Tôhoku Math. Journ. 30 (1978), 257-262.

NUMERICAL RANGES OF PRODUCTS AND TENSOR PRODUCTS

ELIAS S.W. SHIU

(Received September 6, 1976)

In this paper we study the relationship between the numerical ranges of Hilbert space operators and those of their products and tensor products.

Let $\mathscr{B}(\mathscr{H})$ denote the set of bounded linear operators on a complex Hilbert space \mathscr{H} . For $T \in \mathscr{B}(\mathscr{H})$, W(T) denotes its numerical range, $W(T) = \{(Tx, x): ||x|| = 1\}$. For $T_j \in \mathscr{B}(\mathscr{H}_j)$, j = 1, 2, it is clear that $W(T_1 \otimes T_2)$ contains the set $W(T_1) \cdot W(T_2) = \{z_1 z_2: z_j \in W(T_j), j = 1, 2\}$; by the convexity of the numerical range, $W(T_1 \otimes T_2)$ also contains its convex hull, co $(W(T_1) \cdot W(T_2))$ [11, Lemma 6.2]. We are interested in the conditions that guarantee $W(T_1 \otimes T_2) = \text{co} (W(T_1) \cdot W(T_2))$. We shall show that if either T_1 or T_2 is normal, then

(1)
$$\overline{W}(T_1 \otimes T_2) = \overline{\operatorname{co}}(W(T_1) \cdot W(T_2)),$$

where the bars denote the closure of the sets. This result follows from: Let $A, B \in \mathscr{B}(\mathscr{H})$ be two commuting operators; if A or B is normal, then $\overline{W}(AB) \subseteq \overline{\operatorname{co}}(W(A) \cdot W(B))$.

Consider the operator $S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ on C^2 . For $T \in \mathscr{B}(\mathscr{H})$, $T \otimes S$ has the representation $\begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix}$ on $\mathscr{H} \oplus \mathscr{H}$. Since $W(S) = \{z \in C: |z| \leq 1/2\}$ and $\overline{W}(T \otimes S) = \{z \in C: |z| \leq ||T||/2\}$, (1) holds if and only if T is a normaloid, i.e., its norm equals its numerical radius [6, p. 114]. In fact, if T is a normaloid, then $\overline{W}(T \otimes S) = \overline{W}(T) \cdot W(S)$, for W(S) is a disc centered at the origin. This discussion shows that (1) does not hold in general.

The following results are proved in Section 3: (i) Let $A, B \in \mathscr{B}(\mathscr{H})$ such that A commutes with B and B^* . If the set $W(A) \cdot W(B)$ lies on one side of a line through the origin, then W(AB) lies on the same side. (ii) Let $T_j \in \mathscr{B}(\mathscr{H}_j), j = 1, 2$. Then $W(T_1) \cdot W(T_2)$ lies on one side of a line through the origin if and only if $W(T_1 \otimes T_2)$ lies on the same side.

With these results we derive a theorem of E. Asplund [1]: For $T \in \mathscr{B}(\mathscr{H})$ and an integer $n \geq 2$, $|\operatorname{Arg}(Tx, x)| \leq \pi/n$, $\forall x \in \mathscr{H}$, if and only

This work is supported by NRC Grant A4002.

if for each sequence $x_0, x_1, \dots, x_{n-1}, x_n = x_0$ of n elements in \mathscr{H} , $\sum_{j=0}^{n-1} \operatorname{Re} \left(Tx_j, x_j - x_{j+1} \right) \geq 0.$

1. Preliminaries. For Ω , $\Omega_1 \subseteq C$, let $\operatorname{co}(\Omega)$ and $\partial\Omega$ denote the convex hull and the boundary of Ω , respectively, and $\Omega \cdot \Omega_1 = \{zz_1 : z \in \Omega, z_1 \in \Omega_1\}$. A proof of the following fact is given in [5, p. 683]: $\operatorname{co}(\Omega \cdot \Omega_1) = \operatorname{co}(\operatorname{co}(\Omega) \cdot \operatorname{co}(\Omega_1))$. The next result is obvious for compact Ω .

LEMMA [9, p. 295]. Let $\Omega \subseteq C$ be bounded. Then

$$\mathrm{co}\left(\varOmega
ight)=\left\{\sum_{j=1}^{\infty}lpha_{j}z_{j}:lpha_{j}\geqq0,\,\sum_{j=1}^{\infty}lpha_{j}=1 \ and \ z_{j}\in \Omega
ight\}$$
.

COROLLARY 1 (cf. [3, Lemma 1]). Let $T_j \in \mathscr{B}(\mathscr{H}_j)$ such that $\sup_j ||T_j|| < \infty$. Then $\bigoplus_j T_j \in \mathscr{B}(\bigoplus_j \mathscr{H}_j)$ and $\operatorname{co}(\bigcup_j W(T_j)) = W(\bigoplus_j T_j)$.

