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I'-FOLIATIONS AND SEMISIMPLE FLAT HOMOGENEOUS SPACES
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Introduction. In this paper we shall study characteristic classes of
I'-foliations. Our object is to prove a strong vanishing theorem for
Pontrjagin classes of the normal bundles of certain I'-foliations.

Let I be a pseudogroup acting on a smooth manifold B of dimension
q. A I'foliation of codimension ¢ on a smooth manifold M is by definition
a maximal family # of submersions

fa:U,— B

of open sets U, in M such that the family {U,}, is an open covering of
M and for each x€ U,N U, there exists an element 7i,eI’ with f; =
Y5.of« in some neighborhood of x. The kernels of the differentials (f.)«
of submersions f, then constitute a subbundle (% ) of the tangent bundle
TM of M. The quotient bundle ¥(%# ) = TM/z(% ) is called the normal
bundle of #. Let Pont*(¥(#)) denote the subalgebra of H*(M; R)
generated by the real Pontrjagin classes of (% ). Then the Bott vanishing
theorem [3, 4] states that

Pont*(y(&# )) =0 for k> 2¢q,

Pont*(v(# ")) denoting the k-dimensional homogeneous part of Pont*(v(%)).
This gives a sharp bound for general I'-foliations (Thurston [20]).
On the other hand, Pasternack [13] proved a strong vanishing theorem

(*) Pont*w(% ) =0 for k>gq,

for riemannian foliations .&, I'-foliations with I" consisting of local isome-
tries of a riemannian structure on B. In the previous paper [11] we
improved his result by proving a strong vanishing theorem for conformal
or projective foliations.

The purpose of this paper is to extend these results. We thereby
obtain the following generalization of the strong vanishing theorem.

MAIN THEOREM. Let L/L, be a semisimple flat homogeneous space
of dimension q associated with a semisimple graded Lie algebra l=g_, +

Research supported by the Sonderforschungsbereich “Theoretische Mathematik” (SFB 40)
at the University of Bonn.



308 S. NISHIKAWA AND M. TAKEUCHI

g+ g and ¥, be a maximal compact subalgebra of g, Let I” be the pseudo-
group of local automorphisms of an Ly-structure of second order associated
with L/L,. Then for a I'-foliation & of codimension q, the stromg
vanishing theorem (x) holds if

(1) the Spencer cohomology H*'(l) = 0 and

(2) the Pontrjagin algebra Pont (f,) < I.(f,).

For the terminology and the notation in the Main Theorem, see §§1, 2
and 4.

The method of the proof of the Main Theorem depends heavily on
the differential geometry associated with semisimple flat homogeneous
spaces, which has been developed extensively by Tanaka [19] and Ochiai
[12]. Essentially the idea of the proof is the same as that in [11]. In
fact, we define the “prolongation” of the normal frame bundle of & to
construct a “I'-invariant basic” connection. This is done in §3. The
normal Cartan connection plays an important role in the construection.

Examples satisfying the conditions (1) and (2) in the Main Theorem
are given in §5. It is known that the condition (1) holds for a fairly
general family of I'-foliations under consideration. We also give a eriterion
for the condition (2) to be satisfied for every semisimple flat homogeneous
space associated with a given semisimple graded Lie algebra [ in terms
of the topology of the symmetric R-space associated with | (Theorem 5.3).
Structure theorems for automorphisms of real semisimple Lie algebras
are of essential use in the argument.

1. Semisimple flat homogeneous spaces. This section is devoted to
a brief survey of the basic material on semisimple flat homogeneous
spaces. For details, see Kobayashi-Nagano [9] and Ochiai [12].

By a (tramsitive) graded Lie algebra we mean a real Lie algebra [ =
>'g, with a decomposition into a direct sum of subspaces g, (» € Z) satisfying

g=0 for p=< -2,

[gp’ gq] C Gptq for all p,q¢ and
[#,6..] 0  for each nonzero xzeg, »=0.

A graded Lie algebra | = 3 g, is called semisimple if | is finite dimensional
and semisimple. In the following we are mainly interested in semisimple
graded Lie algebras. . Let B be the Killing form of [. It is an immediate
consequence of the nondegeneracy of B that g, =0 for p =2, that is,
[=g.,+ @ + 6, and g_, is the dual vector space of g, under the pairing
g, X 8,9 (x, ¥)— B(x, y). Furthermore there exists a unique element e
in g, such that for k= —1,0 and 1
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g. = {xel; [e, x] = ka} .

Let f be a maximal compact subalgebra of [ such that S(e, f) = 0. Define
p by

p={rel; B, f) = 0}.

Then [ =t 4 p, which is a Cartan decomposition of . With respect to
this Cartan decomposition we define an automorphism z of I by setting
zly=1, and 7|, = —1,. A positive definite inner product ¢, ) on I is
then given by

(w,yy = —Bx, ty) for =, yel.
Semisimple graded Lie algebras have been classified in [9].
The Lie algebra cohomology H(l) = H(g_,, ad,|g-,, I) of the abelian

Lie algebra g_, with respect to its adjoint representation on I is called the
Spencer cohomology of a graded Lie algebra I=>,g,. More precisely, let

Crt =g, , Q A%(g_,)*

be the vector space of all g, ,-valued g¢-linear alternating maps on g_,.
Define a coboundary operator o: C*? — C* bttt by

(ac)(xu M) xq—i—l) = Z (—1)i+1[xi’ c(xu ] -’Eiy ] xq+1)]

for ceC*? and «,, ---, ¢,,,€6_,. Then ¢&* = 0 and the Spencer cohomology
H() =3, H”(l) is defined by

H»9(l) = 57(0) N C9/aCr+vet

Let L/L, be a connected homogeneous space on which a (not necessarily
connected) semisimple Lie group L acts effectively and transitively.
L/L, is called a semisimple flat homogeneous space if the Lie algebra I
of L has a graded Lie algebra structure ! = g_, + g, + g, such that g, + g,
is the Lie algebra of L,. We define G, as the normalizer of g, in L,
that is,

G, = N (8) = {x € Ly; Ad(x)g, = o} -

Then it is known that the Lie algebra of G, coincides with g, and L, is
a semidirect product G,-G, of G, and the vector group G, = expg,. Note
that G, is also given by

G, = {x e L;; Ad(x)e = e} .

