MULTIPLICITY OF HELICES OF A SPECIAL FLOW

Takashi Shimano

(Received October 28, 1977, revised September 12, 1978)
0. The purpose of this note is to show that the multiplicity of helices of a special flow is equal to that of helices of the basic automorphism.

1. Throughout this note (Ω, \mathscr{F}, P) denotes a complete and separable probability space. An automorphism T of Ω is a one-to-one transformation of Ω onto itself which is bimeasurable and measure-preserving. A flow $\left\{T_{t},-\infty<t<+\infty\right\}$ on Ω is a one-parameter group of automorphisms of $\Omega ; T_{t} T_{s}=T_{t+s},-\infty<t, s<+\infty$.

As a special type of flows, which we deal with later, we define the following: Let θ be an integrable function on Ω, bounded below by some positive constant. Define a new probability space ($\widetilde{\Omega}, \tilde{F}, \widetilde{P})$ by

$$
\begin{aligned}
& \widetilde{\Omega}=\{\tilde{\omega}=(\omega, u) ; \omega \in \Omega, 0 \leqq u<\theta(\omega)\}, \\
& d \widetilde{P}(\tilde{\omega})=\frac{1}{E(\theta)} d u d P(\omega), \\
& \tilde{F}=\text { the completion of } \mathscr{F} \times\left.\mathscr{B}^{1}\right|_{\tilde{\Omega}}
\end{aligned}
$$

where \mathscr{B}^{1} is the σ-field of Lebesgue measurable sets of \mathscr{R}^{1} and $d u$ is the Lebesgue measure. It is also a complete and separable probability space. For an automorphism T of Ω, a flow $\left\{S_{t},-\infty<t<+\infty\right\}$ on $\widetilde{\Omega}$ is defined by

$$
S_{t}(\omega, u)= \begin{cases}(\omega, u+t) & \text { for } \quad 0 \leqq t<\theta(\omega)-u \\ (T \omega, 0) & \text { for } \quad t=\theta(\omega)-u\end{cases}
$$

and for other value of t, the automorphism S_{t} is defined by the group property. The flow $\left\{S_{t}\right\}$ is called a special flow with the ceiling function θ, the basic space Ω and the basic automorphism T.

In this note, we deal with a pair ($\left\{T_{t}\right\}, \mathscr{F}_{0}$) of a flow $\left\{T_{t}\right\}$ on Ω and a complete sub- σ-field \mathscr{F}_{0} of \mathscr{F} which satisfies
(a) $\mathscr{F}_{0} \subset T_{t} \mathscr{F}_{0}$ for all $t>0$,
(b) $\mathrm{V}_{-\infty<t<+\infty} T_{t} \mathscr{F}_{0}=\mathscr{F}$.

The pair is called a system on Ω. If \mathscr{F}_{0} is a proper sub- σ-field, the system is said to be non-trivial. It is well-known that there is always
a proper sub- σ-field \mathscr{F}_{0} with (a) and (b) for a flow with a positive entropy (cf. [1], [2]).

Also for an automorphism T of Ω, a system $\left(T, \mathscr{F}_{0}\right)$ is similarly defined.

Let $\left(T, \mathscr{F}_{0}\right)$ be a non-trivial system and $\left\{S_{t}\right\}$ a special flow with the basic automorphism T and the ceiling function θ which is measurable with respect to \mathscr{F}_{0}. Let $\tilde{\mathscr{F}}_{0}$ denote the completion of $\mathscr{F}_{0} \times\left.\mathscr{B}^{1}\right|_{\tilde{\Omega}}$. Then $\left(\left\{S_{t}\right\}, \tilde{\mathscr{F}}_{0}\right)$ is obviously a non-trivial system. We denote it by ($\left\{S_{t}\right\}, \tilde{\mathscr{F}}_{0}$, $\left.T, \mathscr{F}_{0}, \theta\right)$ and call it a special system and (T, \mathscr{F}_{0}) the basic system.
2. Let $\left(\left\{T_{t}\right\}, \mathscr{F}_{0}\right)$ be a non-trivial system on Ω. Let us denote by $\mathscr{H}=L_{0}^{2}(\Omega)$ a Hilbert space of all squarely integrable real random variables with zero-expectations. For each $t,-\infty<t<+\infty$, let \mathscr{H}_{t} be the subspace of \mathscr{H} consisting of all elements measurable with respect to $T_{t} \mathscr{F}_{0}$. We assume that the unitary operators of \mathscr{H} defined by $x \mapsto x \circ T_{t}^{-1}$ for $x \in \mathscr{H}$ are strongly continuous.

