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1. Introduction. Favard [1] has shown that if a linear almost
periodic system
(1) i(t) = A(t)e + f(t)

has a bounded solution and if for every B(t) in the hull H(A), every
nontrivial solution x(t) of #(¢) = B(t)x which is defined and bounded on
R (shortly, R-bounded) satisfies the condition

(2) inf |l#()| > 0,
then system (1) has an almost periodic solution.
Recently, Kato [7] has pointed out that for functional differential

equations the replacement of condition (2) in Favard’s theorem by the
condition

(3) inf ( sup |a(t + 6)[) >0
teR 6Oe[—h,0)
is not obvious. However, Kato has shown that condition (2) can be re-

placed by condition (3) by considering a minimal solution with respect to
a new norm ||-|| in C([—*h, 0], R*) defined by

ol = (1 lsirds) " .

In this paper, more generally, we shall show that for functional
differential equations with infinite retardations, we can replace condition
(2) by the conditions

inf ( sup |lz(t + D)) >0, ¥>0,
teR @e(—o0,0]
and
. 0 1/p
inf | sup [ja(t + ) + S latt + 0) 900} > 0
terR \fe[—r,0] —o0

by introducing semi-norm
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ol = {\_lls@1reras}™

and

{iso + " _1so)rgas)”, it =0,
Wl =1 o - y
" 1neas +{_lo@irg@asl”™, it »>o0,

for continuous and bounded functions ¢ mapping (— <o, 0] into R", respec-
tively, where ¢(f) is a nondecreasing positive function defined on (— ==, 0]
0

such that S 9()do < oo.

2. Hale’s space and some lemmas. First we shall give a class of
Banach spaces considered by Hale [2]. Let x be any vector in R™ and
[lz]] be the Euclidean norm of x. Let B = B((—, 0], B") be a space of
functions mapping (— e, 0] into R* with norm |j-||;. For any ¢ in B and
any ¢ in [0, =), let ¢° be the restriction of ¢ to the interval (— oo, —0o].
This is a function mapping (— o, —c] into R*. We shall denote by B’
the space of such functions ¢°. For any 7€ B°, we define the semi-norm
[[7i]5e of 7 by

|19l pe = Inf {|lg|l5 : ¢" = 77} .

If x is a function defined on (—co, @), @ > 0, then for each ¢t in |0, a)
we define the function z, by the relation z,(s) = x(t + s), —cc < 8= 0.
For numbers a and 7, @ > 7, we denote by A.* the class of function
mapping (— oo, @) into R"™ such that x is a continuous function on |7, @)
and xz,€ B. The space B is assumed to have the following properties:

(I) B is a Banach space.

(II) If 2 is in A.° then z, is in B for all ¢ in [z, ) and x, is a
continuous function of ¢, where @ and 7 are constants such that
T<a X oo,

(ITI) All bounded continuous functions mapping (— o, 0] into R" are
in B.

(IV) If a sequence {¢,}, ¢, € B, is uniformly bounded on (— <o, 0]
with respect to the Euclidean norm ||-|| and converges to ¢ uniformly
on any compact subset of (—oo, 0], then ¢ B and |, — ¢||z—0 as

ko — o,

REMARK. Property (IV) is equivalent to the following property:
For any b > 0 and ¢ > 0, there exist an N > 0 and a 6 > 0 such that

(GeBilgll <e)>lpeB; sup [I40)] <o)nipeB; sup |40 < b}
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(V) There are continuous, increasing and nonnegative functions b(r),
¢(r) defined on [0, =), b(0) = ¢(0) = 0, such that

18lls = b sup 16O -+ e(lg"] )

for any ¢ in B and any ¢ = 0.

(VI) If o is a nonnegative number and ¢ is an element in B, then
T, defined by T,é(s) = é(s + 6), s€(— o, —0o], is an element in B’ and
[|Topllpo— 0 as 0 — co.

In addition, we shall assume that the space B has the following
properties;

(VII) B is separable.

(VII) |lg(O)|| = M, |lg{lp for M, > 0.

In the following four lemmas, we assume that f({, ) is continuous
in (t, )€ R X B and almost periodic in ¢ uniformly for ¢ ¢ B.

