) — bosta) = 0.
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Hence we have

ao0i(o - 51@) = | |7 (7o) ~ @)oo, (@)dsdt

= S:gl(f (8) — a,)(g(t — s) — g(t))of(x)dsdt ;

0
—00

lo5oa3(e — 2@l < llall |” |7 176) = aulllott — 5) — g(t)|dsde

Put h(s) = IIf(s) — a,|l. Then h belongs to L'(R). Hence there exists a
sequence {g,} in L'(R) by [25; page 50] such that §,(p) =1 for |p|<1/n
and

e =" |" )10, — ) — 0.1 dsdt—0 as n—0.

If f(p) =1 for |p| < 1/n, then we have
o5 oo%(x — 6i(x)) =« — Gi(x) , x € M(o*, [e7V", eV*]) .
Thus the conclusion follows. q.e.d.
LEMMA 2.8. Let ce Z*(F™) be as in Theorem 2.6. For any ¢ > 0,

there exists 7 > 0 such that for every faithful integrable weights @, and
@, with d(p,, p.) < N we have

|(Dp.: Dp,), — 1| = €.

Proor. We keep the notations in Theorem 2.4. It follows from
I1.4 that d(p,, @,) <7 means 1® e, € P(0%, [¢77, ¢’]). Hence, choosing 7 > 0
as in Lemma 2.7, we get

u, — 1| =[|0i1l R ey) — 1| = €.
q.e.d.

LEMMA 2.9. Let ce Z'(F™) be as in Theorem 2.6. Let ¢ be a
Saithful weight of infinite multiplicity.

(@) {p.} s a sequence of faithful integrable weights such that
lim,_. d(@, @,) = 0, then the sequence {G¢»} of automorphisms comverges
to an automorphism, say ao¢, of M.

(b) ¢ does mot depend on the choice of a sequence {p,} and satisfies

pods =@ and &%y, =¢.

Proor. Since we have, by the definition of (Dp: D+),

I(D@w: Dp))s — (Dpa: Dpy)oll = [[(DPwmt Dpa)e — 11|,

it follows from Lemma 2.8 that {(Dp,: Dp,),} is a Cauchy sequence of
unitaries in M. Put
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(Dg: D), = u, = lim (Dop,: D). ,
and
¢ = Ad (u,)oG?r .
It follows also from Lemma 2.8 that (Dg: Dgp,), does not depend on the

choice of a sequence {p,} but only on ¢ and ¢,. By construction, we
have

lim ||6? — 6¢=|| = 0.
Let {@,} be a sequence of faithful integrable weights given by ¢, =
o(h,+) with h,e M, such that &, < h,,, and lim, .||k, — 1||=0. We
have then, for any xze M.,
p(z) = lim p(x*h,2"*) = lim ¢, (x)
= lim @, o 5¢»(x) = lim @(h;*G¢(2x)h,*)
= @odl(x)

by the lower semi-continuity of ¢. Replacing ¢ by ¢!, we have ¢(x) =
@0 (x). Therefore, we get pod? = . Let 4 be an integrable faithful
weight with d(p, ) <e. Then we have M,c M(c¥, [¢™*, ¢*]). There-
fore, Lemma 2.7 entails the last assertion of (b). q.e.d.

Proor oF THEOREM 2.6. With possible exception for (vi), all state-
ments for faithful integrable weights follow from Proposition 2.1, Theo-
rem 2.4 and Lemma 2.8. Let ¢ €W be integrable and ac Aut (M). It
follows then that

Do = mOd (@) o Pyoa;
hence for each x € M(c*%, {\}) we have
07°(®) = Prule)a = [ o p,* o mod (@)(c)]w
= a Y(p,;(mod (a)(cy))x(x))
= a—l o 6ﬁlod(a)o(a(w)) .

Hence we get the first part of (vi) for integrable weights. The last two
formulas for integrable weights follow from this and the usual 2 x 2-
matrix arguments.