Definition 2.1 ([3]). A process $X=\left(x_{t}\right),-\infty<t<+\infty$, is called a helix with orthogonal increments, or simply an HOI, if the following conditions are satisfied:
(a) $x_{0}=0$ and trajectories are right-continuous,
(b) $x_{t}-x_{s} \in \mathscr{H}_{t}$ for any $s, t,-\infty<s<t<+\infty$,
(c) $x_{t}-x_{s} \in \mathscr{H}_{s}^{\llcorner }$for any $s, t,-\infty<s<t<+\infty$ where \perp indicates the orthogonal complement in \mathscr{H},
(d) $\left(x_{t}-x_{s}\right) \circ T_{u}^{-1}=x_{t+u}-x_{s+u}$ for any $s, t, u,-\infty<s, t, u<+\infty$.

Note that any HOI $X=\left(x_{t}\right)$ has the property of a martingale, namely, $\left(x_{t+s}-x_{s}, T_{t+s} \mathscr{F}_{0}\right), t \geqq 0$, is a squarely integrable martingale for fixed $s,-\infty<s<+\infty$. Thus by Doob-Meyer decomposition theorem for martingales, there is a unique adapted process $\langle X\rangle=\left(\langle X\rangle_{t}\right),-\infty<t<$ $+\infty$, so that $\left(\langle X\rangle_{t}\right), t \geqq 0$, is previsible with respect to $\left(T_{t} \mathscr{F}_{0}\right), t \geqq 0$, and $\left(x_{t}^{2}-\langle X\rangle_{t}, T_{t} \mathscr{F}_{0}\right), t \geqq 0$, is a martingale. We call $\langle X\rangle$ an increasing helix of X. It has the following properties:
(a) $\langle X\rangle_{0}=0$ and trajectories are right-continuous and increasing,
(b) $\langle X\rangle_{t}-\langle X\rangle_{s}$ is measurable with respect to $T_{t} \mathscr{F}_{0}$ for any s, t, $-\infty<s<t<+\infty$, and integrable,
(c) $\left(\langle X\rangle_{t}-\langle X\rangle_{s}\right) \circ T_{u}^{-1}=\langle X\rangle_{t+u}-\langle X\rangle_{s+u}$ for any $s, t, u,-\infty<$ $s, t, u<+\infty$.

For HOI's X and X^{\prime}, we put

$$
\left\langle X, X^{\prime}\right\rangle_{t}=\frac{1}{2}\left(\left\langle X+X^{\prime}\right\rangle_{t}-\langle X\rangle_{t}-\left\langle X^{\prime}\right\rangle_{t}\right)
$$

If $X=X^{\prime}$, we have clearly $\langle X, X\rangle=\langle X\rangle$.
Definition 2.2. Two HOI's X and X^{\prime} are said to be strictly orthogonal if $\left\langle X, X^{\prime}\right\rangle=\left(\left\langle X, X^{\prime}\right\rangle_{t}\right)$ vanishes.

Also for a non-trivial system (T, \mathscr{F}_{0}) of discrete time, the HOI and others are similarly defined. They are considerably simplified as follows. Any HOI $X=\left(x_{i}\right)$ can be written as

$$
x_{\imath}=\sum_{k=0}^{i-1} x \circ T^{-k} \quad(i>0)
$$

for some $x \in \mathscr{H}_{1} \cap \mathscr{H}_{0}^{\frac{1}{0}}$ and the increasing helix of X is

$$
\langle X\rangle_{i}=\sum_{k=0}^{i-1} E\left[x^{2} \mid \mathscr{F}_{0}\right] \circ T^{-k} \quad(i>0) .
$$

Thus two HOI's X and X^{\prime} for (T, \mathscr{F}_{0}) are strictly orthogonal if $\left\langle X, X^{\prime}\right\rangle_{1}=$ $\left(\left\langle X+X^{\prime}\right\rangle_{1}-\langle X\rangle_{1}-\left\langle X^{\prime}\right\rangle_{1}\right) / 2$ vanishes, where $\langle X\rangle_{1}=E\left[x^{2} \mid \mathscr{F}_{0}\right]$.