LEMMA 1 (cf. Lemma 3 in [5]). Suppose that f(t, ¢) satisfies the
condition

(4) sup {|lF (¢, s te R, ¢l = a} = Fla) <

for every a > 0.
If the system

(5) @(t) = S, x.)

has a solution x(t) which is bounded on [0, =), then for any g(t, ¢) in
H(f) the system

(6) ®(t) = g(t, x,)
has an R-bounded solution. More exactly, if {x(t + t,), f(t + ti, ¢)} con-
verges to (y(t), 9(t, ), them wy(t) is a bounded solution of (6) on
(=lim ¢, ).

The following lemma can be proved by slightly modifying the proof
of Lemma 1 in [6].

LEMMA 2. If f(t, ¢) ts linear in ¢, them it satisfies condition (4)
with F(a) = La for a constant L > 0.

For continuous and bounded function ¢ mapping (— o, 0] into R",
let ||¢]|, be a semi-norm which has the following properties:

(a) For any d > 0, there exists an M(d) > 0 such that if ||¢(t)|| < d
for all te(— oo, 0], then ||¢||, < M(d).

(b) If a sequence {¢,} is continuous and uniformly bounded on
(— o<, 0] with respect to the Euclidean norm [|-|| and converges to ¢ uni-
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formly on any compact subset of (—co, 0], then ||¢, — ¢||, — 0 as k— oo,

(c¢) There exists a B(@) such that if xz(¢) is an R-bounded solution
of (5) and satisfies ||z,||, < @, a > 0, where f(¢, ) satisfies condition (4)
with F(a) = o(@®) as a— oo, then |[z(t)]] £ B(a).

Existence of such a semi-norm |||/, will be discussed in Sections 3
and 4.

For an R-bounded and continuous function z(t), put

Ma) = sup {|[z][4; te R} .

LEMMA 3. Suppose that f(t, ¢) satisfies condition (4) and that system
(5) has an R-bounded solution. Let A(f) be defined by

A(f) = inf {\(z); z(t) is an R-bounded solution of (5)} .
Then for every g(t, ¢) € H(f), we have A(g) = A(f).

Proor. First of all, we note that \(x) < o if x(¢) is R-bounded by
property (a). For every ¢ > 0, there exists an R-bounded solution of
(5) such that M) < A(f) + . Since x(t) is an R-bounded solution of (5),
for every g(t, ¢) € H(f), system (6) has a solution y(t) to which {x(¢ + ¢,)}
converges uniformly on any compact interval in R for some sequence
{t,} by Lemma 1. Then

Nyele — e lle S 1@y, — #lls —0  as k— oo
by property (b). This implies
Alg) = My) = M) = Af) + ¢,

and hence A(g) < A(f). On the other hand, g(¢, ¢) € H(f) is almost periodic
uniformly for ¢ B and f(t, ¢)€ H(g), and hence A(f) < A(g). Thus we
have A(g) = A(f) for every g(t, ¢) € H(f).

LEMMA 4. Suppose that f(t, ¢) satisfies condition (4) with F(a) = o(a?®)
as @ — co and that system (5) has an R-bounded solution. Then there
exists an R-bounded solution x(t) of (5) with the property \Nx) = A(f).

ProOF. By the definition of A(f), there exists a sequence {x*(t)} of
R-bounded solution of (5) such that M«*) < A(f) + L/k < A(f) + 1. Since
|k, < A(f) + 1, there exists a 8 > 0 such that [[z*(¢)]| < 8 for all k£ and
all te R by property (¢). Let K be such that

K ={¢eB;||p(0)]| =B on 6 &(—ec, 0], [|p(0,) — ¢(6:)|| = F(bBBL)O, — bil,
01: ﬁze<—oo, 0]} ’
where b(+) is the one given in property (V) of the space B. Clearly, K
is a compact subset of B. Since |[2%(t)|| =< F(b(B)) for all k£ and all
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t,x*, e K for all & and all te R. Thus {z*(¢)} has a subsequence {x*i(t)}
which converges to an R-bounded solution x(¢) of (5). On the other hand,
by using the same arguments as in the proof of Lemma 3, we have

Nzx) £ A(f). That is, Mz) = A(Sf).

