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In 1951, I. Kaplansky [6] introduced a class of C*-algebras called
AW*-algebras to separate the discussion of the internal structure of a
W*-algebra(or von Neumann algebra) from the action of its elements on
a Hilbert space and showed that much of the “non-spatial theory” of
W*-algebras can be extended to AW*-algebras.

Every W*-algebra is of course AW?*, however, the converse is not
true as was shown by Dixmier [3] with an abelian example (the algebra
of all bounded Baire functions on the real line modulo the set of first
category is a non-W*, AW*-algebra). I. Kaplansky [7] proved that an
AW=*-algebra of type I is a W*-algebra if and only if its center is a
W*-algebra and conjectured that the theorem is true without the assump-
tion of “type I”. In 1970, O. Takenouchi [12] and Dyer [2], independent-
ly, showed this to be false by counter examples (non-W*, AW*-factors).
In 1976, J. D. Maitland Wright [16, 18] defined a regular o-completion
(some kind of Dedekind cut completion) of a separable C*-algebra and
proved that the regular o-completion of an infinite dimensional simple
separable C*-algebra is a type III, non-W?*, o-finite A W*-factor with the
monotone convergence property (see the definition below).

In this paper, the author will give a modification of a J. D. M.
Wright’s theorem and using this, will show that the non-W*, AW*-
factors given by Takenouchi and Dyer are o-finite, type III AW*-factors.
The key point of the proof is, roughly speaking, to construct a faithful
state on these factors. To do this, a J. D. Maitland Wright’s theorem
plays an essential role. He states that the pure state space of the regular

o-completion Cﬁ),\l] (which is essentially the same as ¥ in section 1) of
the C*-algebra C[0, 1] of continuous complex funections on [0, 1] is separa-
ble ([18, p. 85]).

The AW*-factor given by Takenouchi is a “weakly closed” (in the sense
of [13]) AW*-subalgebra of type I AW*-algebra B(M) of all bounded
module endomorphisms of some AW*-module I over an abelian AW*-
algebra. The author believes that it is natural to represent AW*-
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algebras as “weakly closed” AW*-subalgebra of some B(I). The author
then will show that the AW*-factor constructed by Dyer can be re-
presented faithfully as a “weakly closed” AW*-subalgebra of some B(M).
Moreover, we shall remark that these factors are monotone closed (in the
sense of [5]), simple and do not have any non-trivial separable representa-
tions.

1. AW*-algebras with a monotone convergence property (M. C. P.).
An AW*-algebra M means that it is both a C*-algebra and a Baer*-ring
([1], [6]). M has a momnotone convergence property (M. C. P.) if for
every increasing sequence {x,} of self-adjoint elements in M bounded
above has the supremum 2z in the self-adjoint part of M (we simply
denote z, 1 x or Sup, x, = x).

First of all, we shall show the following technical lemma.

LEMMA. Let M be an AW*-algebra with M. C. P. For every in-
creasing sequence {e,} of projections im M, let V5., e, be the supremum
projection of {e,} im the projection of M. Then Sup,e, = V-, e,.
Moreover, for any a€ M,

Sup a*e,a = a*(V e,,)a .
n n=1

PrROOF. Put b = Sup,e,, then 0 ¢, <b< Vi, e, in M for each n.
Thus ¢, < LP () < Vy_,e, for all » and hence LP (b)) = V5., e, where
LP (b) is the left projection of b in M ([1, 6]). On the other hand, e, = be,
for every n implies by [6, Lemma 2.2] that LP (b)) = bLP (b) = b and
Sup, e, = Vi~ e,

Now arguments used in [5] tells us that for any aeM, a*e,al
a*(Vy-,e,)a in M. This completes the proof.

Using this, we have the following theorem which is a modification
of a J. D. M. Wright’s result ([17, Theorem 6]).

THEOREM 1. Let M be an AW*-factor with M. C. P. Suppose that
M has a faithful state (not mecessarily normal) ¢ and 1is semi-finite,
then M is a o-finite W*-algebra. The assumption of semi-finiteness
cannot be dropped.