Let @, and v, be arbitrarily fixed faithful integrable weights. For
each faithful weight ¢ of infinite multiplicity, we put

(Dp: Dgy), = },iff (Dp,: D),

with a sequence {p,} of faithful integrable weights converging to @ in
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the metric d. We know that this does not depend on the choice of {p,}.
We define

(Dp: D), = (Dp: Dpy)(Dp: Do)

for a pair @, 4 of faithful weights of infinite multiplicity. With sequences
{p,} and {y,} of integrable weights converging to @ and -, we have

L{rg (D@,: Dpy)(Dyry: Dpy)y
= Lim (Dpa: Dpo)o(Dpo: Dro)o(Dro: Dpo)o(Dira: Do)
= Um (Dp,: Dap)o(Darat Do) 5
hence the above definition of (Dg: D4r), makes sense. Given ¢ > 0, if
d(p, ¥) < n with 9 > 0 in Lemma 2.8, then
|(Dp: Dpy), — (Dvp: Dpy). || = lim || (Dpa: Dpy)e — (Dpaz Do) ||
= lim ||(Dg,: Dy). — ]| e .

Therefore, if d(p, ¢’) <7 and D(, 4') < 7, then we have
|(Dg: D), — (Dg's D), ||
= |[[(Dp: Dpo)o(Dyr: Dpy)s — (DP": Dpy) (Dy': Do), || = 2¢ .
Thus, by Lemma 2.9, Theorem 2.4 and continuity, all statements for

faithful weights of infinite multiplicity hold.
Let @ be a faithful weight of infinite multiplicity and w be an

isometry with ww* e M,., We define
(De,: Dp), = w*ai(w) .
If » is another isometry with vv* € M, such that ¢, = ¢,, then we have
v*0{(v) = (Dp,: Dp), = (Dpy: Do), = w*of(w), teR,

so that we have vw* € M, and &{(vw*) = vw* by Lemma 2.9. Therefore,
v*¢0(v) = w*d?(w). Thus (Dg,: Do), is well-defined.

If » and + are faithful weights of infinite multiplicity and v and
w are isometries of M with vv* € M, and ww* € My, then we define

(Dpy: Dpy)e = (Dpy: Dp)o(Dpe Dop) (Dofry: Dap)¥

It is then shown, by the similar arguments as above, that (De,: Ddapr,),
is well-defined. Since any faithful weight is of the form ¢, for some
o of infinite multiplicity, (Dp: D), is defined for a general pair o, 4
in W4. We then define, fixing a faithful weight ¢, of infinite multiplicity,

G¢(x) = (Dp: Dg,),65(x)(Dpy: Dp), , ax€M.
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It follows from the chain rule that ¢ does not depend on the choice of
@ A straightforward argument shows that conditions (iv), (v), (vi)
and (v) hold.

Thus, the only thing remains to be shown is the continuity of
(D@p: D), in general. We consider P = M Q F.. It is easily seen that
for any o, 4 € ), we have

(D(p @ Tr): D(y ® Tr))., = (Dp: D). Q1 ;
d(p & Tr, ¢ & Tr) = d(p, ¥) .

Hence the continuity of (Dg: D+), on @, 4 follows from the continuity
of two maps: (@, 4)eBWy X W — (p @ Tr, » Q Tr) e W x Wi and
(@@ Tr, + Q@ Tr) — (D(p ® Tr): D(v @ Tr)),. The continuity of the map:
@ — 0¢ is automatic after this. q.e.d.

ExAMPLE 2.10. Let N be an infinite semi-finite factor with separable
predual. As in Example 2.3, let ¢ = dfe Z'(F") and ¢ = t(h,+) a faithful
weight on N. Then we have

(Dp: D7), = f(1)*f(hy) .

We leave the proof to the reader.

COROLLARY 2.11. Let M be an infinite factor with separable predual.
Let ce Z'(F™) be as in Theorem 2.6. Let ¢ be o favthful weight on M
and put

¢(h) = (D(@(h+)): D),

for each mon-simgular self-adjoint positive operator h affiliated with
M,. We conclude the following:

(1) e¢(h) falls in the center of {h} N M,;

(ii) eeo(h) = c,(h)ey(h) for every twice differentiable e, ¢, Z*(F™).

