NUMERICAL RANGES OF PRODUCTS AND TENSOR PRODUCTS

Elias S. W. Shiu

(Received September 6, 1976)

In this paper we study the relationship between the numerical ranges of Hilbert space operators and those of their products and tensor products.

Let $\mathscr{B}(\mathscr{H})$ denote the set of bounded linear operators on a complex Hilbert space \mathscr{H}. For $T \in \mathscr{B}(\mathscr{H}), W(T)$ denotes its numerical range, $W(T)=\{(T x, x):\|x\|=1\}$. For $T_{j} \in \mathscr{B}\left(\mathscr{H}_{j}\right), j=1,2$, it is clear that $W\left(T_{1} \otimes T_{2}\right)$ contains the set $W\left(T_{1}\right) \cdot W\left(T_{2}\right)=\left\{z_{1} z_{2}: z_{j} \in W\left(T_{j}\right), j=1,2\right\}$; by the convexity of the numerical range, $W\left(T_{1} \otimes T_{2}\right)$ also contains its convex hull, co $\left(W\left(T_{1}\right) \cdot W\left(T_{2}\right)\right)$ [11, Lemma 6.2]. We are interested in the conditions that guarantee $W\left(T_{1} \otimes T_{2}\right)=\operatorname{co}\left(W\left(T_{1}\right) \cdot W\left(T_{2}\right)\right)$. We shall show that if either T_{1} or T_{2} is normal, then

$$
\begin{equation*}
\bar{W}\left(T_{1} \otimes T_{2}\right)=\overline{\operatorname{co}}\left(W\left(T_{1}\right) \cdot W\left(T_{2}\right)\right) \tag{1}
\end{equation*}
$$

where the bars denote the closure of the sets. This result follows from: Let $A, B \in \mathscr{B}(\mathscr{H})$ be two commuting operators; if A or B is normal, then $\bar{W}(A B) \subseteq \overline{\operatorname{co}}(W(A) \cdot W(B))$.

Consider the operator $S=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ on C^{2}. For $T \in \mathscr{B}(\mathscr{H}), T \otimes S$ has the representation $\left(\begin{array}{ll}0 & T \\ 0 & 0\end{array}\right)$ on $\mathscr{H} \oplus \mathscr{H}$. Since $W(S)=\{z \in C:|z| \leqq 1 / 2\}$ and $\bar{W}(T \otimes S)=\{z \in C:|z| \leqq\|T\| / 2\}$, (1) holds if and only if T is a normaloid, i.e., its norm equals its numerical radius [6, p. 114]. In fact, if T is a normaloid, then $\bar{W}(T \otimes S)=\bar{W}(T) \cdot W(S)$, for $W(S)$ is a disc centered at the origin. This discussion shows that (1) does not hold in general.

The following results are proved in Section 3: (i) Let $A, B \in \mathscr{B}(\mathscr{H})$ such that A commutes with B and B^{*}. If the set $W(A) \cdot W(B)$ lies on one side of a line through the origin, then $W(A B)$ lies on the same side. (ii) Let $T_{j} \in \mathscr{B}\left(\mathscr{\mathscr { C }}{ }_{j}\right), j=1,2$. Then $W\left(T_{1}\right) \cdot W\left(T_{2}\right)$ lies on one side of a line through the origin if and only if $W\left(T_{1} \otimes T_{2}\right)$ lies on the same side.

With these results we derive a theorem of E. Asplund [1]: For $T \in \mathscr{B}(\mathscr{H})$ and an integer $n \geqq 2,|\operatorname{Arg}(T x, x)| \leqq \pi / n, \forall x \in \mathscr{C}$, if and only

[^0]if for each sequence $x_{0}, x_{1}, \cdots, x_{n-1}, x_{n}=x_{0}$ of n elements in \mathscr{C}, $\sum_{j=0}^{n-1} \operatorname{Re}\left(T x_{j}, x_{j}-x_{j+1}\right) \geqq 0$.

1. Preliminaries. For $\Omega, \Omega_{1} \subseteq \boldsymbol{C}$, let co (Ω) and $\partial \Omega$ denote the convex hull and the boundary of Ω, respectively, and $\Omega \cdot \Omega_{1}=\left\{z z_{1}: z \in \Omega, z_{1} \in \Omega_{1}\right\}$. A proof of the following fact is given in [5, p. 683]: co $\left(\Omega \cdot \Omega_{1}\right)=$ co (co $\left.(\Omega) \cdot \operatorname{co}\left(\Omega_{1}\right)\right)$. The next result is obvious for compact Ω.