Let T,(L/L,) be the tangent space of L/L, at the origin 0 = L,, which
is linearly isomorphic to g.,. We identify g_, and hence T,(L/L, with
a euclidean vector space R’ ¢ = dimg_,, in a natural manner by choosing
an orthonormal basis of g_, with respect to the inner product {, ) restricted
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to g_,. Since L, is the isotropy subgroup of L at the origin o, there is
a natural representation » of L, called the linear isotropy representation
of L,, on the tangent space T,(L/L,).  isa homomorphism from L, into
GL(g_,) = GL(q, R). It follows from the effectiveness of the action of
L that the kernel of \ coincides with G, so that the restriction \|G,
identifies G, with the linear isotropy subgroup in GL(q, R). Corresponding
to this identification, g, is regarded as a subalgebra of the Lie algebra
gl(q, R) of GL(q, R). Let K, be the normalizer of f in G,, that is,

K, = No(® = {w e Gy; Ad(@)t = 1},

f being a maximal compact subalgebra of [ with B¢, ¥) = 0, and let f, be
the Lie algebra of K,. Then f, = fN g, and we have a Cartan decomposi-
tion g, = £, + p, of g, by setting p, = g, N p. Note that K, is regarded as
a subgroup of the orthogonal group O(q), for the inner product {, ) is
invariant under the adjoint action of the normalizer of f in L. It follows
from the following lemma that the structure group of any principal G,-
bundle is reducible to the subgroup K,.

LeMMA 1.1. K, is a maximal compact subgroup of G,. The map
of K x p, into G, defined by

(k, x)— kexpx
18 a diffeomorphism.

ProoF. Let Aut () be the group of automorphisms of I. Define a
closed subgroup Aut (1, ¢) of Aut () by

Aut (1, e) = {dc Aut (I); ae = ¢} .

Note that the Lie algebra of Aut (I, ¢) may be identified with g, provided
we identify the Lie algebra of Aut () with I.

We first prove that the homomorphism Aut (1, ¢) > GL(g_,) defined
by a+— alg_, is injective. In fact, suppose a@|g_, =1, . Then a|g, =
1,, for a|g, is the contragredient of a|g_,. Since g, = [g_, a.], @|g, = 1,
and hence a@ = 1,.

It follows from this fact that Ad: G, — Aut (], ¢) is an injective homo-
morphism. We identify G, with the subgroup Ad (G,) of Aut(l, e).

Aut (I, ¢) is an algebraic subgroup of GL(I) and is invariant under
taking transpose with respect to the inner product (, >. Hence Aut (], ¢)
has a polar decomposition, that is, there is a diffeomorphism

Aut (1, t, ¢) X p, — Aut (I, e)

defined by (k, x) — kexp x, where Aut ([, f, ¢) is a maximal compact sub-
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group of Aut ([, ¢) defined by
Aut(l,f, e) = {@cAut(, ¢); at = f},

whose Lie algebra coincides with £, (cf. Chevalley [6]).

Since Aut’(l, £, ¢e)Cc K,c Aut (], £, ¢), where Aut’(l, f, ¢) denotes the
identity component of Aut (], f, ¢), K, is compact.

For geG,, let g=Fkexpx (kcAut(l, ¥, ¢), x€)p,) be the polar decom-
position of g. Then it is easy to see that k¥ = g(exp x)™*is in the normalizer
Ny () of t in G,, that is, in K,. Hence we obtain the polar decomposition
G, = K,expp, which shows that K, is a maximal compact subgroup of
G,. q.e.d.

REMARKS. 1) It is well-known that the maximal compact subalgebras
of g, are conjugate with each other under the adjoint action of G,. Hence
each maximal compact subalgebra ¥, of g, is obtained as

fozfmgo

from a maximal compact subalgebra f of [ satisfying B(e, f) = 0.

2) It follows from Lemma 1.1 that the maximal compact subgroups
of G, are conjugate with each other under the inner automorphisms of
G,. Hence each maximal compact subgroup K, of G, is obtained as

K, = Nq,()

from a maximal compact subalgebra f of ! satisfying B(e, f) = 0.

3) Let f and ¥ be two maximal compact subalgebras of [ such that
Ble, ¥) = Ble, ¥') = 0. Corresponding to ¥ and ¥ we get positive definite
inner products ¢, ) and {, )" on [ respectively in the same way as above.
It is then not difficult to show that there exists an element g,c G, such
that

(x, y)' = (Ad(go)z, Ad(g)y) for =, yel.

2. L,Structures of 2nd order associated with L/L, Let L/L, be a
semisimple flat homogeneous space as in §1 and G, be the linear isotropy
subgroup at the origin so that G, GL(q, R), ¢ = dim L/L,.

Let B be a smooth manifold of dimension q. Fix a point o of Bas
the origin. Let I'(B) be the pseudogroup of local diffeomorphisms of B.
For each integer r = 1, let P"(B) denote the set of all r-jets j7(f) at o of
the local diffeomorphisms f € I'(B) defined around o. Let G7"(q) be the set

{7i(f) e P"(B); f(0) = o} .

Then P7(B) is, in a natural manner, a principal G"(q)-bundle on B with
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the natural projection 7, defined by =z,(Ji(f)) = f(0). For details, see
Ochiai [12]. Consequently, we have a projective system

2L pyp) - pp) - P(B)
by defining the forgetful map zt: P"(B) — P*B) (r > s = 1) by z:(55(f)) =
Ji(f). BEach fel'(B) is naturally prolonged to a local bundle isomorphism
S of P"(B) by
F3ug) = 7i(feg) for ji(g)eP(B).

From now on we are mainly interested in P'B) and P*B). Note
that G'(q) is isomorphic to GL(q, R) and is imbedded canonically into
G'(¢), in particular into G*(g). With respect to this imbedding, =. is
G'(g)-equivariant. By means of the into diffeomorphism Exp defined by
R =g 51+ (expx)L,€ L/L, we have a natural map ¢: L, — G*q) defined
by

(a) = ju(Expea-Exp) .

Then it is known (Ochiai [12]) that ¢ is an injective homomorphism, and
we have the following commutative diagrams:

G*(q)
./ L,—— G*
Y (@)
Lo\ l”é L L
| G~ GYq) = GL(g, B)
G(a)

By this homomorphism ¢, we regard L, as a subgroup of G*q).

Let @ be an L,reduction of the principal G*(g)-bundle P*B) on B,
that is, @ is a principal L,-subbundle of P*B). @ is called an L,-structure
of 2nd order on B associated with a semisimple flat homogeneous space
L/L,. For each Ly structure @ of 2nd order, let I" denote the pseudogroup
of local automorphisms of @, that is,

I' ={vel'(B); "™Q CQ}.