REMARK. Maitland Wright proved, without the assumption of
M. C. P., however under the condition that M is finite, that the above
proposition holds.

PrROOF OF THEOREM 1. For any non-zero finite projection e (note that M
is semi-finite), put N=e¢Me, then N is a finite A W*-factor with the faithful
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positive functional 4 where +r(exe) = ¢(exe) for xe M. J. D. M. Wright’s
theorem [17, Theorem 6] tells us that N is a W*-algebra, that is, there
exists a faithful W*-representation 7, of N on some Hilbert space 9,
(w,(N) is a weakly closed *-subalgebra with the identity of B($=x,) (the
algebra of all bounded linear operators on 9x,)). Next we shall show
that for any &€ 9=,, the positive functional ¢(e, £) on M (where ¢(e, £)(x) =
(m(exe)s, &), x € M) is completely additive on projections. To prove this
we have only to show that for any decreasing sequence {e,} of projec-
tions in M with e, |0, ¢(e, &)(e,) | 0 (n— o), because M is o-finite (note
that M has a faithful state). Let {e,} be any decreasing sequence of
projections in M with e, | 0, then by the above lemma, Inf,ee,e =0 in
the self-adjoint part of N. Since {m,(ee,e)} is a decreasing sequence in
the non-negative portion of B(Hm,), there is A eB(HPrw,) such that
w,(eeqe) | A (strongly). The strong closedness of 7, (N) implies A€ x,(N).
Hence there is a € N(a = 0) such that A = 7,(a). The faithfulness of 7,
implies that a = 0, that is, = (ee,e) | 0 strongly. Thus ¢(e, &) is completely
additive on projections of M. The semi-finiteness of M tells us that
{g(e, &); e is any non-zero finite projection, & e Y, where x, is a faithful
W*-representation of eMe} is a separating family of positive functionals
on M which are completely additive on projections of M. Hence by
([10], Theorem 5.2, see also [9]) M is a semi-finite W*-algebra. Non
w*, AW*-factors constructed by Takenouchi and Dyer have the M. C. P.
and faithful states (see the next section), thus the assumption of semi-
finiteness cannot be dropped. This completes the proof of Theorem 1.

REMARK. In the above proof, we suppose that M has the M. C. P.,
however, Theorem 1 still holds under a nominally weaker assumption
such that for any increasing sequence {¢,} of projections in M and for
any projection e in M, Sup, ee,e exists in the self-adjoint portion of M
and Sup, ee,e = e(Vi-, e.)e.

The above theorem implies that if non-W*, AW*-factor with M. C. P.
has a faithful state, then it is of type III ([6, p. 241 Definition]).

In the rest of this section, we treat with examples of abelian AW*-
algebras with groups of x-automorphisms of them which are needed in
the later sections.

Let B~[0,1) be the algebra of all bounded Baire functions on [0, 1)
and let A be the algebra B<[0, 1) modulo the set of first category. Then
one can easily check that % is a non-W?*, abelian AW*-algebra which is
x-isomorphic with the regular o-completion of a separable abelian C*-
algebra ([2], [18], p. 86). J. D. Maitland Wright proved also that U has
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a faithful state because the pure state space of U is separable [18,
Proposition A, Corollary D]J.

Let G, (resp. G,) be the group of translations on [0,1) by an irra-
tional number 6(mod 1) (resp. by all dyadic rationals in [0, 1) (mod 1)).
Denote for each o€ @G, (resp. G,), o(t) =t+o0 (mod 1), f(t) = f(o(t)) for gll
te[0,1), feB[0,1) and a° = f° where f belongs to a coset a(a = f),
feB7[0,1) for all aeA. Then both G, and G, naturally induce groups
of x-automorphisms (a—a° ac ) of A (we denote them by the same
notations G, and G, since any confusion does not occur). It is easy to
check that G, and G, act freely and ergodically on 2.