Proor. (i) Let P= M F, and

Vo) = pla) + P, @ = 3 a5 Q6. €P.
Let u =1 e,. We have then
c(h) @ ey = GY(w) .
Since o¥(u) = h* ® e, we have o¥(uw)u* € Py, so that
ol (u*)yu = G¥(o¥ (w*)u) = a¥ (GY(w*)a? (u) ;
hence
e(h) ® ey = w*a¥(u) = o (u*GY(u)) e Py ,
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which means that c(h) € M,.
If xe{rY N M,c M, N M,,., then we have
x = 7" (x) = e(h)ai(x)e(h)* = c(h)xe(h)* ,
so that c(h) € ({h} N M,) N M, = the center of {h} N M,.
(ii) This follows from (i) and Theorem 2.6 (vii). g.e.d.
We now apply Theorem 2.6 to a factor given by the group measure
space construction, and then compute the extended modular automor-
phism. Let M be an infinite factor with separable predual and ¢ a
faithful weight. Suppose that there exists a von Neumann subalgebra
N of M, with relative commutant N’ N M = C contained in N and a
continuous unitary representation u(:) of a separable locally compact
group G in M such that
wWg)Nu(g)* =N, geG;
M= {NUwGY}" .
By Theorem II.6.2, there exists a non-singular self-adjoint operator p,
affiliated with C such that
of(u(g)) = w(g)oy , teR,gel.

It is also easy to see, using N'N M = CcC N, that if ac Aut (M) leaves
N elementwise fixed, then there exists a one-cocycle {a,} € Zj(G, ;) such
that

a(u(g)) = a’au(g) ’ ge G ’
where the action 8 of G on N, hence on C, is given by
By(x) = u(g)ru(g)*, xeN,geG.

Let {I, p} be a standard measure space with C = L*(I", ¢£), on which G
acts in such a way that

By(@)(7) = x(¢g7Y), x€C,geG,vel.
We consider the action of G on I" X R defined by:
Ty(7,8) = (g7, s —logp,(7), 7vel,scR,gel.

Let k,(7) = — log p,(7), g€G, YeI'. By Theorem II.6.2, the center Cj;
of the dominant weight @ =@ w on MQ F, is identified with
L>(I" X R, 1t @ m)°, where m means, of course, the Plancherel measure
on R.

COROLLARY 2,12, In the above situation, if ce Z'(F™) is as in
Theorem 2.6, then the cocycle a € Zj(G, ;) corresponding to the extended
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modular automorphism & = 6% 18 given by the formula:
ag(7) = bryig—1(7, 0)
where b, = pz'(c,~:), s€ R.
Proor. For n =12, ..., put

0,(t) = %tan“l t, teR

¥,.(s) = tanns, - .,
(8) = tanns o < o
We define an isometry w, of L*(R) onto L*—mx/2n, 7/2n) by

(,E)(8) = VTL(8)ET (s) , —-2% <s< -2%, e IXR).

Clearly we have
(wrE)(t) = VO,(£)E0 D,(t) , teR,EeL¥~—n/2n, w/2n) .
Let @ be the weight on F, = ¥(L*R)) such that
Dw:DTr),=V,,

where {U,} and {V,} mean the one parameter unitary groups defined in
Chapter II. We have then

{(Dw,,: D Tr)&)(s) = (wz Viw,£)(s)
— eiw”(s)E(S) .

Hence we get d(w,,, Tr) = n/2n, so that w,, converges to Tr uniformly.
Therefore ¢ @ w,,, converges to ¢ @ Tr uniformly; thus we get

(Dp ® Tr: D®), = ’1‘1_.r£ Dy ® w,,: D®),
= lim (1 ® "3 Q@ w,) .
Let %, = (Dp Q Tr: D®), and u,, = (Dp ® w,,: Dd),. It follows from
the proof of Lemma 2.7 that
| Uy € b0y (1@ w)o¥(L @ w,): 5, t€ RY’ < C ® L(R) ,

and that

Un, oYy 8) = Do, 01-s(7, Da(8)) , vel,seR.
Therefore, we get u,c L~(I" X R) and

uo(7, 8) = b_,(7, 0),
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where we use the fact that the differentiability of b in norm, together
with the cocycle property, implies the continuity of b,(7, ¢) in .
We next have

o7 (w(g) @ D(u(9)* ® 1) = af(u(g)u(9)* L = B,(0)) ¥1eCR C,
so that o%(u(g) ® 1)(u(g)* ® 1) = d, belongs to CR L*(R) = L*(I" X R)
and we get
dy(7, 8) = bky(y“lr)(ﬁ": s) .
Since we have
a4, @1 = 68 (u(g) @ Du(9)* @ 1) = u.07(u(g9) @ (u(9)* @ 1)(B, ® &)(u¥)
= ucdy(ley ® ‘)(uf) ’
we have
ag('y) = uc(')’, s)dg(’)’, S)U'c(g_l'yy 8) = b—-s(ry, O)bky(g—lr)(7’ s)b—s(g_lfyy 0)
= bkg(y'lr)(ly’ O) .
g.e.d.