3. The space % with norm Sups._. o ll#@)|e?. The following
class of Banach spaces has been discussed by Hino in [4] as one of Hale’s

spaces.

DEFINITION 1. The space % consists of all continuous functions
mapping (— oo, 0] into R" such that 4(f)e¢’ —0 as §— —c with norm
l18]le = SUPoe(—w,a1llg(D)][ €7, ¥ > 0.

It is easily seen that the space & has properties (I)~(VIII).
For bounded functions ¢ in &, if we define ||¢||, by

ol ={|"_le@ireran”,

then it has properties (a), (b), and (c). It is clear that it has properties
(a) and (b). We shall show that it has property (¢). Assume that z(¢)
is an R-bounded solution of (5) and ||z, < @, @ > 0. Clearly, for any

T>0
ern(\ e+ oypan) "5 (1 e + operas)” <zl s a,

and hence property (c) follows from Lemma 2 and the following lemma.

LEMMA 5 (cf. Lemma 4 in [7]). Suppose that f(t, ¢) satisfies condition
(4) with Fla) = o(a®) as a— . Then for any a > 0, there exists a
constant B > 0 such that if x(t) is an R-bounded solution of system (5)

and satisfies sSup,.z <S [le(t + 0)|]2d6>‘ < a for some T >0, we have
[le@®)]| < B for all teR.
Here we should note that this |[-||, has the following property;
(d) If 2'(t) and x*(¢) are R-bounded continuous functions, then
{llwillfi + Hailli)/2 = [lllk + lz]%
where y(t) = {x'(t) + x%(¢)}/2 and 2(t) = {x'(t) — 2%(t)}/2.

4. The space <7 with norm {(Supge[_,,o]ngS(ﬁ)H)”-}-SO_ Hgs(amvg(o)de}”.
We shall discuss a class of Banach spaces considered by Naito in [8]
as one of Hale’s spaces.

DEFINITION 2. Let =0, p =1, and let g(d) be a nondecreasing
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positive function defined on (— <o, 0] such that SO 9(0)df < co. The space

& consists of all functions ¢ mapping (—oo_, 0] into R", which are
Lebesgue measurable on (—oo, 0] and are continuous on [—7, 0] with

0 1/p
norm ||gll; = {(SUPoe.’~r,o] llg@ih -+ S_m Il¢(0)||”g(0)d0} - When r =0, we
do not assume the continuity of ¢ at 6 = 0.

- It is easily shown that the space .2# also has properties (I)~(VIII).
For continuous and bounded function ¢ mapping (— o, 0] into R*,
we can consider

{Isoe +{"_lis@ir s} it -0,

—o0
1f2

gl =1, 0
¢ Hgy,”ﬂﬁ)llzdﬂS_mugﬂ(e)uw(o)de} if r>0

which has properties (a), (b), (¢), and (d). It is clear that it has proper-
ties (a), (b), and (d). Assume that x(¢) is an R-bounded solution of (5)
and |jzl, £ a, a > 0. If r =0, then it satisfies

le@l = [zl = .

Since
0 1/2
(' ot + oyras)” s el s, it >0,
property (c¢) follows from Lemma 5.

5. Existence theorem for almost periodic solutions of linear systems.

LEMMA 6. Let r > 0 and ¢(0) be defined on |—v, 0]. If ¢(0) satisfies
a Lipschitz condition

[l¢(01) - ¢(02)H é LWl - 02{ ’ ﬁu 02 € [—"7': 0] ’
then

(1. 1s@lias) " = (min (773,  sup_[16O)IDBLN" x ( sup_ [8(0)]) -

For the proof, see ([7], pp 87-88).

THEOREM. Suppose that A(t, ¢) is continuous in (t,9)ER X &
(R x &), linear in ¢ and almost periodic in t uniformly for ¢ € (%),
and that

(¥) for every B(t, ¢) € H(A), every montrivial R-bounded solution of
the system
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(7) #(t) = B(t, )

satisfies the condition

(8) inf [|z,/le > 0 (inf |lz,|[» > 0) .
te R teR

Then for any almost periodic function f(t), the system
(9) () = A, x,) + f(t)
has an almost periodic solution, whenever it has a bounded solution on
[0, o).