For $T \in \mathscr{B}(\mathscr{H})$, we say T has a dilation S if $S \in \mathscr{B}(\mathscr{H})$, \mathscr{H} a Hilbert space containing \mathscr{H} as a subspace, and TP = PSP, P being the orthogonal projection from \mathscr{H} onto \mathscr{H} ([6, Chapter 18], [11, §2]). Under these conditions T is called the compression of S to \mathscr{H} . Clearly, $W(T) \subseteq$ W(S).

Let Ω be a closed subset of *C* containing the spectrum of *T*, $\sigma(T)$. Ω is said to be spectral for *T* (in the sense of von Neumann) if for each rational function *q* with poles outside Ω , $||q(T)|| \leq \sup_{z \in \Omega} |q(z)|$ ([6, p. 123], [11, p. 538])

An operator T is called a diagonal operator if there is an orthonormal basis of \mathscr{H} consisting of eigenvectors of T([10, p. 23], [6, p. 29]). If $W(T) \subseteq [0, \infty)$, we say T is nonnegative and write $T \ge 0$; a nonnegative operator has a unique nonnegative square root by the spectral theorem [10, Theorem 1.12].

2. Main results.

THEOREM 1 [2, Theorem 2]. Let A, $B \in \mathscr{B}(\mathscr{H})$ be two commuting operators. If $A \ge 0$, then $W(AB) \subseteq W(A) \cdot W(B)$.

Proof. $AB = A^{1/2}BA^{1/2}$.

THEOREM 2. Let A, $B \in \mathscr{B}(\mathscr{H})$ be two commuting operators. If A is diagonal, then $W(AB) \subseteq co(W(A) \cdot W(B))$.

PROOF. Let $A = \sum_{j} \lambda_{j} P_{j}$, where $\{P_{j}\}$ is a family of mutually orthogonal projections, i.e., $P_{j}^{*} = P_{j}$ and $P_{j}P_{k} = \delta_{jk}P_{j}$, and $\sum_{j} P_{j} = I$. Assume that the λ_{j} 's are distinct complex numbers, then $B = \sum_{j} P_{j}BP_{j}$ (cf. [10, Corollary 0.14]). If B_{j} denotes the compression of B to $P_{j}\mathcal{H}$, then AB has the representation $\bigoplus_{j} \lambda_{j}B_{j}$ on $\bigoplus_{j} P_{j}\mathcal{H}$. Thus NUMERICAL RANGES

$$\begin{split} W(AB) &= \operatorname{co}\left(\bigcup_{j}\lambda_{j}W(B_{j})\right) & \text{Corollary 1} \\ &\subseteq \operatorname{co}\left(\bigcup_{j}\lambda_{j}W(B)\right) = \operatorname{co}\left(W(A)\cdot W(B)\right). \end{split}$$

The next result generalizes [7, Theorem 2.2] and the initial steps of their proofs are identical.

THEOREM 3. Let $A, B \in \mathscr{B}(\mathscr{H})$ be two commuting operators. If A is normal, then $\overline{W}(AB) \subseteq \overline{\operatorname{co}}(W(A) \cdot W(B))$.

PROOF. By the spectral theorem [10, Theorem 1.12] and the Fuglede's theorem [10, Theorem 1.16], A can be approximated uniformly by diagonal operators which commute with B. Since $\overline{W}(\cdot)$ and the multiplication of operators are both continuous with respect to the uniform operator topology [6, Problem 175 & Problem 91], the result follows from Theorem 2.

The finite-dimensional versions of the following three theorems are given in [8, Theorem 1 & Theorem 2].

THEOREM 1'. Let $T_j \in \mathscr{B}(\mathscr{H}_j)$, i = 1, 2. If $T_1 \ge 0$ or $T_2 \ge 0$, then $W(T_1 \otimes T_2) = W(T_1) \cdot W(T_2)$.

PROOF. $W(T_1 \otimes I) = W(T_1), W(I \otimes T_2) = W(T_2).$

THEOREM 2'. Let $T_j \in \mathscr{B}(\mathscr{H}_j)$, j = 1, 2. If T_1 or T_2 is diagonal, then $W(T_1 \otimes T_2) = \operatorname{co}(W(T_1) \cdot W(T_2))$.

THEOREM 3'. Let $T_j \in \mathscr{B}(\mathscr{H}_j)$, j = 1, 2. If T_1 or T_2 is normal, then (1) holds.