Since L, is the semidirect product of G, and the vector group G, = exp g,
the principal L,-bundle @ has a G,reduction P’ on B. Then P = zi(P’)
is a principal G,-subbundle of PYB). It is also given by P = 7i(Q) by
virtue of the above diagrams. P is called the G -structure of 1st order
associated with Q. Note that each element ¥ eI is a local automorphism
of P as well, that is, Y"Pc P. '
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3. [I'-foliations associated with L/L, Let L/L, be a semisimple flat
homogeneous space and I" be the pseudogroup of local automorphisms of
an associated Ly-structure @ of 2nd order on a smooth manifold B of
dimension ¢ = dim L/L, as in §2.

Let & be a I'-foliation of codimension ¢ on a smooth manifold M.
& is by definition a maximal family &% = {f,}, of submersions

fo:U,— B

of open subsets U, in M to B such that the family {U,}, is an open
covering of M and for each x€ U, N U; there exists an element 75, eI’
with

fﬁ = 7;n°fa

in some neighborhood of x. The fibres of each submersion f, are then
pieced together to define the leaves of the foliation .#. The kernels of
the differentials (f,), of submersions f,€.# constitute a subbundle z(#")
of the tangent bundle TM of M. (< ) is a bundle tangent to the
leaves of .. The quotient bundle (&% ) = TM/z(%) is called the normal
bundle of .

With each I'-foliation .# we associate a I'(B)-foliation % which
contains 7. & is defined in the same way as in the definition of &
by replacing I" with the pseudogroup I'(B) of local diffeomorphisms of B.
Note that .# has the same structure of leaves as that of 7. We are
now in a position to define the “prolongation” of the normal frame bundle

of #. Let P’(j‘ ) be the set of all r-jets ji(fy) at x of submersions fy
defined on open subsets U in M such that f, is constant on the leaves
of # and sends z to the origin o of B, that is,

PI(F) = (5Ufo); foe F; we U, fu(@) = o} .
Then P*(ﬁ‘ ) is a principal G"(¢)-bundle on M with the natural projection

7, defined by #.(7:(fy)) = x, where the group G"(q) acts on P’(.ﬂA' ) from
the right by

3i(fr)-35(h) = Ga(h™" < fo)

for j3(fy) e P(&%) and ji(h)eGr(g). In fact, the restriction of P7(F)
to U is isomorphic to the pull back by f,€.# of the bundle P"(B) on B:

FyPr(B)) = P(F)|U.
The isomorphism is given by
(x, 35(9)) = Ji(g " of7) -



314 S. NISHIKAWA AND M. TAKEUCHI

In particular, P‘(.?A' ) is the principal GL(q, R)-bundle associated with the
normal bundle ¥(%# ) of .

From now on we are mainly interested in P‘(ﬁ ) and Pz(ﬁ?‘ ). Note
that the prolonged bundle Pz(ﬁ ) of 2nd order has an L, reduction @ on
M, which is isomorphic locally to the pull back f.Q by f.€.Z of the
Lyreduction @ of P¥B) on B. In fact, since each ¥ € I', or more precisely
the prolongation 7v®, preserves the L,reduction @ of P*B), the family
of pull back bundles

{faQ; fue F}
is glued together to define a principal L,-bundle on M, which naturally
induces an Ly reduction § of PX5).

Let G, be the linear isotropy subgroup of L/L, as in §1. In the
same way as above we get a Gy reduction P of P‘(ﬁ' ), whose restriction
P|U, to U, is isomorphic to the pull back f.P by f.e.# of the G,-
reduction P of PY(B) in §2. P is a principal G,-bundle associated with
the normal bundle ¥(&) of #.

Let Q* and @ be the group extensions of @ and Q by L respectively,
that is, Q*=Q X, L and Q* =@ X, L. Each element YeI naturally
induces a local bundle isomorphism 5* of Q% and a local bundle map
F@ of @ to Q* is naturally induced by each element f, e .7

With these understood, we can state the following lemma which is
of essential use.

LeEmMMA 8.1 (Tanaka-Ochiai). If the Spencer cohomology H*'(l) of the
graded Lie algebra | of L vanishes, then QF has an L-principal connection
w, called the normal Cartan connection of type L/L,, which is invariant
under I' in the sense that for each YeTI,

F¥0*w = @ .

For the proof, see [12, Theorem 11.1]. It should be noted here that
o restricted to the subbundle @ defines an absolute parallelism on Q.

By each submersion f, € %, or more precisely by the naturally induced
bundle map F®: Q* — Q*, we can pull back ®, the normal Cartan con-
nection of type L/L, in Lemma 8.1, to get a family of local forms
{fﬁf)*w}a'

LEMMA 3.2. The local forms {f® w), define a global connection form
@ on Q.

PROOF. The local forms f®'w and f 2w are identical on QU N U;.
In fact, let xe¢ U,NU; and W be a neighborhood of x on which f; =
V5eof, With 75, €I'. Then
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Fro = Jerov@o = fero on QHW,
since ® is [-invariant. q.e.d.

4. A strong vanishing theorem. Let L/L, be a semisimple flat
homogeneous space with linear isotropy subgroup G, GL(q, R) as in §1.
Let K, be a maximal compact subgroup of G, and f, be its Lie algebra
(cf. §1).

For later use, some notations are prepared. For a pair of a given
Lie group G with Lie algebra g and a subgroup H of G with Lie algebra
5, a subalgebra of g, let I,(h) denote the set of the restrictions ¢|b to
H of Ad(G)-invariant polynomials ¢ on g, that is,

I(5) = {¢|H; ¢ is an Ad (G)-invariant polynomial on g} .

I(H) is a graded commutative algebra in a natural manner and consists
of Ad(H)-invariant polynomials on ) which can be extended to Ad (G)-
invariant polynomials on g. For a Lie subgroup G of GL(q, R) and its
Lie algebra g, define ¢, € I(g) by

o (X) = trace X* for Xegcgl(g, R).

Let Pont (g) denote the subalgebra of I (g) generated by ¢,, 1 < k < [¢/2].
Pont(g) is called the Pontrjagin algebra of g. The significance of Pont (g)
is as follows. In general, let & be a smooth real vector bundle on M of
rank ¢ such that the frame bundle of & has a G-reduction P, and w(P)
denote the Weil homomorphism of P :

w(P): I(g) — H*(M; R) .

Then the subalgebra Pont*(¢) of H*(M; R) generated by the real Pontrjagin
classes of £ is given by

Pont*(&) = w(P)(Pont(g)) .