Lemma [9, p. 295]. Let $\Omega \cong \boldsymbol{C}$ be bounded. Then

$$
\operatorname{co}(\Omega)=\left\{\sum_{j=1}^{\infty} \alpha_{j} z_{j}: \alpha_{j} \geqq 0, \sum_{j=1}^{\infty} \alpha_{j}=1 \text { and } z_{j} \in \Omega\right\}
$$

Corollary 1 (cf. [3, Lemma 1]). Let $T_{j} \in \mathscr{B}\left(\mathscr{C}_{j}\right)$ such that $\sup _{j}\left\|T_{j}\right\|<\infty$. Then $\bigoplus_{j} T_{j} \in \mathscr{B}\left(\bigoplus_{j} \mathscr{H}_{j}\right)$ and $\operatorname{co}\left(\mathbf{U}_{j} W\left(T_{j}\right)\right)=W\left(\oplus_{j} T_{j}\right)$.

For $T \in \mathscr{B}(\mathscr{H})$, we say T has a dilation S if $S \in \mathscr{B}(\mathscr{K})$, \mathscr{K} a Hilbert space containing \mathscr{H} as a subspace, and $T P=P S P, P$ being the orthogonal projection from \mathscr{K} onto \mathscr{H} ([6, Chapter 18], [11, §2]). Under these conditions T is called the compression of S to \mathscr{C}. Clearly, $W(T) \subseteq$ $W(S)$.

Let Ω be a closed subset of C containing the spectrum of $T, \sigma(T)$. Ω is said to be spectral for T (in the sense of von Neumann) if for each rational function q with poles outside $\Omega,\|q(T)\| \leqq \sup _{z_{\in \Omega}}|q(z)|$ ([6, p. 123], [11, p. 538])

An operator T is called a diagonal operator if there is an orthonormal basis of \mathscr{H} consisting of eigenvectors of $T([10, ~ p .23],[6, ~ p .29])$. If $W(T) \cong[0, \infty)$, we say T is nonnegative and write $T \geqq 0$; a nonnegative operator has a unique nonnegative square root by the spectral theorem [10, Theorem 1.12].

2. Main results.

Theorem 1 [2, Theorem 2]. Let $A, B \in \mathscr{B}(\mathscr{H})$ be two commuting operators. If $A \geqq 0$, then $W(A B) \cong W(A) \cdot W(B)$.

Proof. $A B=A^{1 / 2} B A^{1 / 2}$.
Theorem 2. Let $A, B \in \mathscr{B}(\mathscr{H})$ be two commuting operators. If A is diagonal, then $W(A B) \cong \operatorname{co}(W(A) \cdot W(B))$.

Proof. Let $A=\sum_{j} \lambda_{j} P_{j}$, where $\left\{P_{j}\right\}$ is a family of mutually orthogonal projections, i.e., $P_{j}^{*}=P_{j}$ and $P_{j} P_{k}=\delta_{j k} P_{j}$, and $\sum_{j} P_{j}=I$. Assume that the λ_{j} 's are distinct complex numbers, then $B=\sum_{j} P_{j} B P_{j}$ (cf. [10, Corollary 0.14]). If B_{j} denotes the compression of B to $P_{j} \mathscr{H}$, then $A B$ has the representation $\bigoplus_{j} \lambda_{j} B_{j}$ on $\bigoplus_{j} P_{j} \mathscr{C}$. Thus

$$
\begin{aligned}
W(A B) & =\operatorname{co}\left(\mathbf{U}_{j} \lambda_{j} W\left(B_{j}\right)\right) \\
& \cong \operatorname{co}\left(\mathbf{U}_{j} \lambda_{j} W(B)\right)=\operatorname{co}(W(A) \cdot W(B)) .
\end{aligned}
$$

$$
\text { Corollary } 1
$$

The next result generalizes [7, Theorem 2.2] and the initial steps of their proofs are identical.

Theorem 3. Let $A, B \in \mathscr{B}(\mathscr{C})$ be two commuting operators. If A is normal, then $\bar{W}(A B) \cong \overline{\mathrm{co}}(W(A) \cdot W(B))$.