For a special flow, the following result was obtained by J. de Sam Lazaro. Any HOI $\widetilde{X}=\left(\widetilde{x}_{t}\right)$ for a special system $\left(\left\{S_{t}\right\}, \tilde{F}_{0}, T, \mathscr{F}_{0}, \theta\right)$ can be written in the form:

$$
\widetilde{x}_{t}(\omega, u)=\sum_{k=0}^{\infty} x\left(T^{-k} \omega\right) 1_{\left\{R_{k} \leq t\right\rangle}(\omega, u) \quad(t>0)
$$

for some $x \in \mathscr{H}_{1} \cap \mathscr{C}_{0}^{\frac{1}{0}}$ in the basis, where

$$
R_{k}(\omega, u)=\left\{\begin{array}{ll}
u & (k=0) \\
\sum_{j=1}^{k} \theta\left(T^{-j} \omega\right)+u & (k>0)
\end{array} .\right.
$$

We note that any HOI \tilde{X} corresponds uniquely to an HOI X for the basic system, associated to x. When another HOI \tilde{X}^{\prime} is given similarly with x^{\prime} in the place of x, then \widetilde{X} and \widetilde{X}^{\prime} are strictly orthogonal if and only if $E\left[x x^{\prime} \mid \mathscr{F}_{0}\right]=0$. Further, the increasing helix $\langle\tilde{X}\rangle$ of \widetilde{X} is given by

$$
\langle\widetilde{X}\rangle_{t}(\omega, u)=\sum_{k=0}^{\infty} E\left[x^{2} \mid \mathscr{F}_{0}\right]\left(T^{-k} \omega\right) 1_{\left\langle R_{k} \leq t\right\rangle}(\omega, u) \quad(t>0)
$$

3. We now define the multiplicity of helices for a system and show that the multiplicity of a special system coincides with that of the basic system.

Let $\left(\left\{T_{t}\right\}, \mathscr{F}_{0}\right)$ be a non-trivial system and \mathscr{G}_{0} a sub- σ-field of \mathscr{F}_{0} consisting of all $A \in \mathscr{F}_{0}$ such that the process $\left(1_{A} \circ T_{t}^{-1}\right), t \geqq 0$, is previsible with respect to $\left(T_{t} \mathscr{F}_{0}\right), t \geqq 0$.

Definition 3.1. For HOI's X and X^{\prime} for $\left(\left\{T_{t}\right\}, \mathscr{F}_{0}\right)$, let $\mu_{\left\langle x, X^{\prime}\right\rangle}$ be a
measure on $\left(\Omega, \mathscr{G}_{0}\right)$ such that

$$
\mu_{\left\langle X, X^{\prime}\right\rangle}(A)=E\left[\int_{0}^{1} 1_{A} \circ T_{t}^{-1} d\left\langle X, X^{\prime}\right\rangle_{t}\right] \text { for } A \in \mathscr{G}_{0}
$$

Clearly, $\mu_{\left\langle x, X^{\prime}\right\rangle}$ is a finite measure. If X and X^{\prime} are strictly orthogonal, $\mu_{\left\langle x, X^{\prime}\right\rangle}$ is a null measure, that is, $\mu_{\left\langle x, X^{\prime}\right\rangle}(A)=0$ for any $A \in \mathscr{G}_{0}$.

