ON TRANSFORMING THE CLASS OF BMO-MARTINGALES BY A CHANGE OF LAW

Norihiko Kazamaki

(Received January 31, 1977)

1. Introduction. If Z is a positive uniformly integrable martingale such that $Z_{0}=1$, then we can define a change of the underlying probability measure $d P$ by the formula $d \hat{P}=Z_{\infty} d P$. Our interest in this paper lies in investigating the transformation of BMO-martingales by this change of law. Let us denote by $B(P)$ (resp. $B(\widehat{P})$) the space of BMO-martingales with respect to $d P$ (resp. $d \hat{P}$). In the next section we shall deal only with discrete time martingales, and prove that $B(\hat{P})$ is isomorphic to $B(P)$ under a certain assumption. This equivalence corresponding to the continuous time case will be established in Section 4. Furthermore, in Section 3, we shall give a characterization of BMO-martingales.
2. The equivalence of $B(P)$ and $B(\hat{P})$; the discrete time case. Let (Ω, F, P) be a probability space, given a non-decreasing sequence $\left(F_{n}\right)$ of sub σ-fields of F such that $\mathrm{V}_{n=1}^{\infty} F_{n}=F$. We shall assume that F_{0} contains all null sets. If $X=\left(X_{n}, F_{n}\right)$ is a martingale with difference sequence $x=\left(x_{n}\right)_{n \geqq 1}$, then the square function of X is $S(X)=\left(\sum_{n=1}^{\infty} x_{n}^{2}\right)^{1 / 2}$. Let $S_{n}(X)=\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{1 / 2}, S_{0}(X)=X_{0}=0$ and if X converge a.s., let X_{∞} denote its limit. The reader is assumed to be familiar with the martingale theory as is given in [2] and [3]. Throughout the paper, let us denote by C a positive constant and by C_{p} a positive constant depending only on the indexed parameter p, both letters are not necessarily the same in each occurrence. X is a BMO-martingale if

$$
\|X\|_{B(P)}=\sup _{n}\left\|E\left[S(X)^{2}-S_{n-1}(X)^{2} \mid F_{n}\right]^{1 / 2}\right\|_{\infty}<\infty
$$

The class of BMO-martingales depends on the underlying probability measure and so we shall denote it by $B(P)$. It is a real Banach space with norm $\|\cdot\|_{B(P)}$. The next lemma is fundamental in our investigation.

Lemma 1. The inequality

$$
\begin{equation*}
E\left[\exp \left\{S(X)^{2}-S_{n-1}(X)^{2}\right\} \mid F_{n}\right] \leqq\left(1-\|X\|_{B(P)}^{2}\right)^{-1} \tag{1}
\end{equation*}
$$

is valid for every martingale X such that $\|X\|_{B(P)}<1$.

Proof. This inequality is proved in [3], but for the reader's convenience we shall recall briefly the proof.

Let us set $A_{j}=S_{j+n-1}(X)^{2}-S_{n-1}(X)^{2}$, which is F_{j+n-1}-measurable and $A_{0}=0 \leqq A_{1} \leqq A_{2} \leqq \cdots$. Then the left hand side of (1) is $E\left[\exp \left(A_{\infty}\right) \mid F_{n}\right]$ and without loss of generality we may assume that it is finite. By an elementary calculation we have

$$
\begin{equation*}
E\left[\exp \left(A_{\infty}\right) \mid F_{n}\right] \leqq 1+\sum_{j=1}^{\infty} E\left[b_{j}\left(A_{\infty}-A_{j-1}\right) \mid F_{n}\right] \tag{2}
\end{equation*}
$$

where $b_{1}=\exp \left(A_{1}\right)$ and $b_{j}=\exp \left(A_{j}\right)-\exp \left(A_{j-1}\right), j \geqq 2$. But the right hand side of (2) is smaller than $1+\|X\|_{B(P)}^{2} E\left[\exp \left(A_{\infty}\right) \mid F_{n}\right]$, because $E\left[A_{\infty}-A_{j-1} \mid F_{j+n-1}\right] \leqq\|X\|_{B(P)}^{2}$. Thus the lemma is proved.

Let now Z be a positive uniformly integrable martingale with $Z_{0}=1$ and $Z_{\infty}>0$ a.s. Throughout, we shall denote by $d \hat{P}$ the weighted probability measure $Z_{\infty} d P$ and by $\hat{E}[\cdot]$ the expectation over Ω with respect to $d \hat{P}$. It is clear that $\hat{P}(\Lambda)=\int_{\Lambda} Z_{n} d P$ for every $\Lambda \in F_{n}$, from which we have

$$
\begin{equation*}
\hat{E}\left[U \mid F_{n}\right]=E\left[Z_{\infty} U \mid F_{n}\right] / Z_{n} \quad \text { a.s., under } \quad d P \quad \text { and } \quad d \hat{P} \tag{3}
\end{equation*}
$$