Proof. By the spectral theorem [10, Theorem 1.12] and the Fuglede's theorem [10, Theorem 1.16], A can be approximated uniformly by diagonal operators which commute with B. Since $\bar{W}(\cdot)$ and the multiplication of operators are both continuous with respect to the uniform operator topology [6, Problem 175 \& Problem 91], the result follows from Theorem 2.

The finite-dimensional versions of the following three theorems are given in [8, Theorem $1 \&$ Theorem 2].

Theorem 1^{\prime}. Let $T_{j} \in \mathscr{B}\left(\mathscr{C}_{j}\right), i=1,2$. If $T_{1} \geqq 0$ or $T_{2} \geqq 0$, then $W\left(T_{1} \otimes T_{2}\right)=W\left(T_{1}\right) \cdot W\left(T_{2}\right)$.

Proof. $\quad W\left(T_{1} \otimes I\right)=W\left(T_{1}\right), W\left(I \otimes T_{2}\right)=W\left(T_{2}\right)$.
Theorem 2'. Let $T_{j} \in \mathscr{B}\left(\mathscr{L}_{j}\right), j=1,2$. If T_{1} or T_{2} is diagonal, then $W\left(T_{1} \otimes T_{2}\right)=\operatorname{co}\left(W\left(T_{1}\right) \cdot W\left(T_{2}\right)\right)$.

Theorem 3'. Let $T_{j} \in \mathscr{B}\left(\mathscr{H}_{j}\right), j=1,2$. If T_{1} or T_{2} is normal, then (1) holds.

Remark. Theorem 2 can be derived from Theorem 2 ', because $A \otimes B$ is a dilation of $A B$: Let $\left\{\mu_{k}\right\}$ be an enumeration of $\left\{\lambda_{j}\right\}$ with each λ_{j} repeated according to its multiplicity, i.e., the rank of P_{j}. Then

$$
B \otimes A \cong \bigotimes_{k} \mu_{k} B=\bigoplus_{k} \bigoplus_{j} \mu_{k} B_{j} .
$$

If $T_{i} \in \mathscr{B}\left(\mathscr{H}_{i}\right)$ has a dilation $S_{i}, i=1,2$, then $S_{1} \otimes S_{2}$ is a dilation of $T_{1} \otimes T_{2}$. Applying Theorem 3^{\prime}, we have

Theorem 4. Let $T_{i} \in \mathscr{B}\left(\mathscr{L}_{i}\right), i=1,2$. If T_{1} has a normal dilation N, then $\bar{W}\left(T_{1} \otimes T_{2}\right) \subseteq \overline{\mathrm{co}}\left(W(N) \cdot W\left(T_{2}\right)\right)$.

Corollary 2. Let $T_{i} \in \mathscr{B}\left(\mathscr{C}_{i}\right), i=1,2$. If Ω is spectral for T_{1}, then $\bar{W}\left(T_{1} \otimes T_{2}\right) \subseteq \overline{\operatorname{co}}\left(\Omega \cdot W\left(T_{2}\right)\right)$.

Proof. Assume Ω is compact. By the Berger-Foias-Lebow Theorem [11, Corollary 2.3], there is a (strong) normal dilation N of T_{1} with $\sigma(N) \cong \partial \Omega$.

Let \mathscr{N} denote the set of operators $\{T: T$ has a normal dilation N such that $\bar{W}(T)=\bar{W}(N)\}$. By Theorem 4, (1) holds if T_{1} or T_{2} belongs to \mathscr{N}. We note that the subnormal operators [6, p. 322] and the Toeplitz operators [6, p. 349] belong to $\mathscr{N}_{\text {. }}$ Moreover, if $\bar{W}(T)$ is spectral for T, then $T \in \mathscr{N}$ by Corollary 2; in fact, it is shown by M. Schreiber that $\bar{W}(T)$ is spectral for T if and only if there exists a strong normal dilation N of T such that $\bar{W}(T)=\bar{W}(N)$ [11, Theorem 2.4].

Let $T_{j} \in \mathscr{B}\left(\mathscr{L}_{j}\right), j=1,2$. It follows from a result of A. Brown and C. Pearcy [11, Theorem 6.1] that $\sigma\left(T_{1} \otimes T_{2}\right)=\sigma\left(T_{1}\right) \cdot \sigma\left(T_{2}\right)$. Thus (1) holds whenever $T_{1} \otimes T_{2}$ is convexoid [11, Theorem 6.2]. If T_{1} and T_{2} are hyponormal, a simple computation shows that $T_{1} \otimes T_{2}$ is also hyponormal and hence (1) holds [11, Corollary 6.2].