REMARK. Theorem 2 can be derived from Theorem 2', because $A \otimes B$ is a dilation of AB: Let $\{\mu_k\}$ be an enumeration of $\{\lambda_j\}$ with each λ_j repeated according to its multiplicity, i.e., the rank of P_j . Then

If $T_i \in \mathscr{B}(\mathscr{H}_i)$ has a dilation S_i , i = 1, 2, then $S_1 \otimes S_2$ is a dilation of $T_1 \otimes T_2$. Applying Theorem 3', we have

THEOREM 4. Let $T_i \in \mathscr{B}(\mathscr{H}_i)$, i = 1, 2. If T_1 has a normal dilation N, then $\overline{W}(T_1 \otimes T_2) \subseteq \overline{\operatorname{co}}(W(N) \cdot W(T_2))$.

COROLLARY 2. Let $T_i \in \mathscr{B}(\mathscr{H}_i)$, i = 1, 2. If Ω is spectral for T_1 , then $\overline{W}(T_1 \otimes T_2) \subseteq \overline{\operatorname{co}} (\Omega \cdot W(T_2))$.

PROOF. Assume Ω is compact. By the Berger-Foias-Lebow Theorem [11, Corollary 2.3], there is a (strong) normal dilation N of T_1 with $\sigma(N) \subseteq \partial \Omega$.

Let \mathscr{N} denote the set of operators $\{T: T \text{ has a normal dilation } N$ such that $\overline{W}(T) = \overline{W}(N)\}$. By Theorem 4, (1) holds if T_1 or T_2 belongs to \mathscr{N} . We note that the subnormal operators [6, p. 322] and the Toeplitz operators [6, p. 349] belong to \mathscr{N} . Moreover, if $\overline{W}(T)$ is spectral for T, then $T \in \mathscr{N}$ by Corollary 2; in fact, it is shown by M. Schreiber that $\overline{W}(T)$ is spectral for T if and only if there exists a strong normal dilation N of T such that $\overline{W}(T) = \overline{W}(N)$ [11, Theorem 2.4].

Let $T_j \in \mathscr{B}(\mathscr{H}_j)$, j = 1, 2. It follows from a result of A. Brown and C. Pearcy [11, Theorem 6.1] that $\sigma(T_1 \otimes T_2) = \sigma(T_1) \cdot \sigma(T_2)$. Thus (1) holds whenever $T_1 \otimes T_2$ is convexoid [11, Theorem 6.2]. If T_1 and T_2 are hyponormal, a simple computation shows that $T_1 \otimes T_2$ is also hyponormal and hence (1) holds [11, Corollary 6.2].

CONJECTURE. Let $T_j \in \mathscr{B}(\mathscr{H}_j)$, j = 1, 2. If T_1 or T_2 is hyponormal, then (1) holds.

3. Sectorial operators. In this section we are concerned with the operators whose numerical ranges are contained in half-planes supported at the origin.

For $T \in \mathscr{B}(\mathscr{H})$, let $\Theta(T)$ denote the closure of the set $\{(Tx, x)\}$. Since the numerical range of an operator is convex, either $\Theta(T)$ is the entire complex plane or it is a closed sector with vertex at the origin and with angular opening at most equal to π . We note that $\Theta(T) = \Theta(S^*TS)$ whenever S is invertible. If \mathscr{H} is finite dimensional and $0 \in W(T)$, then $\Theta(T)$ coincides with the angular field introduced in [13]. For $\alpha \in [0, \pi/2]$, let $\Phi(\alpha)$ denote the symmetric sector $\{\rho e^{i\theta}: \rho \geq 0, -\alpha \leq \theta \leq \alpha\}$.

THEOREM 5. Let A, $B \in \mathscr{B}(\mathscr{H})$ and suppose A commutes with B and B^* . If $\operatorname{co}(\Theta(A) \cdot \Theta(B)) \neq C$, then $\Theta(AB) \subseteq \Theta(A) \cdot \Theta(B)$.

PROOF. Without loss of generality, assume $\Theta(A) = \Phi(\alpha)$, $\alpha \in [0, \pi/2]$. Thus Re $A = (A + A^*)/2 \ge 0$. By the spectral theorem, Re A has a nonnegative square root Q. If Re A is invertible, then A = Re A + i Im A =QNQ, where N is the normal operator $I + iQ^{-1}(\text{Im } A)Q^{-1}$. Since B commutes with Q, $\Theta(AB) = \Theta(QNBQ) = \Theta(NB)$. By Theorem 3 and the hypothesis that $\Theta(A) \cdot \Theta(B) = \Theta(N) \cdot \Theta(B)$ lies on one side of a line through the origin, we have $\Theta(NB) \subseteq \Theta(N) \cdot \Theta(B) = \Theta(A) \cdot \Theta(B)$. Thus the theorem is proved if Re A is invertible. In general, consider $A + \varepsilon I$, $\varepsilon > 0$, instead of A. Now the result follows from [6, Problem 175 & Problem 91].

REMARK. If A and B commute and if A commutes with BB^* or

260

 B^*B , then we have the following inequality for numerical radii: $w(AB) \leq ||B|| w(A)$ [3, p. 217].