IV.3. The exact sequence for the group of all automorphisms.
Given a factor M of type III with separable predual, we have constructed
various mathematical objects: the flow F™ of weights, the fundamental
homomorphism 7, of Out (M) into Aut (F¥), the extension 5, of the
modular homomorphism and a continuous decomposition M = W*(N, R, 6).
Putting these things together, we compute Out (M) = Aut (M)/Int (M),
and generalize the exact sequence in [8; Chapter IV].

THEOREM 3.1. Let M be a factor of type III with separable predual.
If M= W*(WN, R, §) is a continuous decomposition of M, then there
exists a homomorphism 7 of Out (M) onto Outy.(N) which makes the
following sequence exact:

(1} — H'(F*) -2, Out (M) —— Out,, (N) — {1} ,

where
Out,,. (N) = {ey(a):ac Aut (N), af, = 6,&, sc R, o = 7} .

ProOF. Let @ be the dominant weight of M dual to the trace ¢
on N with 708, = ¢*z. By Theorem 2.2, if ac Aut (M) leaves N point-
wise fixed, then a = ¢ for some ¢ Z'(F™). By Corollary 2.5. (ii), « is
inner if and only if ¢ BY(F¥). Hence the map 6,:cc Z(FY¥)— &,(G?) ¢
Out (M) gives rise to an isomorphism of H'(F*) into Out (M) which will
be denoted by 4, again.

Let @ be an arbitrary automorphism of M. Then @oa is again
dominant. By the uniqueness of a dominant weight, there exists a
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unitary w € M such that @oaoAd (u) = @. Hence, putting
Aut; (M) = {acAut (M): woax = @},

we have Out (M) = ¢, (Aut; (M)). Let aecAut; (M). If a= 47 for some
ce Z\(F¥), then «|y=¢ by construction. If «|y, = Ad(u) for some
e U(N), then we have @oAd (u)™'|y =¢ so that a-Ad(u)™ = a; for
some ¢ € ZY(F™) by Theorem 2.2. Hence the kernel of the homomorphism
7: e € Auty (M) — ey(aly) € Out (N) is precisely the image of Z*(F™) under
°. Since we have

Aut; (M) N Int (M) = {Ad (u): w e W(N)},

v gives rise to a unique homomorphism ¥ of Out (M) into Out (IN) such
that ¥oe, = 7.
We examine the range of 7. Put

Auty, (N) ={acAut (N):ab, = 0,0, sc R, Tox = t}.
Let {u(s)} be the one parameter unitary group in M which appears in
the crossed product decomposition M = W*(N, R, §). Let aec Aut; (M)
and B = aly. Since & and {07} commute, we have o7(a(u(s))) = e*a(u(s)),
8o that a, = a(u(s))u(s)* e (V). It is straightforward to see that
as+t = a’ses<a’t) ’ S: teR ;

hence ac Zy(R, WN)). By Theorem III.5.1, we have a = b*0,(b) for some
beW(N). Thus we get a(u(s)) = b*0,(b)u(s) = b*u(s)b, so that ao-Ad (b)
leaves wu(s) fixed for every se R, which means that B0 Ad (b)=a-Ad (b)|y
and {0} commute. Since @oa = @, a|y leaves T invariant by the equalities
" @ =~r7oFE; and E;oa = E;, so that B8oAd (b) leaves r invariant. Thus
we conclude the inclusion:

7(Out (M)) C ex(Auty,. (N)) = Out,,. (N) .
Suppose Be Aut,.(N). A standard argument shows that S is ex-

tended uniquely to an @€ Aut (M) such that a(zu(s)) = Bx)u(s), €N,
s€ R. Trivially, we have a|y = 8. Thus we have

F(Out (M)) D ey(Auty,. (N)) .
q.e.d.

THEOREM 3.2. In the same situation as in Theorem 3.1,
Outy,. (N) = {@ € Out (N): ey(0,)0 = &ey(0,), se R, o = T} .