Lemma 3.1. For any positive number α and $A \in \mathscr{G}_{0}$, we have

$$
\mu_{\langle X\rangle}(A)=\frac{1}{\alpha} E\left[\int_{0}^{\alpha} 1_{A} \circ T_{t}^{-1} d\langle X\rangle_{t}\right]
$$

Proof. If we put

$$
f(\alpha)=E\left[\int_{0}^{\alpha} 1_{A} \circ T_{t}^{-1} d\langle X\rangle_{t}\right]
$$

then $f(\alpha)$ is an increasing function and for $\alpha, \beta>0$

$$
\begin{aligned}
f(\alpha+\beta) & =E\left[\int_{0}^{\alpha+\beta} 1_{A} \circ T_{t}^{-1} d\langle X\rangle_{t}\right] \\
& =E\left[\int_{0}^{\alpha} 1_{A} \circ T_{t}^{-1} d\langle X\rangle_{t}\right]+E\left[\int_{\alpha}^{\alpha+\beta} 1_{A} \circ T_{t}^{-1} d\langle X\rangle_{t}\right] \\
& =f(\alpha)+f(\beta)
\end{aligned}
$$

by the stationarity of the increments of $\langle X\rangle$. Thus we obtain

$$
f(\alpha)=\alpha f(1)
$$

For an HOI, we can define a concept similar to the stochastic integral by the martingale.

Definition 3.1. For any HOI $X=\left(x_{t}\right)$ for $\left(\left\{T_{t}\right\}, \mathscr{F}_{0}\right)$ and a squarely integrable random variable ν on $\left(\Omega, \mathscr{G}_{0}, \mu_{\langle x\rangle}\right)$, we set a new HOI $Y=\left(y_{t}\right)$ by

$$
y_{t}=\int_{0}^{t} \nu \circ T_{s}^{-1} d x_{s} \quad(t>0)
$$

where this integral means the stochastic integral by the martingale. Denote Y by $\nu * X$ and call it a stochastic integral by an HOI X.

By the definition, for any HOI X^{\prime},

$$
\left\langle\nu * X, X^{\prime}\right\rangle_{t}=\int_{0}^{t} \nu \circ T_{s}^{-1} d\left\langle X, X^{\prime}\right\rangle_{s}
$$

Thus we see easily that

$$
d \mu_{\left\langle L_{2 * X}, X^{\prime}\right\rangle}=\nu d \mu_{\left\langle X, X^{\prime}\right\rangle}
$$

and

$$
d \mu_{\langle\nu * X\rangle}=\nu^{2} d \mu_{\langle X\rangle}
$$

on the sub- σ-field \mathscr{G}_{0}.
Conversely, applying a theorem of projection for martingales, we have the following.

LEMMA 3.2. Let X be an HOI. For any HOI Y, there exists a squarely integrable random variable v on $\left(\Omega, \mathscr{G}_{0}, \mu_{\langle x\rangle}\right)$ such that

$$
\langle Y, X\rangle=\langle\nu * X, X\rangle
$$

and so we have

$$
d \mu_{\langle Y, X\rangle}=\nu d \mu_{\langle X\rangle}
$$

Thus for HOI's X and Y, the measure $\mu_{\langle Y, X\rangle}$ is absolutely continuous with respect to $\left.\mu_{\langle x}\right\rangle$ and ν is the Radon-Nikodym derivative.

Now we can state a representation theorem for HOI's of a system.
THEOREM 3.1. For any non-trivial system $\left(\left\{T_{t}\right\}, \mathscr{F}_{0}\right)$, there exists a finite or countable sequence of strictly orthogonal HOI's $\mathcal{B}=\left(X^{(n)}\right)$ such that for any HOI X, there exist stochastic integrals $\nu^{(n)} * X^{(n)}$ with

$$
X=\sum_{n} \nu^{(n)} * X^{(n)}
$$

where

$$
\left.\mu_{\langle X\rangle}(\Omega)=\sum_{n} \int_{\Omega} \nu^{(n)^{2}} d \mu_{\langle X}(n)\right\rangle<+\infty
$$

and $\left.\mu_{\left\langle X^{(n)}\right\rangle}\right\rangle \mu_{\left\langle X^{(n+1)\rangle}\right.}$ for all n, where $>$ denotes the relation of absolute continuity of measures. If another sequence $\mathscr{V}=\left(Y^{(n)}\right)$ is also one stated above, then $\mu_{\left\langle_{X}(n)\right\rangle} \sim \mu_{\left\langle_{Y}(n)\right\rangle}$ for all n, where \sim denotes the relation of equivalence of measures.