In the following, we are mainly interested in I,(f,) and Pont(f,).

Let @ be an L,-structure of 2nd order on a smooth manifold B of
dimension ¢, which is associated with L/L, as in §2. Let I" be the pseu-
dogroup of local automorphisms of Q. Consider a I'-foliation .# of
codimension ¢ on a smooth manifold M. Let v(% ) denote the normal
bundle of % and Pont*(v(¥)) be the k-dimensional homogeneous part
of the subalgebra Pont*(v(% ")) of H*(M; R).

With these understood, we can state our strong vanishing theorem.

THEOREM 4.1. Let L/L, be a semisimple flat homogeneous space of
dimension q associated with a semisimple graded Lie algebra [ =g_, +
g + 6 and ¥ be a maximal compact subalgebra of g, Let I' be the
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pseudogroup of local automorphisms of an Lystructure @ of 2nd order
assoctated with L|/L, on a smooth manifold B of dimension q. Suppose
that

(1) H**{)=0 and

(2) Pont(t) < I.(t,).
Then for a I'-foliation # of codimension q on a smooth manifold M,
we have

Pont"(W(#)) =0 for k>q.

Proor. Let QY — B be the group extension of @ by L. It then
follows from the assumption (1) and Lemma 3.1 that @* has the normal
Cartan connection @ of type L/L,. Denote by 2 the curvature form of
w, that is,

Q:da)—l—%[a),a)].

As in §3, the prolonged bundle Pz(ﬁA~ ) of 2nd order has an L reduction
@ on M which is naturally induced from Q. Let Q% — M be the group
extension of @ by L. Then by Lemma 3.2, Q% has an L-principal con-
nection @ such that for each f,e.#

@ =f®w» on Q:U,.

Denote by £ the curvature form of @. Then by the naturality of the
exterior derivative

~

2=Ffor2 on QU,,
from which we get
4.1) #(7) = Ferg(2) on Q*|U,

for each ¢ e I,(l).

Let P be the G,reduction on M of the prolonged bundle P‘(a’;’“ ) of
1st order associated with Q as in §3. P is a principal G,-bundle associated
with the normal bundle (%) of .#. As is seen in §1, P has a K,
reduction PKO on M. Corresponding to this reduction, we have, by the
naturality of the Weil homomorphism, the following commutative diagram:

r

L) —— I, (t)

(4.2) N\ /.
w @)\ w(Px,)
H*(M; R)

where 7 is the restriction homomorphism, and w(@*) and w(PKO) denote
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the Weil homomorphisms. By virtue of the diagram (4.2), the assumption
(2) implies the strong vanishing

Pont* (W(# )) =0 for k>gq.

In fact, let +,€Pont*(y(#)). Then, there exists an element e
Pont(f,) such that

w(Pr,)¥) = 4.
By the assumNption (2) we have an element ¥’ ¢ I,() such that »@")=7.
Note that w(Q*)(¥') = +, by virtue of (4.2). Consider the k-fo~rms 7'(Q)
and P’(2). These are L-invariant and horizontal forms on Q* and Q*

respectively. Hence ¥7(9) is pushed down to a k-form ¥'(2) on M and
U'(Q) to a k-form ¥'(2) on B. Then it follows from (4.1) that

(4.3) 7D = frU'@) on U,.

Since dim B = q, #’(2) vanishes if k> ¢, and hence by (4.3) so does 7'(2).
Then we have only to recall that by the definition of the Weil homomorphism

w@H@") = [T'@)],
where [-] denotes cohomology class in H*(M; R). This completes the
proof. q.e.d.

5. The conditions (1) and (2). In this section we study the conditions
(1) and (2) in Theorem 4.1 in detail. First, we recall the relevant facts
about the structure of automorphisms of real semisimple Lie algebras.
For details, see Matsumoto [10], Satake [14] and Takeuchi [17].

For a given Lie algebra g, let Aut (g) and Inn (g) denote the group
of automorphisms of g and the group of inner automorphisms of g res-
pectively. If A, B, --- are subsets of g, then we put

Aut (g, A, B, -++) = {acAut(g); aA = A,aB=B, ---},
Inn(g, 4, B, ---) = {aeclnn(g); kA = A, aB= B, ---}.

Let 1=g_,+g + g be a semisimple graded Lie algebra and put
I, =g, + g, a subalgebra of I. Let L/L, be a semisimple flat homogeneous
space associated with I. Asin §1, let = f + p be a Cartan decomposition
of [ and ¢ be a unique distinguished element of g,. Set ¥, =fnNg, G, =
N.(g) and K, = Ng(f). Take a maximal abelian subalgebra a of p such
that a contains e. a can be extended to a Cartan subalgebra § of I. Let
I° and )¢ denote the complexifications of I and % respectively. Let
0:1°—1¢ be the complex conjugation of I° with respect to I. By setting
b=9Nt we have a direct sum decomposition §) =5 + a. Then Y =
1/ =1b + ac ¥, where 1/ —1 is the imaginary unit, is the real part of
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H¢. o defines an involutive linear automorphism of ). Let X denote
the root system of I° with respect to §°. We regard 3 as a subset of
Br, that is 3 CDg, by means of the duality defined by the Killing form
B of 1. Choose a g-order > of Y in the sense of Satake [14] such that
B(e, ¢) = 0 for each positive root a. Let I be the fundamental system
of 2 corresponding to >, the g-fundamental system. We denote by 17,
the set of roots a eIl satisfying B(a, ¢) = 0, and put

Aut,(IT) = {se GL(9g); s3 = 3, sll = II, s = os},
Aut, (1, I1,) = {s € Aut,(ll); sll, = I1,} .
Considering that Aut (I¢, [) = Aut(l), we have
Aut () = Aut (I, £, 9, II) Inn (16, 1) .
The restriction homomorphism Aut (l, f, 9, IT) — Aut,(/I) then defines a
homomorphism 7: Aut (I) — Aut,(/), and we have an exact sequence
1 — Inn (¢, 1) — Aut (I) —— Aut,(JT) > 1.

This is, in fact, a split exact sequence, that is, there exists a homo-
morphism é: Aut,(Il) — Aut(l, £, §, II) such that Y0 = id. Hence we have
a semidirect decomposition

(5.1) Aut (1) = Inn (15, I)-6(Aut, (1))
from which we obtain a semidirect decomposition
(5.2) Aut (I, ;) = Inn (1¢, 1, 1,)-6(Aut, (11, IT,))

also. In fact, it is easy to see that
Inn (15, 1, 1))-6(Aut, (11, I1,)) < Aut(l, 1) .

