NOTE ON GENERALIZED INFORMATION FUNCTION

PL. KANNAPPAN

(Received May 17, 1976)

Abstract. Solution of a functional equation, connected with entropy, directed divergence, inaccuracy and their generalization of type β etc. is obtained without the assumption of any regularity condition on the functions involved.

1. Introduction. In [3], the following functional equation

$$(1.1) \qquad f(x) + (1-x)^{\beta}g(y/(1-x)) = h(y) + (1-y)^{\beta}k(x/(1-y)),$$

for $x, y \in [0, 1[$ with $x + y \in [0, 1]$, $\beta \neq 1$, was considered, giving the details of its association with entropy of type β [2], directed divergence of type β [9] and inaccuracy of type β [10]. For $\beta \rightarrow 1$, these measures reduce to Shannon's entropy [11], directed divergence [6] and inaccuracy [5].

In this paper, the functional equation (1.1) is solved by simple and direct method, without any further assumption on the functions, by reducing (1.1) to a similar form involving only one function,

$$(1.2) u(x) + (1-x)^{\beta} u(y/(1-x)) = u(y) + (1-y)^{\beta} u(x/(1-y)) .$$

REMARK 1. If $u: [0, 1] \to R$ (reals) is a solution of (1.2), then $v(x) = u(x) - u(1)x^{\beta}$ is also a solution of (1.2) with v(x) = v(1 - x), that is, with v symmetric. Then the solution of (1.2) can be obtained from [1, 8], for $\beta \neq 1$. So, no generality is lost in considering the symmetric solution of (1.2). Thus the general solution of (1.2) for $\beta \neq 1$ is given by $u(x) = A[x^{\beta} + (1 - x)^{\beta} - 1] + Bx^{\beta}$.

2. Solution of (1.1). Let $f, h: [0, 1[\rightarrow R, g, k: [0, 1] \rightarrow R$, satisfy the functional equation (1.1) for $x, y \in [0, 1[$ with $x + y \in [0, 1]$, where $\beta(\neq 2)$ is positive.

For x = 0, (1.1) gives

$$(2.1) h(y) = g(y) + b_1(1-y)^{\beta} + b_2, \text{ for } y \in [0, 1[,])$$

where b_1 , b_2 are constants.

With y = 1 - x in (1.1), (1.1) becomes with the help of (2.1),

 $(2.2) f(x) = g(1-x) + c_1 x^{\beta} + c_2 (1-x)^{\beta} + b_2, \text{ for } x \in]0, 1[,]$

where c_1 and c_2 are constants. Now (2.1), (2.2), and (1.1) with y = 0, yield $k(x) = g(1-x) + c_1 x^{\beta} + d_1 (1-x)^{\beta} + d_2$, for $x \in [0, 1]$, (2.3)where d_1 and d_2 are constants. Thus (1.1) can be rewritten as $g(1-x) + (1-x)^{\beta}g(y/(1-x)) = g(y) + (1-y)^{\beta}g(1-x/(1-y))$ (2.4) $+ d_1(1 - x - y)^{\beta} - c_2(1 - x)^{\beta} + (b_1 + d_2)(1 - y)^{\beta}$ for $x \in [0, 1[, y \in [0, 1[\text{ with } x + y \in]0, 1[.$ Putting y = 0, (2.4) gives $g(0) = d_1 - c_2 = -b_1 - d_2$. (2.5)Define $m(x) = g(x) + d_1 x^{\beta} - g(0)$, for $x \in [0, 1]$. (2.6)From (2.4), (2.5), and (2.6), we get $m(1-x) + (1-x)^{\beta}m(y/(1-x)) = m(y) + (1-y)^{\beta}m(1-x/(1-y))$ (2.7)for $x \in [0, 1[, y \in [0, 1[, with x + y \in]0, 1[.$ Interchanging x and y in (2.7) and defining N(x) = m(x) - m(1 - x), for $x \in [0, 1[$ (2.8)we have N(x) = -N(1-x), for $x \in [0, 1]$, (2.9)N(1/2) = 0(2.10)and $N(x) + N(y) = (1 - x)^{\beta} N(y/(1 - x)) + (1 - y)^{\beta} N(x/(1 - y)),$ (2.11)for $x, y, x + y \in [0, 1]$. Now x = y in (2.11) gives, $N(x) = (1 - x)^{\beta} N(x/(1 - x)), \text{ for } x \in [0, 1/2[$. (2.12)Also y = 1/2 in (2.11) results in $N(x) = (1-x)^{\beta} N(1/2(1-x)) + N(2x)/2^{\beta}$, for $x \in [0, 1/2[$. (2.13)Using (2.12), (2.13), and (2.9), we have $(1-x)^{\beta}[-N((1-2x)/(1-x)) + N((1-2x)/2(1-x))] = N(2x)/2^{\beta}$

for 0 < x < 1/2,

which by the substitution (1 - 2x)/(1 - x) = t, yields

252

 $[-N(t) + N(t/2)]/(2 - t)^{\beta} = N(2(1 - t)/(2 - t))/2^{\beta}$, for $t \in]0, 1[$, which with the use of (2.12) for x = t/2 and (2.9) leads to (2.14) N(t) = 2N(t/2), for $t \in]0, 1[$.