ProOF. There exists an R-bounded solution z(¢) of (9) with the

minimal semi-norm A(x) by Lemmas 2 and 4.
Now we shall show that for each B(¢, ¢) + g(t) e H(A + f), the system

(10) #(t) = B(t, ) + 9(t)

has a unique R-bounded solution with the minimal semi-norm.

Let x%(¢) and 2%¢) be R-bounded solutions of (10) with the minimal
semi-norm. Clearly, z(t) = {z'(t) — 2*(t)}/2 is a solution of the homogene-
ous system (7) and y(t) = {z'(¢) + 2*¢)}/2 is a solution of system (10). By
property (d), we have

{llzill% + lllZl2 = llwlls + [=2ll%
which implies
(11) %nii; |z[« = 0.

Assume that sup,.p||z(t)]l =6 > 0. Clearly, 6 < . Then there
exists an L, > 0 such that sup,.z||B(, z,)|| =< L, by property (V) and

Lemma 2.
(i) The case where the space is . The relation (11) implies that

for any ¢ > 0, there exists a ¢,€ R such that

(12) el = {{"_tlatts + oireveas}” < <.
There exists a 7'> 1 such that

(13) ,sup [zt + 0)l|e” < 9" <.
Since

llz(t + 0.)e — 2(t + 0,)¢'"|| < L,16, — 6  for 0, 0,e[—T,0],
where L, = L, + 79, it follows from (12) and Lemma 6 that
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&> [ 1latt, + 0yl
= min {T/3, ( sup [zt + O)¢”l[)/3L.} x ( sup llz(t, + O)e”|l)* .

Hence we have

(14) ,5up o]Hz(t" + 0)e”|| < max { V3¢, V3L, },

because T'> 1. By (13) and (14), we have inf,.;||z,]]. = 0, which con-
tradicts to condition (8). Thus 2(¢) = 0 on R.
(ii) The case where the space is <& Define ||z,||x by

0 1/p
ledles = sup_fiztt + o) + (| 1zt + o)l g(0)a0) " .
Then, we have

(15) 2ol = l2ell i -

It follows from (11) that for any e > 0, there exists a t,€ R such
that llzto”* < g, that iS,

||Z(t0)|| <e if »r=0 ,
{19 {(S_ letts + OlFd0) " <e i r>0
and
() (' _tetts + or@ra0)” <c.

(ii.1) The case where 1 < p < 2. By Holder’s inequality, we have
a9 (1 st + olro@an)” = ({_1ite + opacorgy=ao)”
= {(\_ et + onrg@ras)™ < (' _ca@y—ryro-mas)” ™"

= (1" et + org@ran)” x (| _g@rao)™"",

1/p

because 1 < 2/p. By Lemma 6, it holds that
0 1/
as) (1. listt + 0)ipa0) " = (min (r/3, ( sup_la(t + OID/BLN*
x (sup it + O,
ge[—r,0]

if » > 0. By (16), (17), (18), and (19), we have
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e+ (Lo g(a)da)”_””” X € it =0,

”zton** é

max {v3e/r, V3L ) + (Y g(a)da)“_”’”’ xe if r>0,

—o0

which implies that inf,.; |2/« = 0. Therefore inf,..|z|l, = 0 by (15),
which contradicts to condition (8). Thus z(¢) = 0 on R.
(ii.2) The case which p = 2. It is easily seen that

@0 (1 llee + onrg@an)” = {([" nate + o)p g@ao) [},
because p = 2. By (16), (17), (19), and (20), we have

. < {e 4 §PTR/P x g¥P if »r=20,
z < _
O = max {V3e/r, B3LE | + 6/ x g¥/r if >0,

which implies that inf,.,||2./[,x = 0. Therefore inf,.,|z.]l, = 0 by (15),
which contradicts to condition (8). Thus 2(¢) =0 on R. Thus system
(10) has a unique R-bounded solution with the minimal semi-norm.