Conversely, let @e Aut(l, [,). Then, according to (5.1), @ decomposes into
a=gis), gelnn{), seAutll).

Since al, = 1, g7'l, = 0(s)l,. Then it is known (Matsumoto [10]) that I, =
o(s)l, and I, = sIl,. Therefore g€Inn (IS 1, [,) and s € Aut, (I, II,). Hence
Aut (1, L) cInn (15, 1, L))-0(Aut (1, IT,)) .

This completes the proof of (5.2).

LEMMA 5.1. Let L/L, be a semisimple flat homogeneous space as-
sociated 'with a semisimple graded Lie algebra !=g_, + g, + 8. Let
Ad: L — Aut (1) be the adjoint representation of L on I. Then

v(Ad L) c Aut, (11, IT,) .
PrRoOOF. Let L* = AdL and L} = L* N Aut (I, ;). We consider that
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L*/L < Aut ()/Aut(, ;). Since the adjoint representation Ad induces a
covering

(5.3) N/ Lo — LiLy =3 L*/L

in a natural manner, L*/L} is connected. On the other hand, by virtue
of (5.1) and (5.2), 7 induces a fibering

Tnn (I, 1)/Inn (¢, §, 1) — Aut ()/Aut (I, ) —— Aut, (O/Aut,(T7, IT,)

in a natural way. We know (Takeuchi [18]) that the fibre Inn (I )/
Inn (15 1, I,) is compact and connected. It follows from these that L*/Lg
is diffeomorphic to Inn (15, I)/Inn (I¢, [, I;) and ¥(L*/Ly) = Aut,(II, IT,). The
lemma is an immediate consequence of this. q.e.d.

We call the space R = Inn (I, [)/Inn (I¢, |, 1), which appeared in the
proof of Lemma 5.1, the symmetric R-space associated with L/L, (or
often, with I). Indeed R is a riemannian symmetric space with respect
to an Inn (IS, |, f)-invariant metric.

Denote the infinitesimal linear isotropy representation I, — gl(q, R), ¢ =
dim L/L,, also by A\. Let t, be a maximal abelian subalgebra of f,. An
R-linear map p:t,— C is called a weight of A\:¥, — o(g)(Cgl(g, C)) with
respect to t, if g satisfies the condition: let V. denote the linear sub-
space of C? given by

Ve={veCy MH)v=puH)w for each Hety},

then V, # 0. The dimension of V, is called the multiplicity of p.
Consider now the multiplicity counted sum

@k — %“#Zk

of powers of the weights ¢t of A foreach ke Z, k= 1. @, is a real valued
homogeneous polynomial on t, of degree 2k and has the property:

2, GINKO(e(,)(to) y Blto =Dy .
Define a closed subgroup L* of Aut (I) by
L} = v (Aut,(IT, IT,)) = Inn (I, 1)-8(Aut, (11, I1,)) .

Note that the Lie algebra of L* coincides with I.
With these understood, we have the following

THEOREM 5.1. Let! =g_, + g, + g, be a semisimple graded Lie algebra.

(i) Let L/L, be a semisimple flat homogeneous space associated
with 1. Then the condition (2) in Theorem 4.1 is equivalent to the con-
dition:
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@,el(t) for each keZ, 1<k =|[q2].

(ii) Assume that

(2) Pont(t)c Is(f) .
Then, for an arbitrary semisimple flat homogeneous space L|L, associated
with 1, the condition (2) holds. The condition (2) s equivalent to the
condition:

@,el;x(t) for each kecZ 1<k=<][q?2].

Proor. (i) follows directly from the fact that restriction homomor-
phism I (f,) — Iy K0“o>(t°) is an isomorphism. (ii) is an immediate consequence
of (i) and Lemma 5.1.

THEOREM 5.2. Let L/L, be a semisimple flat homogeneous space
assoctated with a semisimple graded Lie algebra =g, + g +g. If
L/L, is compact, and tf the condition (2) is satisfied, then the real total
Pontrjagin class p(R) of the symmetric R-space R associated with L/L,
18 trivial: p(R) = 1.

ProOOF. Let K = N,(f). Then, the Lie algebra of K is f and, as in
Lemma 1.1, we get a polar decomposition of L: L = Kexpp. Let L°
denote the identity component of L. Then we have the Iwasawa decom-
position L° = K°AN of L° where K° is the identity component of K. In
consequence we have a decomposition L = KAN of L. Noticing that
AN cC L,, we finally get

L =KL,.

Hence K/N, () is diffeomorphic to L/L,.
We next prove that N, (f) = K, and hence

(5.4) K/K, is diffeomorphic to L/L, .

In fact, it is verified in the same way as in Lemma 1.1 that N, (f) is
compact and its Lie algebra is f,. Consider the restriction A = \|N,(f)
to N () of the linear isotropy representation A\:L,— G,. Then the
image AN (f)) of N is a compact subgroup of G, which contains
K, = Ng,(f). Hence MN, () = K,, for K, is a maximal compact subgroup
of G, by Lemma 1.1. On the other hand, the kernel G, N N, (f) of \' is
a compact subgroup of the vector group G, so that G, N N, (f) = {1} (cf.
§1). Therefore N, (f) = K,. Since L/L, is compact by assumption, K/K,
is also compact, and hence K is compact. (In fact, K is a maximal
compact subgroup of L.)

Now, let By and By, denote the classifying spaces of principal K-
bundles and of principal K;-bundles respectively. Let
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K/K, — By, —* B,
be the canonical fibering of By, over Bx. Let
Wy Io(t) —> H*(Bg; R) and
We,: Ie,(t) — H*(Bg,; R)

be the (universal) Weil homomorphisms, which are isomorphisms, since

K and K, are both compact. We denote by Pont*(¢g,) the subalgebra

of H*(Bg,; R) generated by the real Pontrjagin classes p, of the real

vector bundle &, of rank ¢, ¢ = dim K/K, = dim L/L,, associated with

the universal K;-bundle on Br,. Pont*(K/K,) denotes the subalgebra of

H*(K/K,; R) generated by the real Pontrjagin classes p,(K/K,) of K/K,.
Consider the following diagram:

I([) — I — I (t0) «— Pont (t,)
ngK ngxo ngKo
H*(By; R) 2> H*(By,; R) —= Pont*(éx,)
T
H*(K/K,; R) —= Pont*(K/K,)

where the first two arrows in the first row are the restriction homo-
morphisms. This is a commutative diagram, and

p.(K/K,) = i*p,
holds (cf. Borel [1] and Borel-Hirzebruch [2]). Hence we have the following
implications:
(2) Pont(t,) C In(t)

= Pont(¥,) < Ix(f,)

— Pont*(¢x,) C p*H*(B; R)

= Pont*(K/K,) C i*0* H*(Bg; R) = (po1)*H*(Bg; R)

= Pont™(K/K,) =0,
where Pont*(K/K,) denotes the sum of positive-dimensional homogeneous

parts of Pont*(K/K,). Therefore p(K/K,) =1, and hence by (5.4), p(L/L,)=
1. Since L/L, is compact,

(5.3) NA)/Lo — L/L, =% B

is a finite covering. Consequently, we have
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p(R)=1. q.e.d.