for every \hat{P}-integrable random variable U. We shall often use this formula. Let X be a martingale such that every x_{n} is \hat{P}-integrable, and let us consider the process \hat{X} defined by $\hat{X}_{0}=0, \hat{X}_{n}=\sum_{j=1}^{n} \hat{x}_{j}$ where $\hat{x}_{j}=x_{j}-\hat{E}\left[x_{j} \mid F_{j-1}\right], j \geqq 1$. It is easy to see that \hat{X} is a \hat{P}-martingale. $\|\cdot\|_{B(\hat{P})}$ denotes the BMO norm associated with $d \hat{P}$. Let W be the process defined by $W_{n}=Z_{n}^{-1} . \quad W$ is a \hat{P}-uniformly integrable martingale and $W_{\infty} d \hat{P}=d P$.

Definition. Let $1<p<\infty$. We say that Z satisfies $\left(A_{p}\right)$ if the inequality

$$
\begin{equation*}
Z_{n} E\left[Z_{\infty}^{-1 /(p-1)} \mid F_{n}\right]^{p-1} \leqq C_{p} \tag{4}
\end{equation*}
$$

is valid for every $n \geqq 1$.
For simplicity, let us say that $\left(A_{\infty}\right)$ holds if Z satisfies $\left(A_{p}\right)$ for some $p>1$. We shall denote by $\left(\hat{A}_{p}\right)$ the $\left(A_{p}\right)$ condition associated with $d \hat{P}$. (\hat{A}_{∞}) is the $\left(A_{\infty}\right)$ condition with respect to $d \hat{P}$.

Theorem 1. Let $1<p<\infty$. If Z satisfies $\left(A_{p}\right)$, then the inequality

$$
\begin{equation*}
\|X\|_{B(P)} \leqq C_{p}\|\hat{X}\|_{B(\hat{P})} \tag{5}
\end{equation*}
$$

is valid for every P-martingale X such that $x_{n} \in L_{1}(d \hat{P}), n \geqq 1$. Similarly, if W satisfies $\left(\hat{A}_{p}\right)$, then we have $\|\hat{X}\|_{B(\hat{P})} \leqq C_{p}\|X\|_{B(P)}$.

Proof. We show only (5): the proof of the latter half is similar, and is omitted.

If $\|\hat{X}\|_{B(\hat{P})}=0$, then $\hat{X}=0$ so that $\hat{x}_{n}=0$ for all n. This implies that x_{n} is F_{n-1}-measurable. Thus $x_{n}=0$ for all n. That is to say, $\|X\|_{B(P)}=$ 0 . So, we may assume that $0<\|\hat{X}\|_{B(\hat{P})}<\infty$. As $\left|\hat{x}_{n}\right| \leqq\|\hat{X}\|_{B(\hat{P})}$ and $\hat{x}_{n}-E\left[\hat{x}_{n} \mid F_{n-1}\right]=x_{n}$, we get $\left|x_{n}\right| \leqq 2\|\hat{X}\|_{B(\hat{P})}$. Furthermore, a simple calculation shows that $E\left[x_{j}^{2} \mid F_{n}\right] \leqq E\left[\hat{x}_{j}^{2} \mid F_{n}\right]$ for $j \geqq n+1$. Thus we get

$$
\begin{align*}
E\left[S(X)^{2}-S_{n-1}(X)^{2} \mid F_{n}\right] & =x_{n}^{2}+E\left[\sum_{j=n+1}^{\infty} x_{j}^{2} \mid F_{n}\right] \tag{6}\\
& \leqq 4\|\hat{X}\|_{B(\hat{P})}^{2}+E\left[\sum_{j=n+1}^{\infty} \hat{x}_{j}^{2} \mid F_{n}\right]
\end{align*}
$$

Now let us set $a=\left\{2 p\|\hat{X}\|_{B(\hat{P},}\right\}^{-1}$. The $\left(A_{p}\right)$ condition implies that $E\left[\left(Z_{n} / Z_{\infty}\right)^{1 /(p-1)} \mid F_{n}\right] \leqq C_{p}$ and by Lemma 1 we obtain $\hat{E}\left[\exp \left\{a p\left(S(\hat{X})^{2}-\right.\right.\right.$ $\left.\left.\left.S_{n}(\hat{X})^{2}\right)\right\} \mid F_{n+1}\right] \leqq 2$. Then, applying Hölder's inequality with exponents p and $p /(p-1)$, we can see that the second term on the right hand side of (6) is dominated by