Let p(¢t) be the solution of (9) with the minimal semi-norm. It is
easy to see that if (y, C(t, ¢) + h)e H(p, A + f), y(t) is the solution of
the system

&(t) = C(¢, ») + h(t)

with the minimal semi-norm by Lemma 3. Let {r,} be a sequence such
that A(t + 74, ¢) + f(¢ + 7,) — B(t, ¢) + ¢g(t) uniformly on B X S as k — oo,
where S is any compact subset of Z(<#). Suppose that »(¢ + 7,) is not
uniformly convergent on R. Then, by the same idea as in the proof of
Theorem 5 in [5], we can find two solutions %(t) € H(p) and {(t) € H(p) of
some system in the hull H(A + f) which satisfies

][7]0 - Co”* > e
for some ¢ > 0. Thus we can find two minimal solutions of some system
in the hull. This contradicts the uniqueness of the minimal solution.
Thus we see that p(t) is an almost periodic solution of (9). This completes
the proof.
REMARK. If we define a number B by
(21) 8 = inf {Re A: S 167 9(0)d0 < oo} ,

where g(f) is the one given in Definition 2, then £ is clearly nonposi-
tive. If B8 #0, we can regard our theorem with the space <% as a
corollary of our theorem with the space %. Furthermore, we can
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replace the assumption () in our theorem with <& by the following
assumption:

(x+) there exists a v, 8 < —7 < 0, such that for every B(¢, ¢) € H(A),
every nontrivial R-bounded solution of system (7) satisfies the condition

(22) itn}fg @l >0,

where [|2,]|e = SUDse w0 [|2(t + O)]l€™.

In fact, for the number 7 in (xx), the space % is naturally and
continuously imbeded into <%, that is, there exists a constant d(¥) such
that

(23) llgll.> = dMliglle  for gpez

(cf. Lemma 3.3 in [9]). Let A(f, ¢) be a function defined on R x %
satisfying the assumptions in our theorem with <& Conditions (22) and
(23) imply that the restriction A of 4 on R X % satisfies the assump-
tions in our theorem with %. Suppose that f(¢) is an almost periodic
function for which system (9) has a bounded solution on [0, «). By
Lemma 1, system (9) has an R-bounded solution, which is obviously an
R-bounded solution of the system

(24) &(t) = AL, z,) + f(t) .

Then, Theorem with &  says that system (24) has an almost periodic
solution p(t). Since A(t, p,) = A(t, p,) for teR, p(t) is a solution of
system (9).

In the same ways as above, we can replace the condition (3) in [7]
by the condition (x*), where B is assumed to be — oo,

6. Autonomous linear system. Consider an autonomous linear
system

(25) #(t) = Ax,) ,

where A(¢) is a bounded linear operator on <% into R*. We assume that
the function g(4) in Definition 2 satisfies the condition

(26) g0, + 0,) = g(0,)9(6,)  for 6, 0,€(—oe,0].

Then it has been proved by Naito (Theorem 4.4 in [8]) that there exist
two positively invariant spaces S and U such that
FB(—,0, R") =SB U

with the properties that
(i) every solution of (25) starting from S tends to zero as ¢-— o,
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(i) dim U < <, and the solutions of (25) starting from U are
governed by an autonomous linear system of ordinary differential equa-
tions all of whose eigenvalues have nonnegative real part.

Hence, by the same arguments as in ([7], p. 91), we can show that
if x(t) is a nontrivial R-bounded solution of (25), then it satisfies condi-
tion (8).

REMARK. In order to show that the above decomposition of the
space 2% according to Theorem 4.4 in [8], we must see that the condition

(27 B <0

holds, where A is the one defined by (21). However, Professor Naito
informed me that condition (27) follows from condition (26). I represent
here a method due to Professor Naito. If condition (26) holds, then there
exists a number « such that

= sup (log ¢9(6))/6 = ,,Iff’i (log 9(0))/6 ,

(cf. Theorem 7.6.1 in [3]). It is clear that g(f) = e¢*’ for 6 ¢ (— oo, 0] and
that for any v < @, there exists a constant N(7) such that g(8) < N(7)e"
for # e (— =, 0]. Since g(f) is nondecreasing and integrable, it holds that
0 << . Hence we have the relation

B = —alp
where p is the one given in Definition 2, which implies condition (27).

Finally the author thanks Professors T. Naito and T. Furumochi for
their invaluable conversations and comments.
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