2. Types of the AW*-factors constructed by Takenouchi. First, we
shall sketch briefly the construction of AW*-factors of [12]. Let Z be
an abelian A W*-algebra, G be an abelian group of x-automorphisms of
Z with an action a—a’ (a € Z, g€ G). One can construct a faithful A W*-
module ([8]) M over Z as follows: Let I be the set I*(G, Z) of all
sequences {x,} of elements in Z with the indices g € G such that >,.; 2,*x,
is in Z (the supremum of the family of finite sums). Then I is a faithful
AW*-module over Z and the set B(M) of all bounded module endomor-
phisms (we simply call them “operators”) of I is a type I AW*-algebra
with center Z.

Define, for any a€ Z and hc @, the following types of “operators”
on IM:

L,: {w;} —{a’x,}

for f{x,)cM .
U,: {xy}ﬁ{yg} where Yy = Xg-p

Then one can easily show that a— L, is a =-isomorphism of Z into
B(M) and h—U, is a unitary representation of G into B(M) such that
U *L,U, = L, for all ac Z and heQ@G.

Next, for any heG, we introduce the following linear operator
(note that this is not a module endomorphism of ) on I:

Vi {x,} —{y,} where vy, = (x,.,)"* for {x,je.

For every “operator” on I% has a matrix representation A ~ {(a,,)
where a,, = (Au,, w,) (g9, heG) (where u, = {0,,} (he@) and d,, is the
Kronecker’s delta).

Let M(Z, G) = {AeB(M); A ~a,,> where q,, = (a,_;,.)" for any pair
g, h in G(e is a unit of G)}, then Ae M(Z, G) if and only if AV, =V, 4
for all he G and M(Z, G) is an AW*-subalgebra of B(M) which contains
all U, and L,, where an AW?*-subalgebra means that the structure of
an AW#*-algebra of M(Z,G) is compatible with that of B(IN) in the
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sense of [1, 7].

Takenouchi showed under the condition that the action of G on Z
is free and ergodic, M(Z, G) is an AW*-factor such that {L,;ac Z} =2
is a maximal abelian *-subalgebra (whose proof is analogous to that of
Murray-von Neumann’s) and gave an example of (Z,G) as (¥, Gy) in
section 1. If M(¥, Gy) is a W*-algebra, then Z (x-isomorphic with %) is
a W*-algebra. This is a contradiction and hence M(¥, G,) is a non-W*,
AW#+-factor.

The rest of this section is devoted to prove

THEOREM 2. MY, Gy) is a o-finite, type 111, non-W*, AW*-factor
with M. C. P. (more precisely, MU, Gy) is “weakly closed” *-subalgebra
of B(M) (M = I¥(Gy, N)) in the sense of H. Widom [13], and that, it is
monotone closed in the semse that in its self-adjoint part, every norm-
bounded increasing net has a least upper bound).

Proor. First of all, we shall show that M(Y, G,) is “weakly closed”
subalgebra of B(M) where I = I*(Gy, A) in the sense that for any net
{A.} in M(¥, G,) such that (4,8, n)— (A%, 1) (order convergence in 2A) [13],
for some AecB(MN), Aec MY, Gy). In fact, putting 4, ~ {aZ,> A ~ {a,,),
then a2, — a,,, (order convergence in %) for each pair ¢ and h in G,.
Thus a,,;, = (ay_4,.)" for g, h € G, and A€ M(Y, G;). In particular, M(Y, G,)
has M. C. P. In fact, let {4,} be an increasing sequence of self-adjoint
elements of M(%, G,y) bounded above by Be M(%, G,), then A, T A “weakly”
for some A (where A is the supremum of {A4,} in the self-adjoint part
of B(M)), in B(M) ([13, Lemma 1.4]). It follows by the above argument
that Ae M(¥, G;) and A < B and hence M(¥, G;,) has M. C. P. By the
same way, we can easily show that M(Y, G,) is monotone closed.