$$
\begin{aligned}
& a^{-1} E\left[\left(Z_{\infty} / Z_{n}\right)^{1 / p} \exp \left\{a\left(S(\hat{X})^{2}-S_{n}(\hat{X})^{2}\right)\right\}\left(Z_{n} / Z_{\infty}\right)^{1 / p} \mid F_{n}\right] \\
& \quad \leqq a^{-1} \hat{E}\left[\exp \left\{\operatorname{ap}\left(S(\hat{X})^{2}-S_{n}(\hat{X})^{2}\right)\right\} \mid F_{n}\right]^{1 / p} E\left[\left(Z_{n} / Z_{\infty}\right)^{1 /(p-1)} \mid F_{n}\right]^{(p-1) / p} \\
& \quad \leqq a^{-1} C_{p} \hat{E}\left[\hat{E}\left[\exp \left\{a p\left(S(\hat{X})^{2}-S_{n}(\hat{X})^{2}\right)\right\} \mid F_{n+1}\right] \mid F_{n}\right]^{1 / p} \\
& \left.\quad \leqq a^{-1} C_{p}=C_{p}\|\hat{X}\|_{B(\hat{P})}^{2}\right)
\end{aligned}
$$

This establishes our claim.
Corollary. If Z and W satisfy $\left(A_{\infty}\right)$ and $\left(\hat{A}_{\infty}\right)$ respectively, then $B(\hat{P})$ is isomorphic to $B(P)$.

Proof. Clearly, $\phi: X \rightarrow \hat{X}$ is linear. It follows from Theorem 1 that it is an injective continuous mapping of $B(P)$ into $B(\hat{P})$. To see that it is surjective, let $X^{\prime} \in B(\hat{P})$ and consider the process X given by $X_{0}=0$, $X_{n}=\sum_{j=1}^{n} x_{j}, n \geqq 1$ where $x_{j}=x_{j}^{\prime}-E\left[x_{j}^{\prime} \mid F_{j-1}\right]$ and $x_{j}^{\prime}=X_{j}^{\prime}-X_{j-1}^{\prime}$. Obviously, X is a P-martingale and, as $\hat{E}\left[x_{j}^{\prime} \mid F_{j-1}\right]=0$, we get $\widehat{x}_{j}=x_{j}-$ $\hat{E}\left[x_{j} \mid F_{j-1}\right]=x_{j}^{\prime} . \quad$ Namely, $X^{\prime}=\hat{X}$, and by Theorem 1 we have $X \in B(P)$. It is clear that the inverse mapping of ϕ is continuous.

From (3) it follows immediately that W satisfies $\left(\hat{A}_{p}\right)$ if and only if $E\left[\left(Z_{\infty} / Z_{n}\right)^{q} \mid F_{n}\right] \leqq C_{p}$ where $p^{-1}+q^{-1}=1$. Therefore, W satisfies $\left(\hat{A}_{\infty}\right)$ if and only if the "reverse Hölder's inequality"

$$
\begin{equation*}
E\left[Z_{\infty}^{1+\delta} \mid F_{n}\right] \leqq C_{\delta} Z_{n}^{1+\delta}, \quad n \geqq 1 \tag{7}
\end{equation*}
$$

holds for some $\delta>0$. It is proved in [1] that the inequality (7) holds in the special case where the underlying probability space is the d -
dimensional unit cube Q and the family of sub σ-fields is the sequence $\left(F_{n}\right)$ of finite fields obtained by successive dyadic partitions of Q. Quite recently, C. Watari has pointed out that the reverse Hölder's inequality holds in the more general case where $\left(F_{n}\right)$ is regular; namely, each F_{n} is atomic and there exists a constant $c>0$ such that for any two atoms $A \in F_{n-1}, B \in E_{n}$ with $B \subset A$ we have $P(A) / P(B) \leqq c$. Therefore, in the regular case, from the $\left(A_{\infty}\right)$ condition it follows that $B(P)$ and $B(\hat{P})$ are isomorphic with the mapping ϕ.