Before proceeding, let us pay attention to the following observations,
which are not difficult to make.

OBSERVATIONS. 1) Let [ =g_, + g, + g, be a semisimple graded Lie
algebra and [ = 3, @ I be the decomposition of ! into its simple factors.
Put g =" Ng,. Then

1 = g% + gi" + g

for each %k, and each I'® is also a semisimple graded Lie algebra.

2) If each simple factor I of ! satisfies the condition (1), then |
also satisfies (1).

3) If each simple factor [*® of ! satisfies the condition (2)', then I
also satisfies (2)'.

4) Let L/L, be a semisimple flat homogeneous space associated with
I. Let I' be the pseudogroup of local automorphisms of an L -structure
@ of 2nd order associated with L/L, on a smooth manifold B. If ! is
the scalar restriction to R of a complex Lie algebra, then L/L, has an
L-invariant complex structure, B is a complex manifold and I" is a
pseudogroup of local holomorphic transformations of B.

5) If I' is a pseudogroup of local holomorphic transformations of
a complex manifold B, then the strong vanishing theorem () holds for
a I-foliation .# (cf. Bott [3] and Bott-Haefliger [4]).

6) If I is simple and if ! is not the scalar restriction to R of a
complex Lie algebra, that is, if I¢ is a complex simple Lie algebra, then
the condition (1) holds except the case

1/1 0
I=8(2 R), e=-
@R, e 2(0 —1>

(ef. Ochiai [12]).

We shall now examine the conditions (1) and (2) for semisimple
graded Lie algebras [ = g_, + g, + g, such that I is simple and p(R) = 1.
In the following, we keep our previous notations. 1, denotes the identity
matrix of degree ¢, and Tr abbreviates the trace of a matrix unless
otherwise mentioned.

First we consider | of classical type.

-1, )

ExampPLE 1. I1=38l(¢+ 1, R) (¢ =1);

1 (9
e_q—i—l
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The condition (1) holds if and only if ¢ = 2. The graded decomposition
=g, + g + g is given by

=4 ; XeR'},
g 1 x
[\ Beg(R)
%=1 B | a=-TrB\’
& |
0 = 9 R H tEequ-

The associated symmetric R-space R is diffeomorphic to a real projective
space P,(R) of dimension q.
Take f = o(q + 1). Then

0

B ;

I

Beo(g)} .

The infinitesimal linear isotropy representation \: g, — gl(q, R) is given by

@
B —B—al,,

which is an isomorphism. Note that A induces an isomorphism \: f(,i
o(q).
Set

H(yy o0y @) =

where 2, e R, 1 <71 <1=1[q/2], and 0 at the (g, 9)-component appears
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only when ¢ is odd. Then take

{0 ) B
O\ H@y,-ex)) A=i=sD)]

Denoting by x, the linear form on t, defided by

( ’ >
EI- xi
(“1) X l)

we get
9, = 2(—1)* 3, x® .

Define a homogeneous polynomial P, on ! by
P(X)=Tr X* for Xel.
Then P,|t, = @,.
By the explicit computation of Aut(l) it is known (Takeuchi [17]) that
LF=Inm@lg+1,C),80qg+ 1, R)).

Hence P,c I;x(3l(q + 1, R)), which shows that the condition (2) is satisfied
for 8l(g + 1, R).

An example of associated semisimple flat homogeneous spaces L/L,
is given as follows:

L =PL4q+1,R)= GL(q + 1, R)/R*1q+1 ’

* *
L, = (_{ . )eGL(q+1, R)} [R*1,,,,

where R* is the multiplicative group of nonzero reals. Then L/L, is
diffeomorphic to a real projective space P,(R) of dimension q.
In this case,

al O
G, = (’0— . )eGL(q—i—l, R); | R*1,.,,

and the linear isotropy representation \: G,— GL(q, R) is an isomorphism

defined by
(a b) —a™h .
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I' is nothing but the pseudogroup of local projective transformations of
a torsionfree linear connection on B.

EXAMPLE 2. | = o(S)
={Xegllg + 2, R); ' XS + SX = 0} ;

where 1 =s=0,¢g =7+ s =3 and

-1

For this | the condition (1) always holds. Set
o(r, s) = {X egl(g, R); *XS, + S, X = 0},
co(r, s) = {X egl(q, R); 3o € R with ‘XS, + S, X = aS,},

where

1
Sy=1" .
( - 18>

Then the graded decomposition [ = g_, + g, + g, is given by

x x' e R"
8= x” ; z" e R
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a
acR
= B
%= Beo(r, s)
—a
EI E”

tE, tEI eRr

g, = A H
——tf" t§” c R

Let S x S* be the product of two euclidean spheres of dimension 7 and
s respectively and FE,, denote the quotient space S” x S?/~ of S" x S*
by the equivalence relation ~ defined by (z, y)~(—=x, —y) for (x, ¥)e
S” x S*. Then the associated symmetric R-space R is diffeomorphic to
E,, (Takeuchi [18]).

If we take t = o(q + 2) NI, then

0

B’ . B'eo(r)
B” " B"eo(s)

Il

0

The infinitesimal linear isotropy representation \: g, — gl(q, R) is given by
fo4
B —B—al,.
—a
A defines isomorphisms A\: g, = co(r, s) and \: f, = o(r) @ o(s) (direct sum).
Take

H(x;, -,
to_ (1, ’ l) : x,';,x_;"eR ,

-H(x{" ctty x;:’)

0

where ' = [r/2], 1" =[s/2, 1=+ =< U,1 < j <1". Then, in the same way
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as in Example 1, we get
0, = 2(—1)k(; o+ 3 x;.'%) .
Define a homogeneous polynomial P, on I by

P(X)=TrX* for Xel.