Definition 3.3. The length of such a sequence as in Theorem 3.1 is called the multiplicity of the system $\left(\left\{T_{t}\right\}, \mathscr{F}_{0}\right)$ and is denoted by $M\left(\left\{T_{t}\right\}, \mathscr{F}_{0}\right)$.

For an HOI X for a system $\left(T, \mathscr{F}_{0}\right)$, we can also define a helixtransform $\nu * X$ of X, which corresponds to a martingale-transform, by a random variable $\nu \in L^{2}\left(\Omega, \mathscr{F}_{0}, \mu_{\langle x\rangle}\right)$ and so a projection of HOI. A theorem of the same type as Theorem 3.1 for (T, \mathscr{F}_{0}) was given in [4]. Theorem 3.1 can be proved by the same method as in [4].

Now we are in the position to state the main theorem in this note.
THEOREM 3.2. The multiplicity of a special system is equal to that of the basic system.

Proof. Let $\left(\left\{S_{t}\right\}, \tilde{\mathscr{F}}_{0}, T, \mathscr{F}_{0}, \theta\right)$ be a special system. We consider the sets in $\tilde{\mathscr{F}}_{0}$ of the following type:

$$
\tilde{A}=A \times\left.\mathscr{R}^{1}\right|_{\tilde{\Omega}} \text { for some } A \in \mathscr{F}_{0}
$$

Since the process $\left(1_{\tilde{A}} \circ S_{t}^{-1}\right), t \geqq 0$, has left-continuous paths, we have $\tilde{A} \in \tilde{\mathscr{G}}_{0}$. Let X be an HOI for the special system

$$
\tilde{X}_{t}(\omega, u)=\sum_{k=0}^{\infty} x\left(T^{-k} \omega\right) 1_{\left\{R_{k} \leq t\right\rangle}(\omega, u) \quad(t>0) .
$$

Then, for any \tilde{A} of the above type,

$$
\mu_{\langle\tilde{X}\rangle}(\widetilde{A})=\frac{1}{\alpha} \int_{\Omega} d P(\omega) \int_{0}^{\theta(\omega)}\left[\int_{0}^{\alpha} 1_{\tilde{A}} \circ S_{t}^{-1}(\omega, u) d\langle\tilde{X}\rangle_{t}\right] d u
$$

by Lemma 3.1. Let α be sufficiently small. If $0 \leqq t \leqq \alpha$, then

$$
\langle\tilde{X}\rangle_{t}=E\left[x^{2} \mid \mathscr{F}_{0}\right] 1_{\left\{R_{0} \leqq t\right\}}
$$

and so

$$
\begin{aligned}
\int_{0}^{\alpha} 1_{\tilde{A}} \circ S_{t}^{-1}(\omega, u) d\langle\tilde{X}\rangle_{t}(\omega, u) & =1_{\tilde{A}} \circ S_{R_{0}}^{-1}(\omega, u)\left(E\left[x^{2} \mid \mathscr{F}_{0}\right] 1_{\left\{R_{0} \leq \alpha\right)}\right)(\omega, u) \\
& =1_{\tilde{A}} \circ S_{u}^{-1}(\omega, u)\left(E\left[x^{2} \mid \mathscr{F}_{0}\right] 1_{\Omega \times[0, \alpha]}\right)(\omega, u) \\
& =1_{\tilde{A}}(\omega, 0)\left(E\left[x^{2} \mid \mathscr{F}_{0}\right](\omega) 1_{\Omega \times[0, \alpha]}\right)(\omega, u) \\
& =E\left[x^{2} \mid \mathscr{F}_{0}\right](\omega) 1_{A \times[0, \alpha]}(\omega, u) .
\end{aligned}
$$

Hence

$$
\mu_{\langle\tilde{X}\rangle}(\tilde{A})=\frac{1}{\alpha} \int_{A} d P \int_{0}^{\alpha} E\left[x^{2} \mid \mathscr{F}_{0}\right] d u=\int_{A} x^{2} d P
$$

Thus, if we denote by X the corresponding HOI for the basic system (T, \mathscr{F}_{0}) associated to x, we have

$$
\mu_{\langle\tilde{x}\rangle}(\widetilde{A})=\mu_{\langle X\rangle}(A)
$$

Consequently, if \tilde{X} and \tilde{X}^{\prime} are HOI's for the special system such that $\left.\mu_{\langle\tilde{x}\rangle}\right\rangle \mu_{\langle\tilde{x}\rangle}$, then we have $\left.\mu_{\langle x\rangle}\right\rangle \mu_{\left\langle x^{\prime}\right\rangle}$, where X and X^{\prime} are the corresponding HOI's for the basic system.