We end this section with a simple remark. Let us consider the process M defined by $M_{n}=\sum_{j=1}^{n} m_{j}$ where $m_{j}=Z_{j} / Z_{j-1}-1$. By an elementary calculation, $E\left[\left|m_{j}\right| \mid F_{j-1}\right] \leqq 2, E\left[m_{j} \mid F_{j-1}\right]=0$ and so M is a martingale. By this definition we can easily verify that Z and M satisfy the relation $Z_{n}=1+\sum_{j=1}^{n} Z_{j-1} m_{j}$. If $X \in B(P)$, then from (3) it follows that $\hat{E}\left[x_{j} \mid F_{j-1}\right]=E\left[m_{j} x_{j} \mid F_{j-1}\right]$ for every $j \geqq 1$ so that we have $\hat{X}_{n}=X_{n}-\sum_{j=1}^{n} E\left[m_{j} x_{j} \mid F_{j-1}\right]$. In the next section we shall give a necessary and sufficient condition for the martingale M to be an element of $B(P)$.
3. A characterization of BMO-martingales. Until now, in order to explain the basic structure of the transformation of martingales by a change of law, we dealt with the discrete time martingales. Now we are going to deal with the continuous time case. Let $\left(F_{t}\right)$ be a nondecreasing right continuous family of sub σ-fields of F such that $\mathrm{V}_{t \geqq 0} F_{t}=F$, and $M_{\text {loc }}$ be the class of all locally square integrable martingales X such that $X_{0}=0$. As is well-known, for every $X \in M_{1 \text { oc }}$ there is a unique predictable increasing process $\langle X\rangle$ such that $X^{2}-\langle X\rangle$ is a local martingale. If $X, Y \in M_{1 \mathrm{oc}}$, then $\langle X, Y\rangle$ is the process defined by $\langle X, Y\rangle_{t}=\left(\langle X+Y\rangle_{t}-\langle X\rangle_{t}-\langle Y\rangle_{t}\right) / 2$. On the other hand, any local martingale L can be split into the continuous part L^{c}, and the purely discontinuous part L^{d}, orthogonal to all continuous local martingales. Then one can define the increasing process $[L]$ for any local martingale L by $[L]_{t}=\left\langle L^{c}\right\rangle_{t}+\sum_{s \leq t}\left(\Delta L_{s}\right)^{2}$ where $\Delta L_{s}=L_{s}-L_{s-}$. For two local martingales L and L^{\prime} we set $\left[L, L^{\prime}\right]=\left(\left[L+L^{\prime}\right]-[L]-\left[L^{\prime}\right]\right) / 2$ as above. It is wellknown that, if $X, Y \in M_{\mathrm{loc}}$, then $[X, Y]-\langle X, Y\rangle$ is a local martingale. Let us denote by $\|X\|_{B(P)}$ the smallest positive constant c such that c^{2} dominates a.s., $E\left[[X]_{\infty}-[X]_{T-} \mid F_{T}\right]$ for every stopping time T. We say that X is a BMO-martingale if $\|X\|_{B(P)}<\infty . \quad B(P)$ denotes the class of all BMO-martingales as in Section 2.

Lemma 2. If $\|X\|_{B(P)}<1$, then for every stopping time T we have

$$
\begin{equation*}
E\left[\exp \left([X]_{\infty}-[X]_{T_{-}}\right) \mid F_{T}\right] \leqq\left(1-\|X\|_{B(P)}^{2}\right)^{-1} \quad \text { a.s. } \tag{8}
\end{equation*}
$$

We omit its proof, because it is the continuous parameter analog of Lemma 1 and is proved in [4].

Now let M be a fixed local martingale such that $M_{0}=0$, and Z be the local martingale defined by the formula $Z_{t}=\exp \left(M_{t}-\left\langle M^{c}\right\rangle_{t}\right) \Pi_{s \leq t}(1+$ $\left.\Delta M_{s}\right) \exp \left(-\Delta M_{s}\right)$. As is well-known nowadays, Z is a unique solution of the stochastic integral equation $Z_{t}=1+\int_{0}^{t} Z_{s-} d M_{s}$. Particularly, if $\Delta M_{t}>$ -1 for every t, then Z is a positive local martingale and so it is a supermartingale. We always consider this case in the following. As is stated in Section 2, we say that the process Z satisfies $\left(A_{p}\right)$ if the inequality $Z_{T} E\left[\left(1 / Z_{\infty}\right)^{1 /(p-1)} \mid F_{T}\right]^{p-1} \leqq C_{p}$ holds for every stopping time T, with a constant C_{p}.

In the next lemma we use a very simple inequality: $(1-x)^{-1} \leqq$ $\exp (e x)$ for $0 \leqq x \leqq \rho$, where ρ is the root of the equation $1-x=$ $\exp (-e x)$. It is easy to see that $\rho<1$.

Lemma 3. If $M \in B(P)$ and $\left|\Delta M_{t}\right| \leqq \sqrt{\rho}$, then Z satisfies $\left(A_{\infty}\right)$.
Proof. Let T be any stopping time, and let us take $p>2$ such that $e\|M\|_{B(P)}^{2} /(p-2)<1$. Then $E\left[\exp \left\{e\left([M]_{\infty}-[M]_{T-}\right) /(p-2)\right\} \mid F_{T}\right] \leqq\{1-$ $\left.e\|M\|_{B(P)}^{2} /(p-2)\right\}^{-1}$ by Lemma 2. As $(\Delta M)^{2} \leqq \rho<1, Z$ is a positive local martingale and $\left\{1-\left(\Delta M_{t}\right)^{2}\right\}^{-1} \leqq \exp \left\{e\left(\Delta M_{t}\right)^{2}\right\}$ for every t. Thus we have