Then P,|t, = @,.

It is known (Takeuchi [17]) that L* = Inn (16, I) if q is odd, and L*is
generated by Inn (I, ) and the involutive automorphism z: X+ —!X of
[ if g is even. Hence P, I;¢+(l), which shows that the condition (2) is
satisfied for I = o(S).

An example of associated semisimple flat homogeneous spaces L/L,
is given as follows:

L = O(8)/{#1q4s}
= {we GL(q + 2, R); 'wSx = S}/{£1,.,},

* % X
L, = {x = (0 * *) s wSx = S H{%1,..) .
0 0 *
Then L/L, is diffeomorphic to E, .
Set

O(r, 8) = {xe GL(g, R); ‘xSz = S} ,
CO(r, s) = {xre GL(q, R); 3a > 0 with ‘xSz = aS,}.
Then

- acR*

o= b ; —_ 2
G ’ beO(r, s) M0}

| e
and the linear isotropy representation n: G, — GL(q, R) is given by
a
b —a™'b .
a—'l
» induces an isomorphism M\: G, = CO(r, s). Note that I' is nothing but

the pseudogroup of local conformal transformations of a pseudoriemannian
metric on B with signature (7, s).
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In the same way, we can see that the following Examples 8, 4 and
5 also satisfy the condition (1) and (2)’. Let F denote R, C or the real
quaternion algebra H. The standard units of H are denoted by 1,1, 5
and k.
ExAmMPLE 3.
_ ((Xegl@n, F); 'XH+ HX =0} if F=R or H
" |{Xegl@n, F); Tr XeR,'XH+ HX =0} if F=C'

e_ll,, 0
—2\0 -1/’

where n =5 if F=R,n=38 if F=C n=2 if F= H, X denotes the
conjugate matix of X, and
0 1,
H= .
(1,» 0>

[ is isomorphic to o(n, n) if F = R, 3u(n, ») if F = C and 8p(n, n) if F=H
in terms of the standard notations.
In this case, the dimension q is:
%n(n ~1) if F=R
7=\ if F=¢C
n@2n + 1) if F=H.
The associated symmetric R-sace R is diffeomorphic respectively to:
SO(n) if F=R
R ~ {U(n) if F=C
Sp(n) if F=H.
EXAMPLE 4. [ = 8p(n, R) (n = 3);

o 1)

e =— .

2\0 -1,

In this case, the dimension ¢ = n(n + 1)/2 and the associated symmetric

R-space R ~U(n)/O(n).
EXAMPLE 5. | = {Xegl(2n, H); ' XA + AX = 0} (n = 3);

7,< 0 1,,)
e=— ,
2\—1, 0
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where A = jl,,.

In this case, the dimension ¢ = n(2n — 1) and the associated symmetric
R-space R~ U(2n)/Sp(n). | is isomorphic to 30*(4dn) in terms of the
standard notations.

Note that these five examples give all the semisimple graded Lie
algebras | of classical type such that I¢ is simple and p(R) =1 (cf.
Takeuchi [16]).

We shall now consider the exceptional types.

ExXAMPLE 6. There are two types of semisimple graded Lie algebras
[ =g, + g + g such that ! is a simple Lie algebra of exceptional type,
€ is simple and p(R) = 1:

l=EV, g=EI@R, and
l=EVII, g,=EIVOR.

The condition (1) holds for these I. We show that both [ satisfy the
condition (2)' also.

Let 1€ = g% + g5 + g be the complexification of I and \:g§— gl(g¢,)
denote the complexified infinitesimal linear isotropy representation defined
by

Max)y =[x, y] for wegf,yegl,.

Denote by g; the derived algebra of g, and define a homogeneous polynomial
#. on the complexification g of g, by

$u(x) = Tr (M(x)*) for xeg’.

First we prove the following fact: If there exists a faithful repre-
sentation 1€ = gl(V) of I° on a complex vector space V such that for
some ¢, € R*

(%) Tr (X = o, du(X) for Xegfclocg(V)

holds, then the condition (2) is satisfied for .

Take ¢, £, b, 7, £, as in §1 and extend 7 to a conjugate linear automor-
phism 7 of 1. Then I, = f + 1/ —1p is a compact real form of I1°>. Choose
an [,-invariant hermitian inner product {, ) on V and let X* denote the
adjoint of X with respect to {, ) for Xegl(V). Then X = —X* holds
for X €l°. Denote by ¢ the complex conjugation of I° with respect to .
Then 6 = ot is an involutive automorphism of I° and the 1-eigenspace
of 0 coincides with the complexification ¢ of f. Note that in our case f
is 3u(8) or E; P R according as I = EV or | = EVII. So t has the same
rank as that of I, and thus 6 is an inner automorphism of 1. Therefore,
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since ¢ = 0z, there exists an element A€ GL(V) such that
(5.4) cX =—AX*A"' for Xel€.
Define an Inn (I°-invariant polynomial P, on I€ by
P(X)=Tr(X*) for Xel‘cg(V).
Then it follows from (5.4) that for Xel¢
P(0X) = Tr (AX*A™)%) = Tr (X**) = Tr (X %)
= P(X) .
Hence, for Xe! we have
PyX) = P(X)..
Thus, putting P, = P,|I, we get
P, € Inne,n(D) «
Since f,C g, and ¢,|f, = ¢,, it follows from (%) that
Pt = ¢y -
Consequently, Pont (t,) C Iipnqc,n(I). On the other hand, it is known (Takeu-
chi [17]) that in our case
Lf=1Inn(C1).

Hence the condition (2)’ is satisfied.
Now let us construct a faithful representation 1€ <> gl(V) of I¢ with

the property (%).

Let K be the Cayley algebra over C and x+— Z denote the canonical
involution of K. Identifying Cl1 with C, we define a linear form tr and
a quadratic form n on K respectively by

tr(x) =2+ 7%, n(x) = % for zeK.
Let M,(K) denote the total matrix algebra of degree 3 over K, and put
J={ueM(K); ‘w=u}.
We make J an algebra over C by defining a bilinear product o on J by

oy = —;-(uv + vu) for wu,ved,

and denote it by . Then & is a complex simple Jordan algebra.
We define a linear form Tr and a cubic form N on J respectively by

Tr(u) =&+ &+ &,
N(u) = &8 — 3. &m(x,) + tr(z,xa,) ,
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& X3 I
u=\% & x|, &eCxecK.

x, X &

Let (4, v, w) denote the tri-linear symmetric form on J obtained from
N by linearization and (u, v) denote the nondegenerate symmetric bilinear
form on J defined by '

(, v) = Tr(uov) for wu,ved.

for

The nondegeneracy of (,) then defines on J a commutative cross product
u X v by

(w X v, w) = 3(u, v, w) for each wed.