Next, we shall show that M(%, G,) has a faithful positive projection
map onto A(={L,, acA}). In fact, for any Ae M, G,), let 9(A) = L,,,
where A ~ {a,,,>, then one can easily check that @ is a positive projec-
tion map of M(, G,) onto %. To prove the faithfulness of @, we argue
as follows. For any A e M(¥, G,) with A ~ {a,,>, noting that, (4*A),, =
Sec g ¥y, we have O(A*A) = 0 implies a,, = 0 for all g € G and hence
A = 0 because a,, = (a,_;,.)" =0 for all g, hegG.

Let + be a faithful state on U in section 1, and let ¢ = 4o ®, then
¢ is a faithful state on M(¥, Gy). Assume that M(¥, G,) is semi-finite,
then by Theorem 1, M(%, G,) is a W*-algebra, however this is a con-
tradiction because M(¥, G,) is non-W*. Hence M(¥, G,) is of type III.
Since M(¥, G,) has a faithful state ¢, we can easily show that M(Y, G))
is o-finite. This completes the proof.
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3. Dyer’s example. In this section, we shall sketeh briefly the con-
struction by Dyer [3] and then show that the Dyer’s example is a o-finite,
non- W*, type III AW*-factor with M. C. P. Moreover we shall prove
that it can be represented faithfully as M(¥, G,) in section 2. Thus
Dyer’s factor is also monotone closed.

Let © be a Hilbert space with an orthonormal basis {e,; 0= ¢ <1, x:
a real number}. Every bounded linear operator A on $ has a matrix
representation 4, , = (4e,, ¢,) for x and y€[0,1). Let U, (respectively
J1) denote the algebra of operators A such that A4,, = 4,,f(x) for any
x, ¥y where fe B*[0, 1) and d,,, is a Kronecker’s delta (resp. {z;0 <z < 1,
f(x) # 0} is contained in a set of 1st category in [0, 1)).

Let %, (resp. J,) be the set of operators A on $ with matrices 4,
with

(1) A,,=0 except when y — x = j27* for some k=1 and —2f <
J < 2% (integer).

(2) For k=1 and 0 <1, j < 2% the function defined for xz¢[0, 1)
by f(®) = As~kirm,e-kijrm 1S @ bounded Baire function (resp. {x; 0 < x < 1,
f(x) # 0} is contained in a set of 1st category in [0, 1)).

Dyer [3] proved that %, (resp. ¥,) is a C*-algebra with a closed two-
sided ideal &, (resp. &) and the quotient algebra /3, is a non-W*,
AW*-factor of which 9,/J, is a maximal abelian *-subalgebra (note that
A,/J, is =-isomorphic with U in section 2).

By the above construction, a straightforward verification tells us
that 9, has M. C. P. and &, is a o-ideal in the sense that for every
increasing sequence {A4,} of self-adjoint elements in ¥, which converges
strongly to some operator 4, Ae¢,. Now by the arguments of J. D. M.
Wright [15] it follows that %,/J, has M. C. P. Moreover, /Y, has a
faithful positive projection ¥ onto ¥U,/J,. In fact, for any A e, with
A~{A, >, put B~{,,4,,> (Be,) and consider the following mapping
UV A+Z,— B+, of A/, onto A,/I,. Then it is easy to check that ¥ is
a projection map of 2/, onto %,/S,. For any Ae, with A~ {(4,,,>, we
have that (A*A),. = Dw<.« |4,.* for all . This implies that 7 is posi-
tive and faithful. Since 2/, is *-isomorphic with ¥ in section 1, A,/J,
has a faithful state and then by the same reasoning as in Theorem 2,
A/ has a faithful state and thus by Theorem 1 we have

THEOREM 3. U/, is a o-finite, non-W*, type III AW*-factor.
The rest of this section is devoted to prove the following:

THEOREM 4. U/, s *-isomorphic with M(U, G,) in section 2.
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PrOOF. For any A + JFeW/Jy (A€,), let A~ <(A,,>,then4,,=0
except when y —x = 5-27% for some k=1, —2* < j < 2* and for k = 1,
01, j<2% the function 2 — f(x) = As—rirore—kicm (0= <1) is in
B~[0,1). Keeping the notations in the last paragraph of section 1, for
any g€ Gy, ¢ — A, ., is a bounded Baire function on [0,1). Let ¢ be
the canonical map of B~[0, 1) onto A and a,, = ¢(x — 4, w,.) for geG,.
Note that a,, does not depend on the choice of particular Aec 4 + J,.
In fact, if A, BeA + i, then A — BeJ, and hence ¢(x — 4, m..) =
$(x — B, m..) for all ge G,. Let a,, = (a,-,,.)" for any g and heG, then
(a,,) defines an ‘“operator” (A + J,) on M =[G, A) such that
V(A + J)on = g, for all g, heG,.

Observe that a,, € is the canonical image of x — 4, )., for any
g, h e@,.

Since deao ‘Aag(:c).aclz = Zyeao \(Aeau eag(a:))|2 -S— Zosyq I(Ae:u ey)‘z = HAezHZ é
||A]]* for all x€[0,1), we have that >,.41a,./* =[A|’-1 on A. Thus,
for any £=(x,) € M, Deq, [€,a5,,=[|€]|-[|A]l. This implies that >,,cq, %00
is order convergent in U [13]. Put 7,=>,.4, 2,0, €Y, We can show that
Shes, TP €U (order convergent in A). In fact, let &, be the inverse
image of x, by ¢ in B~[0, 1), then >, .4, [2,(®)] < ||£]]* except on a set of
first category. Hence it follows that

PINPY @g(x)Aay(x),uh(x)F = hZ | > Zy(x)(Aey, Cogta)|’

heGy 9edy €Gy geGy

= 2| > 2,(@)(Ae,.0,))°

heGy 0=y<1

(where Z,(x) =0 if y # og,(x) for any geG, and Z,(x) = Z,(x) if y =
0'9(%) geG,)

= heZGOI(Ae.,hm, @,(@))" (where (&,(x)) € D)
= h;(}o (€00 A*@ (@) = [|AIP-[I(@,())]]* = [[AIP-[€]]

except on a set of first category. Thus Dlicq, |Dlgea, £0,uP < [|A|P-] 2|2
and  Dlicq, 7 €U, Hence let (A + J0)é = (Zeq, Toon) €M, then
YA + Jp) eBEN) and |y(4 + Il S 114 + Joll.  P(A + J)gn = g, for
all g, h implies that (4 + ) € M(¥, G,). Thus 4 is a bounded -linear
map of U/, into M, G,). Next we shall show that + is a *-isomor-
phism. For any A + J,, B + U/, (4, Be¥,),

(AB)og(x),ah(a:) = keEG Aug(a:).ak(z)Buk(w),ah(:v)
0

for all 0 =x <1, Thus >4 @.ibesx is order convergent to ¢(x —
(A-B)ag(x),uh(z)) in m' Hence "/”(AB + 30) = ’\II‘(A + 30)"/"(3 + '3‘0)' If
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YA +J) =0 (Ae,), then {x;0 <2 <1, A, m,0,=» # 0} is contained in
a set of 1st category in [0,1). Thus for all k=1, 014, J < 2F,
T — Ay—kiiye.o—kij+s) Das a first category support, and hence AeS,, that
is, A+, =0. This implies that + is a =x-isomorphism of %/, into
M, G,).

Next, we shall show that the map + is onto. To do this we argue
as follows: Let Ae MY, G,) with A ~ {a,,>. Then one can choose for
any g and heG, a function a,,(x)ec B7[0,1) such that there is a Baire
set contained in a set of 1st category I in [0, 1) such that

|3, G < IAI-(S S

for all {&}, {n.}el*(G,) and for all 2€[0, 1)\ where ¢ is the complex
conjugate of a complex number ¢. Replacing a,,,(x) by a,,'(x) with the
funetion a,,,'(x) defined to be zero if x ¢ I and equal to a,,(x) otherwise,
we have that for any {&,}, {9.} € IXG,),