$$
\begin{aligned}
& Z_{T} / Z_{\infty}= \exp \left\{-\left(M_{\infty}-M_{T}\right)+\left(\left\langle M^{c}\right\rangle_{\infty}-\left\langle M^{c}\right\rangle_{T}\right) / 2\right\} \prod_{T<t}\left(1+\Delta M_{t}\right)^{-1} \exp \left(\Delta M_{t}\right) \\
&= \exp \left\{-\left(M_{\infty}-M_{T}\right)-\left(\left\langle M^{c}\right\rangle_{\infty}-\left\langle M^{c}\right\rangle_{T}\right) / 2\right\} \prod_{T<t}\left(1-\Delta M_{t}\right) \exp \left(\Delta M_{t}\right) \\
& \quad \times \exp \left(\left\langle M^{c}\right\rangle_{\infty}-\left\langle M^{c}\right\rangle_{T}\right) \prod_{T<t}\left(1-\left(\Delta M_{t}\right)^{2}\right)^{-1} \\
& \leqq \exp \left\{-\left(M_{\infty}-M_{T}\right)-\left(\left\langle M^{c}\right\rangle_{\infty}-\left\langle M^{c}\right\rangle_{T}\right) / 2\right\} \prod_{T<t}\left(1-\Delta M_{t}\right) \exp \left(\Delta M_{t}\right) \\
& \quad \times \exp \left\{e\left([M]_{\infty}-[M]_{T-}\right)\right\} .
\end{aligned}
$$

By using Hölder's inequality with exponents $p-1$ and $(p-1) /(p-2)$ we get

$$
\begin{aligned}
E\left[\left(Z_{T} / Z_{\infty}\right)^{1 /(p-1)} \mid F_{T}\right] \leqq & E\left[\exp \left\{-\left(M_{\infty}-M_{T}\right)-\left(\left\langle M^{c}\right\rangle_{\infty}-\left\langle M^{c}\right\rangle_{T}\right) / 2\right\}\right. \\
& \left.\times \Pi_{T<t}\left(1-\Delta M_{t}\right) \exp \left(\Delta M_{t}\right) \mid F_{T}\right]^{1 /(p-1)} \\
& \times E\left[\exp \left\{e\left(\left[M_{\infty}\right]-[M]_{T-}\right) /(p-2)\right\} \mid F_{T}\right]^{(p-2) /(p-1)}
\end{aligned}
$$

By the supermartingale inequality the first term on the right hand side is smaller than 1 , and the second term is bounded by $\left\{1-e\|M\|_{B(P)}^{2} /(p-\right.$ $2)\}^{-(p-2) /(p-1)}$. This completes the proof.

Lemma 4. If $-1<\Delta M_{t} \leqq C$ for every t and Z satisfies $\left(A_{\infty}\right)$, then M is a BMO-martingale.

Proof. Let T_{n} be stopping times, increasing to ∞ a.s., such that for each n the process $M^{T_{n}}=\left(M_{t \wedge T_{n}}\right)$ is a uniformly integrable martingale, and let us assume that Z satisfies $\left(A_{p-1}\right)$ for some $p>2$. Then for each n the process $Z^{T_{n}}=\left(Z_{t \wedge T_{n}}\right)$ satisfies $\left(A_{p}\right)$. To see this, let S be any stopping time, and we now apply Hölder's inequality with exponents $p-1$ and $(p-1) /(p-2)$:

$$
\begin{aligned}
& E\left[\left(Z_{S \wedge T_{n}} / Z_{T_{n}}\right)^{1 /(p-1)} \mid F_{S \wedge T_{n}}\right]=E\left[\left(Z_{S \wedge T_{n}} / Z_{\infty}\right)^{1 /(p-1)}\left(Z_{\infty} / Z_{T_{n}}\right)^{1 /(p-1)} \mid F_{S \wedge T_{n}}\right] \\
& \quad \leqq E\left[\left(Z_{S \wedge T_{n}} / Z_{\infty}\right)^{1 /(p-2)} \mid F_{S \wedge T_{n}}\right]^{(p-2) /(p-1)} E\left[Z_{\infty} / Z_{T_{n}} \mid F_{S \wedge T_{n}}\right]^{1 /(p-1)}
\end{aligned}
$$

But, Z being a positive local martingale, the second term on the right hand side is bounded by 1 , and from the definition of the (A_{p-1}) condition it follows that the first term is also dominated by some constant C_{p}. This implies that $Z^{T_{n}}$ satisfies $\left(A_{p}\right)$.

We are now going to prove that the local martingale M belongs to $B(P)$. For that, let $\kappa=\inf _{-1<x \leq C} x^{-2} \log 2^{-1}\left\{1+e^{x} /(1+x)\right\}$. Then $0<\kappa<$ $1 / 2$ and $\exp \left(\kappa x^{2}\right) \leqq e^{x} /(1+x)$ for $-1<x \leqq C$, from which the inequality $\exp \left\{\kappa\left(\Delta M_{t}\right)^{2}\right\} \leqq \exp \left(\Delta M_{t}\right) /\left(1+\Delta M_{t}\right)$ follows at once. Thus we have

$$
Z_{S \wedge T_{n}} / Z_{T_{n}} \geqq \exp \left\{-\left(M_{T_{n}}-M_{S \wedge T_{n}}\right)+\kappa\left([M]_{T_{n}}-[M]_{S \wedge T_{n}}\right)\right\}
$$

Then, applying Jensen's inequality we get $E\left[[M]_{T_{n}}-[M]_{S \wedge T_{n}} \mid F_{S \wedge T_{n}}\right] \leqq C_{p}$, $n \geqq 1$. The constant C_{p} does not depend on $\left(T_{n}\right)$, so that, letting $n \rightarrow \infty$, we obtain $E\left[[M]_{\infty}-[M]_{s} \mid F_{s}\right] \leqq C_{p}$. Consequently, if $-1<\Delta M_{t} \leqq C$, then $E\left[[M]_{\infty}-[M]_{S-} \mid F_{S}\right] \leqq C_{p}$. Thus the lemma is proved.