THEOREM 5' [12, Theorem 2]. Let $T_j \in \mathscr{B}(\mathscr{H}_j)$, j = 1, 2. If $\Theta(T_1 \otimes T_2) \neq C$ or if $\operatorname{co}(\Theta(T_1) \cdot \Theta(T_2)) \neq C$, then $\Theta(T_1) \cdot \Theta(T_2) = \Theta(T_1 \otimes T_2)$.

PROOF. Since $W(T_1) \cdot W(T_2) \subseteq W(T_1 \otimes T_2)$, we have $\Theta(T_1) \cdot \Theta(T_2) \subseteq \Theta(T_1 \otimes T_2)$.

4. Application. Let S, $T \in \mathscr{B}(\mathscr{H})$ and A, $B \in \mathscr{B}(l_2)$, $A = (a_{jk})$, $B = (b_{jk})$. Let $\mathbf{x} = (x_k) \in \bigoplus_k \mathscr{H} \cong \mathscr{H} \otimes l_2$. Then

$$egin{aligned} &\sum_j \, (\sum_k \, b_{jk} T x_k, \, \sum_k \, a_{jk} S x_k)_{\mathscr{H}} \ &= ((b_{jk} T)(x_k), \, (a_{jk} S)(x_k))_{\oplus_j \, \mathscr{H}} \ &= ((T \otimes B) oldsymbol{x}, \, (S \otimes A) oldsymbol{x})_{\mathscr{H} \otimes l_2} \ &= ((S^*T \otimes A^*B) oldsymbol{x}, \, oldsymbol{x})_{\mathscr{H} \otimes l_2} \, . \end{aligned}$$

The following is a result of E. Asplund [1, Theorem 3] (also see [12, Theorem 1] and [4, p. 118]).

THEOREM 6. Let $T \in \mathscr{B}(\mathscr{H})$, and *n* is an integer, $n \geq 2$. Then $\Theta(T) \subseteq \Phi(\pi/n)$ if and only if for each sequence $x_0, x_1, \dots, x_{n-1}, x_n = x_0$ of n elements in $\mathscr{H}, \sum_{j=0}^{n-1} \operatorname{Re}(Tx_j, x_j - x_{j+1}) \geq 0$.

PROOF. Let A denote the $n \times n$ matrix (a_{jk}) ,

A is normal and its eigenvalues are $1 - \exp(2\pi i m/n)$, $m = 1, 2, \dots, n$. Thus $\Theta(A^*) = \Phi(\pi/2 - \pi/n)$. Consequently, $\operatorname{Re}(T \otimes A^*) \ge 0$ if and only if $\Theta(T) \subseteq \Phi(\pi/n)$, by Theorem 2' or Theorem 5'.

References

- E. ASPLUND, A monotone convergence theorem for sequences of nonlinear mappings, Proc. of Symposia in Pure Math. Vol. 18, Part 1, A.M.S. (1970), 1-9.
- [2] R. BOULDIN, The numerical range of a product, J. Math. Anal. Appl. 32 (1970), 459-467.
- [3] R. BOULDIN, The numerical range of a product, II, J. Math. Anal. Appl. 33 (1971), 212-219.
- [4] H. BREZIS AND F. E. BROWDER, Nonlinear integral equations and systems of Hammerstein type, Advances in Math. 18 (1975), 115-147.
- [5] T. FURUTA AND R. NAKAMOTO, On tensor products of operators, Proc. Japan Acad. 45 (1969), 680-685.
- [6] P.R. HALMOS, A Hilbert Space Problem Book, Van Nostrand, Princeton (1967).
- [7] J. A. R. HOLBROOK, Multiplicative properties of the numerical radius in operator theory, J. reine angew. Math. 237 (1969), 166-174.

E.S.W. SHIU

- [8] C. R. JOHNSON, Hadamard products of matrices, Linear and Multilinear Algebra 1 (1974), 295-307.
- [9] F. M. POLLACK, Numerical Range and Convex Sets, Canad. Math. Bull. 17 (1974), 295-296.
- [10] H. RADJAVI AND P. ROSENTHAL, Invariant Subspaces. Springer-Verlag, New York (1973).
- [11] T. SAITÔ, Hyponormal operators and related topics, Lectures on Operator Algebras, Lecture Notes in Math., Vol. 247, Springer-Verlag, New York (1972), 533-664.
- [12] E. S. SHIU, Cyclically monotone linear operators, Proc. Amer. Math. Soc. 59 (1976), 127-132.
- [13] H. WIELANDT, On the eigenvalues of A + B and AB, J. Research Nat. Bur. Standards, Sec. B, 77B (1973), 61-63.

DEPARTMENT OF MATHEMATICS University of Manitoba Winnipeg, Manitoba R3T 2N2 Canada