Proor. Let C denote the center of N. The unitary group IW(N)
of N is a polish group with respect to the o-strong* topology and U(C)
is a closed subgroup of W(IN). We consider the pointwise convergence
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topology in Aut (N) with respect to the norm topology in N,. The
map Ad:ueW(N)— Ad (u) € Aut (N) is a continuous h_imomorphism with
kernel 1(C). Hence the naturally induced map Ad:#eW(N)WC)—
Ad (u) € Aut (IN) is a continuous isomorphism from the polish group onto
Int (N). Hence Int (N) is a Borel subset of Aut (N) and the inverse
map Ad™ is a Borel map from Int(N) onto WN)/WC). Let T be a
Borel transversal of W(N)/W(C) in W(N), and let # = ToAd™. Then =«
is a Borel map from Int (N) into W(N) such that Ad (z(a)) = « for every
aeInt (N).

Suppose @ € Aut (M) commute with 4,, s€ R, modulo Int (M), that is,
ex(@)e(d,) = e(@,)ex(@). Put B, = @of,oa o cInt (N) and b, = n(B,) e
WN), se R. We have then

Ad(b,)el, = aocl,oat, seR.
By the one parameter group property of {a-6,0a™'}, we have

Ad (b,0,(b,) = Ad (b,+.) » s,teR.
Put

c(s, t) = b¥b,..0,(bF) e (), s,teR.
By a direct computation, we get
c(r, s)e(r + s, t) = 0,.(c(s, t))e(r,s + t), r,s,teR.

Hence ¢ is a Borel unitary 2-cocycle of the flow {C, 6}. By the triviality

¥R, W(C)) = {0} of the second cohomology group of a flow, see Appendix,
we can find a 1(c)-valued Borel function {d,} such that

c(s, t) = d*d, . 0,(d}), for almost s,teR.

Let a, = d,b,, se R. We then obtain a W(N)-valued Borel function {a,}
such that for almost every s,t in R,

Qyyy = a,ﬁ,(ag) ’ 8, te R ’
{Ad(a,)o(), =Qof,oa*,

By Remark III.1.9, there exists ¢ € Z}(R, W(N)) such that a, = a, for
almost every seR.

By the triviality of Hj(R, 1l(N)), Theorem IIL.5.1, we have an element
u € W(N) such that e, = u*0,(u), se R. Thus we get Ad (u*)c8,0Ad (u) =
aof,0at for almost every scR. Namely, Ad (u)o@ and {f,} commute
in Aut (M) by continuity. g.e.d.

REMARK 3.3. The exact sequence in Theorem 3.1 does not split in
general.
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APPENDIX

PROPOSITION A.l. Let G and H be separable locally compact groups
and {I', p} a standard measure space on which G acts ergodically. Let
E be @ Borel subset of I' with p(E)>0. Put A={(g,7)eG X E:g7cE}.
If b is an H-valued Borel fumction on A such that for every g, ¢g.€G
with ((E N g7 E N g9 E) >0

b(g.9: V) = b(gs, 9:7)b(gs, 7)

for almost every YeE N g:'E N g;'97'E, then there exists an H-valued
Borel function ¢ on G X I' such that

(g, =0bg,7), (9,MeA;
for every g, g.€G
(919 7) = (g1, 9:7)6(g )
Jor almost every vel.
PrROOF. Let G, be a dense countable subgroup of G. Let I';=U,cq,9E.

By ergodicity, we have pu(l" — I';) = 0. Hence we may assume I = [,
Then, there exists a family {F,: g € G,} of Borel subsets of E such that

F:UgEaf gEgnhEhZQ, g;&h.

gely
Define a G-valued Borel function a(:) on I" by
a(M)y=g9 if vegkE,,

and put ©(7) = a(v)""v € E, and po(g, 7) = a(g7)"'ga(¥). We have then

Y = a(Mo(?), @(g7) = p(g, () ;

0(9:9x 7) = (g1, 9:7)0(92 V) «
Furthermore, for each fixed geG, p(g, -) takes only countably many
values: indeed o(g, 7) € G,gG, for every veI'. Define

e(g, 7) = blo(g, 7), ®(7)) , geG,vel.
Since we can choose K, = E where 1 means the unit of G, we have
¢(g, ) = blg, ¥) for (g,7)€ A. Furthermore, we have
(9,92 ¥) = b(0(9:92 7), @(7)) = b(o(g,, 9:7)0(gz V), (7))

= b(0(9 9:7), (g2 MW(7))b(0(g2y 7), &(7))

= b(0(g,, 9:7), ®(9:7))b(0(gs, V), (7))

= (g 9:7)¢(9 7)
for almost every veI', where we use, in order to exclude a null set of
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7, the fact that o(g,, ¢.7) and p(g, ¥), Y€ ', are at most countable.
q.e.d.