Now, let $Z^{(a)}$ denote the process given by the formula

$$
Z_{t}^{(a)}=\exp \left(a M_{t}-a^{2}\left\langle M^{c}\right\rangle_{t} / 2\right) \prod_{s \leq t}\left(1+a \Delta M_{s}\right) \exp \left(-a \Delta M_{s}\right), \quad a>0
$$

Of course, it is also a local martingale. Lemmas 3 and 4 combined have the following result.

Theorem 2. M belongs to $B(P)$ if and only if for some $a>0$ (i) $-1<$ $a \Delta M_{t} \leqq C_{a}$ and (ii) $Z^{(a)}$ satisfies $\left(A_{\infty}\right)$.

Proof. If $M \in B(P)$, then $\left|\Delta M_{t}\right| \leqq\|M\|_{B(P)}$ for every t. Let us take $a>0$ such that $-1<a \Delta M_{t}$ and $a^{2}\left(\Delta M_{t}\right)^{2} \leqq \rho$, where ρ is the same constant as in Lemma 3. Then Lemma 3 implies (ii). The converse follows at once from Lemma 4.

It should be noted that, if M is continuous, then a may be taken to be 1. This is proved in [4].
4. The equivalence of $B(P)$ and $B(\hat{P})$; the continuous time case. In this section we assume that the process M is a locally square integrable
martingale such that $\Delta M_{t}>-1$ for every t. In addition, let us assume that Z is a uniformly integrable martingale and $Z_{\infty}>0$. $d \hat{P}$ denotes always the weighted probability measure $Z_{\infty} d P$. Recall that $\hat{P}(A)=$ $\int_{A} Z_{t} d P$ for every $A \in F_{t}$. Any local martingale with respect to $d P$ is a local martingale under $d \hat{P}$? In general, the answer is negative. But, in 1960, it was proved by I. V. Girsanov that under the absolutely continuous change in probability measure a Brownian motion is transformed into the sum of a Brownian motion and a second process with sample functions which are absolutely continuous with respect to the Lebesgue measure. J. H. Van Schuppen and E. Wong [6] gave a natural generalization of this result as is stated in Lemma 5.

A semi-martingale is a process Y of the form $Y_{t}=Y_{0}+L_{t}+A_{t}$ where L is a local martingale and the sample functions of A have bounded variation on every finite interval. As the continuous part L^{c} of L is independent of the decomposition, one can define another increasing process $[Y]_{t}=\left\langle L^{c}\right\rangle_{t}+\sum_{s \leq t}\left(\Delta Y_{s}\right)^{2}$ for a semi-martingale Y.

Lemma 5. For any $X \in M_{\text {loc }}, \hat{X}=X-\langle X, M\rangle$ is a local martingale with respect to $d \hat{P}$. Particularly, if $\langle X, M\rangle$ is continuous, then we have $[\hat{X}]=[X]$ under either probability measure.

Proof. An application of the change of variables formula shows that $\hat{X} Z$ is a local martingale. This means that \hat{X} is a local martingale with respect to $d \hat{P}$. And, \widehat{X} being a semi-martingale under $d P$, from the definition of $[\hat{X}]$ we have $[\hat{X}]_{t}=\left\langle X^{c}\right\rangle_{t}+\sum_{s \leq t}\left(\Delta X_{s}-\Delta\langle X, M\rangle_{s}\right)^{2}$. Furthermore, if $\langle X, M\rangle$ is continuous, then the right hand side is $\left\langle X^{c}\right\rangle_{t}+\sum_{s \leq t}\left(\Delta X_{s}\right)^{2}$. Thus $[\hat{X}]=[X]$. The same conclusion follows under $d \hat{P}$. For details, see [6].

As in the discrete time case, W is the process defined by $W_{t}=Z_{t}^{-1}$ and $\left(\hat{A}_{p}\right)$ is the $\left(A_{p}\right)$ condition associated with $d \widehat{P}$. The (\hat{A}_{∞}) condition means that (\hat{A}_{p}) holds for some $p>1$.

Theorem 3. Assume that $\left(F_{t}\right)$ has no times of discontinuity and that W is a \hat{P}-locally square integrable martingale. If Z and W satisfy $\left(A_{\infty}\right)$ and (\hat{A}_{∞}) respectively, then $B(\widehat{P})$ is isomorphic to $B(P)$.