Conjecture. Let $T_{j} \in \mathscr{B}\left(\mathscr{C}_{j}\right), j=1,2$. If T_{1} or T_{2} is hyponormal, then (1) holds.
3. Sectorial operators. In this section we are concerned with the operators whose numerical ranges are contained in half-planes supported at the origin.

For $T \in \mathscr{B}(\mathscr{H})$, let $\Theta(T)$ denote the closure of the set $\{(T x, x)\}$. Since the numerical range of an operator is convex, either $\Theta(T)$ is the entire complex plane or it is a closed sector with vertex at the origin and with angular opening at most equal to π. We note that $\Theta(T)=$ $\Theta\left(S^{*} T S\right)$ whenever S is invertible. If \mathscr{H} is finite dimensional and $0 \in W(T)$, then $\Theta(T)$ coincides with the angular field introduced in [13]. For $\alpha \in[0, \pi / 2]$, let $\Phi(\alpha)$ denote the symmetric sector $\left\{\rho e^{i \theta}: \rho \geqq 0,-\alpha \leqq\right.$ $\theta \leqq \alpha\}$.

Theorem 5. Let $A, B \in \mathscr{B}(\mathscr{H})$ and suppose A commutes with B and B^{*}. If $\operatorname{co}(\Theta(A) \cdot \Theta(B)) \neq C$, then $\Theta(A B) \subseteq \Theta(A) \cdot \Theta(B)$.

Proof. Without loss of generality, assume $\Theta(A)=\Phi(\alpha), \alpha \in[0, \pi / 2]$. Thus $\operatorname{Re} A=\left(A+A^{*}\right) / 2 \geqq 0$. By the spectral theorem, Re A has a nonnegative square root Q. If $\operatorname{Re} A$ is invertible, then $A=\operatorname{Re} A+i \operatorname{Im} A=$ $Q N Q$, where N is the normal operator $I+i Q^{-1}(\operatorname{Im} A) Q^{-1}$. Since B commutes with $Q, \Theta(A B)=\Theta(Q N B Q)=\Theta(N B)$. By Theorem 3 and the hypothesis that $\Theta(A) \cdot \Theta(B)=\Theta(N) \cdot \Theta(B)$ lies on one side of a line through the origin, we have $\Theta(N B) \subseteq \Theta(N) \cdot \Theta(B)=\Theta(A) \cdot \Theta(B)$. Thus the theorem is proved if $\operatorname{Re} A$ is invertible. In general, consider $A+\varepsilon I, \varepsilon>0$, instead of A. Now the result follows from [6, Problem 175 \& Problem 91].

Remark. If A and B commute and if A commutes with $B B^{*}$ or
$B^{*} B$, then we have the following inequality for numerical radii: $w(A B) \leqq$ $\|B\| w(A)$ [3, p. 217].

Theorem 5^{\prime} [12, Theorem 2]. Let $T_{j} \in \mathscr{B}\left(\mathscr{H}_{j}\right), \quad j=1,2 . \quad$ If $\Theta\left(T_{1} \otimes T_{2}\right) \neq \boldsymbol{C}$ or if co $\left(\Theta\left(T_{1}\right) \cdot \Theta\left(T_{2}\right)\right) \neq \boldsymbol{C}$, then $\Theta\left(T_{1}\right) \cdot \Theta\left(T_{2}\right)=\Theta\left(T_{1} \otimes T_{2}\right)$.