Finally from (2.13), (2.14), (2.12), and (2.9), we obtain

 $N(x) = (1-x)^{
ho} N(1/2(1-x)) + N(x)/2^{
ho_{-1}}$, for $x \in]0, \, 1/2[$, that is,

$$(1-(1/2^{eta-1}))N(x)=(1-x)^{eta}N(1/2(1-x)), ext{ for } x\in]0,\,1/2[$$

that is,

$$(1-(1/2^{eta-1}))(1-x)^{eta}N(1-x/(1-x))=(1-x)^{eta}N(1-(1/2(1-x)))$$
, which by putting $t=(1-2x)/(1-x)$, yields

$$(1-(1/2^{eta^{-1}}))N(t)=N(t/2), \ \ ext{for} \ \ t\in]0,\,1[$$
 ,

that is,

$$(1-(1/2^{eta-2}))N(t/2)=0, \ \ ext{for} \ \ t\in]0,\,1[$$
 ,

so that, since $\beta \neq 2$

$$N(t) = 0$$
 for all $t \in [0, 1[$.

Thus from (2.8), we get m(x) = m(1 - x) and from (2.7) we obtain

$$egin{aligned} m(x) + (1-x)^{eta} m(y/(1-x)) &= m(y) + (1-y)^{eta} m(x/(1-y)) \ , \ & ext{for} \quad x, \ y, \ x+y \in \end{aligned} 0, \ 1[\ , \ n(x) + n(x)$$

which is the same as (1.2), with $\beta \neq 2$.

REMARKS 2. Then, it follows from [1, 8], that if β is also not equal to 1,

$$m(x) = AS_{\scriptscriptstyleeta}(x) = A[x^{\scriptscriptstyleeta} + (1-x)^{\scriptscriptstyleeta} - 1]$$
 , $x \in \]0, \ 1[$,

so that from (2.6), (2.2), (2.1), and (2.3), we get

$$egin{aligned} f(x) &= AS_{eta}(x) + c_1 x^eta - d_3 (1-x)^eta + c_3 \ g(y) &= AS_{eta}(y) - d_1 y^eta + d_3 \ h(x) &= AS_{eta}(x) - d_1 x^eta + b_1 (1-x)^eta + c_3 \ k(y) &= AS_{eta}(y) + c_1 y^eta - b_1 \ , \end{aligned}$$

for $x \in [0, 1[, y \in [0, 1]]$, where A, b_1 , c_1 , c_3 , d_1 , d_3 are arbitrary constants. From this it is easy to see that in this case no further assumptions on the functions are necessary to solve (1.2) and hence (1.1).

PL. KANNAPPAN

REMARK 3. In case $\beta = 1$, then it is necessary to impose some further conditions on any one and hence on all of the functions involved in (1.1) to get the solution of (1.2) [refer 12, 4, 6, 7 etc.]. Further the above procedure gives a simpler method of solving the functional equation (1.2) when $\beta = 1$, dealt in [13]. This method greatly simplifies the proof given in [13] regarding (1.2) for $\beta = 1$.

Thus, we have proved the following theorem.

THEOREM. If f, h: $[0, 1] \rightarrow R$, g, k: $[0, 1] \rightarrow R$ satisfy (1.1) for x, $y \in [0, 1]$ with $x + y \in [0, 1]$, where $\beta(>0) \neq 2$, then f, g, h, k are given by (2.2), (2.6), (2.1), and (2.3) where m is a solution of (1.2).

REMARK 4. It is now clear to see that no further assumption on F is necessary [refer 9, 10] to obtain the solution of the functional equation

$$egin{aligned} F(x,\,y)\,+\,(1\,-\,x)^{eta}(1\,-\,y)^{r}F(u/(1\,-\,x),\,v/(1\,-\,y))\ &=\,F(u,\,v)\,+\,(1\,-\,u)^{eta}(1\,-\,v)^{r}F(x/(1\,-\,u),\,y(1\,-\,v)) \ , \end{aligned}$$

in the form $F(x, y) = A[x^{\beta}y^{\gamma} + (1-x)^{\beta}(1-y)^{\gamma} - 1] + Bx^{\beta}y^{\gamma}$, [refer 3].

REMARK 5. An open question. Is it possible to obtain the solution of (1.1), by reducing (1.1) to that of (1.2), in case $\beta = 2$?

References

- Z. DARÓCZY, Generalized information functions, Information and Control, 16 (1970), 36-51.
- [2] J. HAVRDA AND F. CHARVÁT, Quantification method of classification processes, the concept of structural a-entropy, Kybernetika, 3 (1967), 30-35.
- [3] PL. KANNAPPAN AND P. N. RATHIE, On generalized information function, Tôhoku Math. Journ., 27 (1975), 207-212.
- [4] D. G. KENDALL, Functional equations in information theory, Z. Wahrs. verw. Geb., 2 (1964), 225-229.
- [5] YD. F. KERRIDGE, Inaccuracy and inference, J. Roy. Statist. Soc. B 23 (1961), 184-194.
- [6] S. KULLBACK, Information theory and statistics, John Wiley and Sons, New York (1959).
- [7] P. M. LEE, On the axioms of information theory, Ann. Math. Statist. 35 (1964), 415-418.
- [8] P. N. RATHIE AND PL. KANNAPPAN, On a functional equation connected with Shannon's entropy, Funk. Ekvacioj, 14 (1971), 153-159.
- [9] P. N. RATHIE AND PL. KANNAPPAN, A directed divergence function of type β , Information and Control, 20 (1972), 38-45.
- [10] P. N. RATHIE AND PL. KANNAPPAN, An inaccuracy function of type β, Ann. Inst. Statist. Math., 25 (1973), 205-214.
- [11] C. E. SHANNON, A Mathematical theory of communications, Bell System Tech. J., 27 (1948), 378-423 and 623-656.
- [12] H. TVERBERG, A new derivation of the information function, Math. Scand., 6 (1958), 297-298.

254

GENERALIZED INFORMATION FUNCTION

[13] PL. KANNAPPAN AND C. T. NG, Measurable solutions of functional equations related to information theory, Proc. Amer. Math. Soc., 38 (1973), 303-310.

Faculty of Mathematics University of Waterloo Waterloo, Ontario Canada