Proof. First we show that, if Z satisfies $\left(A_{p}\right)$, then the inequality

$$
\begin{equation*}
\|X\|_{B(P)} \leqq C_{p}\|\hat{X}\|_{B(\hat{P})} \tag{9}
\end{equation*}
$$

is valid for all $X \in M_{\text {loc }}$. $\|\hat{X}\|_{B(\hat{P})}=0$ implies $X=0$ so that we may assume $0<\|\hat{X}\|_{B(\hat{P})}<\infty$. Now let T be any stopping time, and let $a=\left\{2 p\|\hat{X}\|_{B(\hat{P})}^{2}\right\}^{-1}$. Then $\hat{E}\left[\exp \left\{a p\left([X]_{\infty}-[X]_{\left.T_{-}\right)}\right)\right\} \mid F_{T}\right] \leqq 2$ by Lemma 2,
and from $\left(A_{p}\right)$ it follows that $E\left[\left(Z_{T} / Z_{\infty}\right)^{1 /(p-1)} \mid F_{T}\right] \leqq C_{p}$. If $\left(F_{t}\right)$ has no times of discontinuity, then $\langle X, M\rangle$ is continuous for every $X \in M_{\text {loc }}$ so that by Lemma 5 we have $[\hat{X}]=[X]$ under $d P$ and $d \hat{P}$. As in the proof of Theorem 1, an application of Hölder's inequality shows that

$$
\begin{aligned}
& E\left[[X]_{\infty}-[X]_{T-} \mid F_{T}\right] \\
& \quad \leqq a^{-1} E\left[\left(Z_{T} / Z_{\infty}\right)^{1 /(p-1)} \mid F_{T}\right]^{(p-1) / p} \hat{E}\left[\exp \left\{a p\left([\hat{X}]_{\infty}-[\hat{X}]_{T-}\right)\right\} \mid F_{T}\right]^{1 / p}
\end{aligned}
$$

Hence the right hand side is smaller than $C_{p}\|\hat{X}\|_{B(\hat{P})}^{2}$ and (9) is proved. Similarly, we can see that, if W satisfies $\left(A_{p}\right)$, then the inequality

$$
\begin{equation*}
\|\hat{X}\|_{B(\hat{P})} \leqq C_{p}\|X\|_{B(P)} \tag{10}
\end{equation*}
$$

is valid for all $X \in M_{1 \mathrm{lo}}$. Therefore, $\phi: X \rightarrow \hat{X}=X-\langle X, M\rangle$ defines an injective continuous linear mapping of $B(P)$ into $B(\hat{P})$. So, to prove the theorem, it suffices to verify that ϕ is surjective. For that, consider the process M^{\prime} defined by $M_{t}^{\prime}=\int_{0}^{t} Z_{s-} d W_{s}$, which is a locally square integrable martingale under $d \hat{P}$. Since W satisfies the equation $W_{t}=1+\int_{0}^{t} W_{s-} d M_{s}^{\prime}$, we have $W_{t}=\exp \left(M_{t}^{\prime}-\left\langle M^{\prime c}\right\rangle_{t} / 2\right) \Pi_{s \leq t}\left(1+\Delta M_{s}^{\prime}\right) \exp \left(-\Delta M_{s}^{\prime}\right)$. Furthermore, $\left\langle X^{\prime}, M^{\prime}\right\rangle$ is also continuous for every \hat{P}-locally square integrable martingale X^{\prime}, because the family $\left(F_{t}\right)$ has no times of discontinuity. Let now $X^{\prime} \in B(\hat{P})$. Then it follows from (9) that $X=X^{\prime}-\left\langle X^{\prime}, M^{\prime}\right\rangle$ belongs to $B(P)$. By Lemma $5, \hat{X}=X-\langle X, M\rangle$ is a \hat{P}-local martingale. Therefore, $X^{\prime}-\hat{X}=\left\langle X^{\prime}, M^{\prime}\right\rangle+\langle X, M\rangle$ is a continuous \hat{P}-local martingale with finite variation on each finite interval. This implies that $X^{\prime}=\hat{X}$. Thus the theorem is established.
W is a \hat{P}-locally square integrable martingale if and only if there is a non-decreasing sequence (T_{n}) of stopping times with $\lim T_{n}=\infty$ such that $Z_{T_{n}}^{-1}$ is P-integrable for each n. When M is continuous, \hat{M} is a continuous local martingale under $d \hat{P}$ and so $W_{t}=\exp \left(-\hat{M}_{t}-\langle\hat{M}\rangle_{t} / 2\right)$. They are clearly \hat{P}-locally square integrable. Then, in the same way as in the proof of Theorem 3, we can show the following.