Let R(u) denote the translation on the algebra J, that is, the linear
operator on J defined by

Ru)v = uov for u,ved.
We define a subspace 2 of gl(J) by

F = {R(); wed, Tr(u) = 0}.
Let & denote the subalgebra of gl(J) consisting of the derivations of
the algebra §. Then & is a complex simple Lie algebra of type F..
Note that =2 N .2 = {0}. We define & by

E =9+,

which is a subalgebra of gl(J). Then & is a complex simple Lie algebra
of type E..

Let wt+ u* denote the linear isomorphism of J onto the dual space
J* of J defined by

uw*w) = (u, v) for wved.
Take one dimensional complex vector spaces V, and V,, and let f, and
f. denote their bases respectively. Consider the direct sum
V=VJ*PJDYV,

of complex vector spaces V,, J*, J and V,. We define a bilinear multipli-
cation - on V as follows:

fi'f'L:fi (’i:l, 2), fl‘fz:fz'flz();
fieu = —éu foru = -g—u ;o fieu* =—32—u*,fz-u* = 5“* ;
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(5.5) wefy=0,uf,=u; u*fi=u*u*f,=0;
w-v* = (w, V)f} w*v = (w, V)fs;
u-v = 2 X v)*, w*-v* = 2u X v),

where u, veJ. Then we get an algebra over C, which is denoted by
7. We define a linear form Trace on V by

Trace () =a + B8 for z=af, +u*+v+ BfeV.

Let L(x) denote the left translation of the algebra ; that is, the linear
operator on V defined by

L(x)yy =x-y for wz,yeV.
A subspace & of gi(V) is defined by
& = {L(x); xe V, Trace (x) = 0} .

The transpose of Eegl(J) is denoted by :Eegl(J*). We consider that
& Cgl(V) by means of the injective homomorphism & — gl(V) defined
by the correspondence

E—~0D(—'EYQEDO.

Then & is known to coincide with the subalgebra of gl(V) consisting of
all derivations of the algebra . Note that & N <% = {0}. We define
S by

6=+,

which is a subalgebra of gl(V). Then @ is a complex simple Lie algebra
of type E,. In more detail, we get the following bracket relations:

(B, L(x)] = L(Ex)
(5.6) mm—ﬂxum=§uw

wm—ﬁxmwn=—§umx

where Fe &, x€ V, Trace (x)=0 and weJ. For the details of those men-
tioned above, we refer the reader to Brown [5], Ise [7] and Schafer [15].
Now, put

e=—§uﬁ—ﬁm®.

Then it follows from (5.6) that the eigenvalues of ade are —1, 0 and 1.
The eigenspace decomposition & = &_, + &, + &, of ade is given by
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st—1 = {L(u)’ ueJ} ’
& =& dCe,
G, = {L(w*); weJ}.

It is known (Kobayashi-Nagano [9]) that each semisimple graded Lie
algebra I =g, + g, + g, in Example 6 is then obtained by setting

gP:Iﬂ®p’ p:—l’o)ly

for an appropriate real form | of ®. In particular, remark that g;° = &.

We are now in a position to see that the faithful representation
® = gl(V) satisfies the condition (%).

In fact, it follows from the first equation of (5.6) that the complexified
infinitesimal linear isotropy representation \:g¢ — gl(g®,) is equivalent to
the natural representation & <> gl(J). It is then verified from the defini-
tion of the imbedding & = gl(V) that

Tr (X**) = 2Tr (MX)™) = 28 (X)
holds for Xeg®cgl(V). Hence the condition (%) is satisfied.

OBSERVATIONS. 7) From the classification of semisimple graded Lie
algebras (Kobayashi-Nagano [9]) and the computation of real Pontrjagin
classes of compact symmetric spaces (Takeuchi [16]) the above Examples
1 to 6 are known to give all the semisimple graded Lie algebras [ = g_, +
g, + g, such that I is simple, I is simple and p(R) = 1.

8) There exists only one semisimple graded Lie algebra I such that
[ is simple, I¢ is not simple and p(R) = 1:

[ =382, C) regarded as a real Lie algebra ;

e,:—l—(l o>.
2\0 —1

We can see without difficulty that the condition (2)' is satisfied also for
this example. In consequence, we observe that if I is simple and p(R) =
1, then the condition (2)’ is satisfied for .

From the last observation we have the following

THEOREM 5.3. Let l=g., + g, + g, be a semisimple graded Lie
algebra. Then the condition (2) s satisfied for every semisimple flat
homogeneous space L/L, associated with | if and only if the real total
Pontrjagin class p(R) of the symmetric R-space R associated with | is
trivial: p(R) = 1.

ProOOF. The only if part follows directly from Theorem 5.2. We
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prove the if part. Let [=1"¢D --- @1 be the decomposition of I into
simple factors. If we denote by R, the symmetric R-space associated
with I'® (1 < k < s), then

R = Rl X eee X Ra
and hence
H*R; R)= H*R; R ® -+ ® H*(R,; R) .

In particular, p(R) = p(R) ® -+ ® p(R,). Since we assume that p(R) =
1, p(R,) =1 for each k. Then, by Observation 8, the condition (2) is
satisfied for each I'®, So, by Observation 3, | satisfies the condition (2)'.
Hence it follows from Theorem 5.1 (ii) that the condition (2) is satisfied
for every L/L, associated with I. This completes the proof. g.e.d.

6. Concluding remarks.

1) As a corollary of Theorem 4.1, we obtain the main theorem of
Nishikawa-Sato [11], a strong vanishing theorem for projective or con-
formal foliations. In our terminology of this paper, a I'-foliation is
called projective or conformal according as I is the one in Example 1
or the one in Example 2 (» = s = 0).

2) It should be noted that our argument is essentially in the real
category as is clear in the light of Theorem 5.8. Compare Observations
4 and 5.

3) The procedure in §1 of [11] can be naturally extended to yield
examples of “locally homogeneous” I'-foliations associated with semisimple
flat homogeneous spaces. As a result, we can get examples of I'-foliations
with nontrivial secondary characteristic classes of foliations (see Bott-
Haefliger [4], Kamber-Tondeur [8] and Yamato [21]).
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