[ X0heco @on (@ET,| = [AN(nea, 16410 (Xge, 1)

for all x. Now we shall define (A4, ,> as follows: 4,, =0 except when
x—y=7-27F forsome k=1, —2*<j <2 A, m,.=0a,.[®) 0=2<1, ge@,
then & — A,—r(4m2-k+n 1S & bounded Baire function on [0,1). To see
that (4,,> determines a bounded linear operator B on §, we have only

to show that [ic..v< 4.087| = ||A][-1l€]]-II7l] for any & = {&.}, 7 = (7.}
in . In fact,

Z Ao,,(x),mfag(z)vx (Where Gko = {oz_kOi;i = 09 17 2! ct 2"0__1})

031 geGy

= Z Z 2 Aag+h(x)»ah(z)fag+h(x)770h(x)

0gz<z ko heGpy 96Gy,

2> Aag(x),ahm{:agmﬁ?ohm}

0z <z ko KeGy  9eGy

53 AU S, e S, Mo

A

0sz<z ko

= ”A”(O 2, gg;k lfagmlz)l/?(o ! 2 Moy

<z<2"ko <z<2— ko heGy

= [|A[l-[l&ll- 171l

for all K, = 1. Since Uy, G, =G, and G,CG,,, for all k, we have
|Sosev<s AEel < ||A]l-]1€]]-]7]] and hence there is a Be?, such that
(Be,, e,) = A,, for all x, y. By the construction, it is easy to check
that (B + J,) = A. Thus + is onto. Hence /I, = M, G,). This
completes the proof of Theorem 4.

4. Remarks. (1) We shall remark first that every o-finite type III
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AW*-factor is simple. Certain standard arguments tells us that for any
pair e and f of non-zero projections in each o-finite type III AW*-factor
M,e~ f in M. In fact, since “comparability theorem” of projections
and “additivity of equivalence” of projections hold in any A W*-algebra
([6]), we can easily show that for any non-zero projection e in M, there
exists a mutually orthogonal sequence of projections {e}>, in M such
that e = >2,e;,, e ~e, for all .. Let {f;};c, be a maximal family of
orthogonal projections such that f; < e for all j. Then the o-finiteness
of M implies that the cardinal of J is at most countable. The maximality
of {fi},es tells us that 1 — 3., f; =0. Thus 1 =2, f;i<>2, e, =e¢
and e ~1 in M.

Now let I be any non-zero uniformly closed two-sided ideal of M,
then by F. B. Wright’s theorem [14], I contains a non-zero projection
¢. Thus, by the above argument, ¢ ~1 and 1e I, that is, I = M and M
is simple.

(2) We note also that every type I. or type II. AW*-factor is
not simple because the uniformly closed two-sided ideal generated by
all finite projections in it is non-trivial.

Using this, the regular o-completion A of a simple, infinite dimen-
sional, separable unital C*-algebra A is neither of type I. nor of type
II.. (because A is simple), that is, A is of type II, or of type III. Since
A has a faithful state ([18, Theorem M]), [17, Theorem 6] tells us that
A is of type III.

(8) Next we shall show that for any o-finite, type III non-W*,
AW*-factor M, M does not have any non-trivial separable representa-
tions. Suppose, on the contrary, that M has a non-trivial separable
representation (7, §.) (9. is separable). Then we may assume without
loss of generality that n(1) = 1;_(the identity operator on §.). Feldman
and Fell [4] state that 7 is completely additive on projections and by
the argument in (1) (M is simple), « is faithful. This implies that M
has sufficiently many c.a. states. Thus M is a W*-algebra by [9]. This
is a contradiction and M has no non-trivial separable representations.

Thus the examples M(¥, Go), M(¥, G,) and A are simple and do not
have any non-trivial separable representations.

We note that the above statements also hold for any o-finite, properly
infinite A W#*-algebra without any W*-direct summands, but we will
omit the details.

(4) We shall also remark that there is a monotone closed C*-factor
which is not a W*-algebra (M(¥, G,), MY, G,), A) see [5, Corollary 3.10].
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