The authors learned that the following result had been proven by
L. Brown sometime earlier. We present, however, a proof for the sake
of convenience of the reader, since Brown’s work is not yet available
in print.

PROPOSITION A.2. Let A be an abelian von Neumann algedbra with
separadle predual, and {a,:tec R} be an ergodic one parameter automor-
phism group of A. Then for every n = 2, we have Hi(R,1,) = {1}

Proor. By virtue of the representation theorem for flows, due to
Ambrose, Kakutani, Krengel and Kubo [12], [16], we may assume that
the flow {4, a} is built under a ceiling function from a single ergodic
automorphism. Let {I", ##) be a standard measure space equipped with
an ergodic transformation 7. Let f be a positive Borel function on I,
Consider the abelian von Neumann algebra B = L(I" X R, ¢t Q m), where
m means the Lebesgue measure on BR. We define a one parameter auto-
morphism group {8;} and an automorphism 6 of B as follows:

Blx)(,s) =x(V,s—t), xe€B, (v,s)el xR, teR,

(), 8) = x(T~", s + F(7)) .
The representation theorem says that {A4, a} = {BY B} for a suitable
choice of I, ¢, T, and f.

An mn-cochain ¢ C%R, 11,) is by definition a unitary of L*(R") & A
considered as a U, valued function on R*. In particular, CYR, 1, = U,
For each » =0, and ceC%R, 11,), the coboundary dc¢ is given by the
formula:

de(s;y + vy 8ppr) = CKSI(C(SZ, ey 8u1))C(8; 8y Sgy 0y Sugn) e e (S vy Sn)(_l)nﬂ
n .
= CZ“(C(Sz, M) S'n-l-l)) ]._Il 0(31’ crey i S 0ty S?H-l)(*l)]
=
X 0(317 Say 0%y S'n,)(.—l)%_l-1 .

Thus we obtain a cochain complex:

(1) 1, = CYRB, )% CiR, 1) -+ — O3B, 0) > - -

We have then by definition H*(R, 11,) = {the kernel of d in C%(R, 11,)}/{the

range of d}.
Let 1" be the unitary group of L (R**)® B = L*(R*** x I'). For
each ¢ el*, we define the coboundary de¢ by the formula:
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n+1 ~ .
de(ty, by v ooy bugs, V) = TL (ko Bry =20y T4y =0+, tnﬂry)(—m ,
J=0

where f; indicates that the term %; is missing. We then have a long
exact sequence:

(2) AR I I S 0 .

For each n =0, we define an automorphism of L*(R"*)® B, denoted
by 6 again for the obvious reason, by the following:
O(@)(bos By ++#5 by V) = aty + S(N), & + SO, -2y 8 + f(), T7) .
Let © be a map of L=(R") ® A into L*(R"**) Q B defined by the following:
() gy by * o0y by V) = (b, — Loy by — iy ooy by — by 7y bo)

where we identify A with B’ It follows then that =z is an isomorphism
of L*(R") ® A onto (L°(R"*) Q B)’ which makes the following diagram
commute:

CxR, 1) -2 CxR, 1) —2o - L CuR, 1) 2 -

- - -
e I . L SN S AN

Moreover, we have w(CXR, 11,)) = (1")? = the fixed point subgroup of U"
under ¢. Therefore, cochain complex (1) is isomorphic to the following
cochain complex:

(3) ey’ a e 4.4 (un)ﬂ.—‘L...

Now, let C= L>(I", ) and 0(z)(v) = x(TY) for each zeC. Putting
&x) =1Rxe L”(R) R C for each xeC, we obtain an injective resolution
of the Z-module 1,:

€ d d d d

(4) {1} )ug ,11° > Ut 00'———)11"-—)...

where Z acts on each group, of course, via 6 and the injectivity follows
from the divisibility of the unitary group of a von Neumann algebra.
Hence the cohomology groups of cochain complex (8), hence (1), are iso-
morphic to the cohomology groups H}(Z, ;), n =1, (cf. [10; page 105]).
This means then that

HYR,0,) = H}(Z,0,), wu=z=l.
It is known, however, that
WZ,0e) = {1}, n=2.
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The above result, or more precisely the proof, is known in homo-
logical algebra as Shapiro’s lemma.
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