Corollary. Assume that M is continuous. If Z and W satisfy $\left(A_{\infty}\right)$ and $\left(\hat{A}_{\infty}\right)$ respectively, then $B(\widehat{P})$ is isomorphic to $B(P)$.
5. Remarks on the $\left(A_{p}\right)$ condition. In this section, assuming the sample continuity of the local martingale M, we shall consider the problem: when can one assert that W satisfies ($\left.\hat{A}_{\infty}\right)$? By Lemma 3 we know that, if $\hat{M} \in B(\hat{P})$, then W satisfies it.

Theorem 4. If M is a continuous local martingale and the inequality

$$
\begin{equation*}
E\left[\exp \left\{(\varepsilon+1 / 2)\left(M_{\infty}-M_{t}\right)\right\} \mid F_{t}\right] \leqq C_{\varepsilon}, \quad t \geqq 0 \tag{11}
\end{equation*}
$$

holds for some $\varepsilon>0$, then the process W satisfies $\left(\hat{A}_{\infty}\right)$.
Proof. As is remarked in Section 2, to prove the theorem, it suffices to show that Z satisfies the reverse Hölder's inequality $E\left[Z_{\infty}^{1+o} \mid F_{t}\right] \leqq$ $C_{\varepsilon} Z_{t}^{1+\delta},(t \geqq 0)$ where $\delta=4 \varepsilon^{2} /(1+4 \varepsilon)$. Now let us set $p=1+4 \varepsilon$. Then the exponent conjugate to p is $q=1+1 / 4 \varepsilon$. Applying Hölder's inequality we have

$$
\begin{aligned}
E\left[\left(Z_{\infty} / Z_{t}\right)^{1+\delta} \mid F_{t}\right]=E[& \exp \left\{\sqrt{(1+\delta) / p}\left(M_{\infty}-M_{t}\right)\right. \\
& -(1+\delta)\left(\langle M\rangle_{\infty}-\langle M\rangle_{t}\right) / 2 \\
& \left.\left.+(1+\delta-\sqrt{(1+\delta) / p})\left(M_{\infty}-M_{t}\right)\right\} \mid F_{t}\right] \\
\leqq E[& \exp \left\{\sqrt{(1+\delta) p}\left(M_{\infty}-M_{t}\right)-(1+\delta) p\left(\langle M\rangle_{\infty}-\langle M\rangle_{t}\right) / 2 \mid F_{t}\right]^{1 / p} \\
& \quad \times E\left[\exp \left\{(1+\delta-\sqrt{(1+\delta) / p}) q\left(M_{\infty}-M_{t}\right)\right\} \mid F_{t}\right]^{1 / q}
\end{aligned}
$$

By the supermartingale inequality the first term on the right hand side is smaller than 1 , and, as $(1+\delta-\sqrt{(1+\delta) / p}) q=\varepsilon+1 / 2$, from (11) it follows that the second term is bounded. Thus the proof is complete.

For example, if $\|M\|_{B(P)}<\sqrt{2}$, then W satisfies $\left(\hat{A}_{\infty}\right)$. To see this, let ε, δ be two numbers such that $0<\varepsilon<1 / \sqrt{2(2-\delta)}-1 / 2$ and $0<\delta<$ $2-\|M\|_{B(P)}^{2}$. Then by Lemma 2 we have $E\left[\exp \left\{2(\varepsilon+1 / 2)^{2}\left(\langle M\rangle_{\infty}-\right.\right.\right.$ $\left.\left.\left.\langle M\rangle_{t}\right)\right\} \mid F_{t}\right] \leqq\left\{1-\|M\|_{B(P)}^{2}(2-\delta)\right\}^{-1}$. On the other hand, by the supermartingale inequality

$$
E\left[\exp \left\{2(\varepsilon+1 / 2)\left(M_{\infty}-M_{t}\right)-2(\varepsilon+1 / 2)^{2}\left(\langle M\rangle_{\infty}-\langle M\rangle_{t}\right)\right\} \mid F_{t}\right] \leqq 1
$$

Thus we get (11) by using Schwarz's inequality.

References

[1] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250.
[2] C. Doléans-Dade and P. A. Meyer, Intégrals stochastiques par rapport aux martingales locales, Séminaire de Probabilités IV, Univ. de Strasbourg, Lecture Notes in Math. 124, Springer-Verlag, Berlin-Heidelberg-New York, (1970), 77-108.
[3] A. M. Garsia, Martingale inequalities, Seminar Notes on Recent Progress, Benjamin, (1973).
[4] M. Izumisawa and N. Kazamaki, Weighted norm inequalities for martingales, Tôhoku Math. J., 29 (1977), 115-124.
[5] P. A. Meyer, Un cours sur les intégrales stochastiques, Séminaire de Probabilités X, Univ. de Strasbourg, Lecture Notes in Math. 511, Springer-Verlag, Berlin-HeidelbergNew York, (1976), 246-400.
[6] J. H. Van Schuppen and E. Wong, Transformation of local martingales under a change of law, Ann. of Prob., 2 (1974), 879-888.

Department of Mathematics

Toyama University
Toyama, 930 Japan