Let $\tilde{\mathscr{P}}=\left(\tilde{X}^{(n)}\right)$ be a sequence of HOI's for a special system $\left(\left\{S_{t}\right\}, \tilde{F}_{0}, T, \mathscr{F}_{0}, \theta\right)$ in the Theorem 3.1 and $\mathscr{E}=\left(X^{(n)}\right)$ the corresponding HOI's for the basic system (T, \mathscr{F}_{0}). We have seen that $\left.\mu_{\left\langle X^{(n)\rangle}\right.}\right\rangle \mu_{\left\langle X^{(n+1)\rangle}\right.}$ for all n. By the result of Sam Lazaro stated in Section 2, \mathscr{B} is maximal and so any HOI for the basic system is represented by \mathscr{X}. Thus we have

$$
M\left(\left\{S_{t}\right\}, \tilde{\mathscr{F}}_{0}, T, \mathscr{F}_{0}, \theta\right)=M\left(T, \mathscr{F}_{0}\right)
$$

4. We now apply the preceding result to a class of special flows. Let (T, \mathscr{A}) be a B-system, i.e., (a) $\mathrm{V}_{i} T^{i} \mathscr{A}=\mathscr{F}$ and (b) $\left\{T^{i} \mathscr{A}\right.$; $-\infty<i<+\infty\}$ is an independent sequence. Putting $\mathscr{A}_{0}=\mathrm{V}_{i<0} T^{i} \mathscr{A}$, we obtain a K-system (T, \mathscr{A}_{0}), i.e., $\bigcap_{i} T^{i} \mathscr{A}_{0}=$ trivial.

Let $\left(\left\{S_{t}\right\}, \tilde{\mathscr{A}}_{0}, T, \mathscr{A}_{0}, \theta\right)$ be a special system constructed by the basic system (T, \mathscr{A}_{0}) whose ceiling function θ is measurable with respect to \mathscr{A}. If θ is not lattice-distributed, then the special system is a K-system, i.e., $\bigcap_{t} S_{t} \tilde{\mathscr{A}}_{0}=$ trivial ([5]).

In [4] we proved that the multiplicity of the system (T, \mathscr{A}_{0}) is equal to the dimension of the subspace of \mathscr{H} consisting of all elements measurable with respect to \mathscr{A}. Thus the multiplicity of the special K-system $\left(\left\{S_{t}\right\}, \tilde{\mathscr{A}}_{0}, T, \mathscr{\mathscr { A }}_{0}, \theta\right)$ is equal to the dimension of the subspace of \mathscr{C} mentioned above.

The author wishes to thank the referees for their help in revising the manuscript.

References

[1] V. A. Rohlin and Ja. G. Sinai, Construction and properties of invariant measurable partitions, Dokl. Akad. Nauk. SSSR, 141 (1962), 1038-1041.
[2] M. S. Pinsker, Dynamical systems with completely positive or zero entropy, Dokl. Akad. Nauk. SSSR, 133 (1960), 1025-1026.
[3] J. de Sam Lazaro and P. A. Meyer, Méthodes de martingales et théorie de flots, Z. Wahrsch. verw. Geb., 18 (1971), 116-140.
[4] T. Shimano, An invariant of systems in the ergodic theory, Tohoku Math. Journ., 30 (1978), 337-350.
[5] H. Totoki, On a class of special flows, Z. Wahrsch. verw. Geb., 15 (1970), 157-167.
[6] J. de Sam Lazaro, Sur les helices du flot special sous une fonction, Z. Wahrsch. verw. Geb., 30 (1974), 279-302.

Mathematical Laboratory
National Defense Medical College
Tokorozawa, Saitama, 359 Japan