Proof. Since $W\left(T_{1}\right) \cdot W\left(T_{2}\right) \subseteq W\left(T_{1} \otimes T_{2}\right)$, we have $\Theta\left(T_{1}\right) \cdot \Theta\left(T_{2}\right) \subseteq$ $\Theta\left(T_{1} \otimes T_{2}\right)$.
4. Application. Let $S, T \in \mathscr{B}(\mathscr{H})$ and $A, B \in \mathscr{B}\left(l_{2}\right), \quad A=\left(a_{j_{k}}\right)$, $B=\left(b_{j k}\right)$. Let $\boldsymbol{x}=\left(x_{k}\right) \in \bigoplus_{k} \mathscr{H} \cong \mathscr{H} \otimes l_{2}$. Then

$$
\begin{aligned}
& \sum_{j}\left(\sum_{k} b_{j k} T x_{k}, \sum_{k} a_{j_{k}} S x_{k}\right)_{\mathscr{H}} \\
& \quad=\left(\left(b_{j k} T\right)\left(x_{k}\right),\left(a_{j_{k}} S\right)\left(x_{k}\right)\right)_{\oplus j} \not{ }_{j} \\
& \quad=((T \otimes B) \boldsymbol{x},(S \otimes A) \boldsymbol{x})_{\mathscr{C} \otimes l_{2}} \\
& \quad=\left(\left(S^{*} T \otimes A^{*} B\right) \boldsymbol{x}, \boldsymbol{x}\right)_{\mathscr{H} \otimes l_{2}} .
\end{aligned}
$$

The following is a result of E. Asplund [1, Theorem 3] (also see [12, Theorem 1] and [4, p. 118]).

Theorem 6. Let $T \in \mathscr{B}(\mathscr{C})$, and n is an integer, $n \geqq 2$. Then $\Theta(T) \subseteq \Phi(\pi / n)$ if and only if for each sequence $x_{0}, x_{1}, \cdots, x_{n-1}, x_{n}=x_{0}$ of n^{π} elements in $\mathscr{C}, \sum_{j=0}^{n-1} \operatorname{Re}\left(T x_{j}, x_{j}-x_{j+1}\right) \geqq 0$.

Proof. Let A denote the $n \times n$ matrix $\left(a_{j_{k}}\right)$,
where

$$
\begin{array}{rlrl}
\alpha_{j j} & =1, & & j=1,2, \cdots, n, \\
a_{j j_{+1}} & =a_{n 1}=-1, & & j=1,2, \cdots, n-1 \\
a_{j k} & =0 \text { elsewhere. } &
\end{array}
$$

and
A is normal and its eigenvalues are $1-\exp (2 \pi i m / n), m=1,2, \cdots, n$. Thus $\Theta\left(A^{*}\right)=\Phi(\pi / 2-\pi / n)$. Consequently, $\operatorname{Re}\left(T \otimes A^{*}\right) \geqq 0$ if and only if $\Theta(T) \cong \Phi(\pi / n)$, by Theorem 2^{\prime} or Theorem 5^{\prime}.

References

[1] E. Asplund, A monotone convergence theorem for sequences of nonlinear mappings, Proc. of Symposia in Pure Math. Vol. 18, Part 1, A.M.S. (1970), 1-9.
[2] R. Bouldin, The numerical range of a product, J. Math. Anal. Appl. 32 (1970), 459-467.
[3] R. Bouldin, The numerical range of a product, II, J. Math. Anal. Appl. 33 (1971), 212-219.
[4] H. Brezis and F. E. Browder, Nonlinear integral equations and systems of Hammerstein type, Advances in Math. 18 (1975), 115-147.
[5] T. Furuta and R. Nakamoto, On tensor products of operators, Proc. Japan Acad. 45 (1969), 680-685.
[6] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton (1967).
[7] J. A. R. Holbrook, Multiplicative properties of the numerical radius in operator theory, J. reine angew. Math. 237 (1969), 166-174.
[8] C. R. Johnson, Hadamard products of matrices, Linear and Multilinear Algebra 1 (1974), 295-307.
[9] F. M. Pollack, Numerical Range and Convex Sets, Canad. Math. Bull. 17 (1974), 295-296.
[10] H. Radjavi and P. Rosenthal, Invariant Subspaces. Springer-Verlag, New York (1973).
[11] T. Saitô, Hyponormal operators and related topics, Lectures on Operator Algebras, Lecture Notes in Math., Vol. 247, Springer-Verlag, New York (1972), 533-664.
[12] E. S. Shiu, Cyclically monotone linear operators, Proc. Amer. Math. Soc. 59 (1976), 127-132.
[13] H. Wielandt, On the eigenvalues of $A+B$ and $A B$, J. Research Nat. Bur. Standards, Sec. B, 77B (1973), 61-63.

Department of Mathematics
University of Manitoba
Winnipeg, Manitoba
R3T 2N2 Canada

[^0]: This work is supported by NRC Grant A4002.

