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1. Introduction. Let / be a rational odd prime. Let k be an
algebraic number field of finite degree, K/k be a cyclic extension of
degree /, and ft, , ft denote the prime ideals in k ramified in K. Then,
as is well-known, the genus number of K with respect to k is given by
hQήV^KEj,;. Ek Π Nκ/kK

x), where h{k) denotes the class number of k and
Ek denotes the group of units in k. (See, for instance, [1].) Though
the genus number of K/k is determined uniquely by ft, * ,ft, this ex-
pression does not give explicitly the relations between the genus number
of K/k and the prime ideals ft, , ft.

Let Pi denote the rational prime contained in ft and assume Pi = 1
mod/ for i = 1, , t. In this note, we shall first show that the genus
number of K/k is calculated by the subgroup of Gal (&(ζ, Eψ)/k) which
is generated by the decomposition groups of prime divisors of ft in
k(ζ, Eψ), where ζ is a primitive Z-th root of unity.

Next, we shall apply the above result together with the Cebotarev
density theorem to the class field tower problem to show the existence
of fields which satisfy some properties.

Let k/Q be a cyclic extension of degree / and pίf , pt denote the
primes in Q ramified in k. It is well-known that the /-class field tower
of k is infinite if t is sufficiently large. (Cf. [5].) Moreover, we know
by a result of Y. Furuta [2] that if pu , pt are prime to / and 8 ^ ί,
then the /-class field tower of k is infinite. On the other hand, if t = 1,
then lJfh(k) so the /-class field tower of k is finite. In this note, we
consider the case when t — 2 and obtain the following theorems.

THEOREM 1. Let I and pί be odd primes with 13 <; / and px = 1
mod /. Then there exist infinitely many primes p2 which satisfy the
following conditions:

( i ) p2 = 1 mod /,

(ii) the l-class field tower of k is infinite for every cyclic extension
k/Q of degree I in which only pλ and p2 are ramified.

THEOREM 2. Let I be an odd prime and p1 be an odd prime with
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pι == 1 mod I. Let kJQ be the cyclic extension of degree I in which only
pt is ramified. Assume that 4(2 + /) <; h(kλ)9 where h{kx) is the class
number of klm Then there exist infinitely many primes p2 which satisfy
the following conditions:

( i ) p2 = 1 mod Z,

(ii) the l-class field tower of k is finite but the class field tower
of k is infinite for every cyclic extension k/Q of degree I in which
only px and p2 are ramified.

2. The genus numbers of cyclic extensions. Let / be a rational
odd prime. Let k be an algebraic number field of finite degree and let
if be a cyclic extension of degree Z over k. For an ideal α in k, let J(α)
denote the group of ideals in k prime to α, P(a) the group of principal
ideals in 7(α), and Pβ the ray mod a. Let ft, , ft be the prime ideals
in k ramified in K, and put c = ft - ft. Let K{1) be the Hubert class
field of K. Then, by definition, the genus field of K/k is the maximal
abelian extension of k included in Kω. If c is prime to Z, then the
conductor of K/k is c. So the following lemma is easily proved.

LEMMA 1. Let the notations be as above. Assume c is prime to I.
Then the genus field of K over k is the class field corresponding to the
ideal class group I(c)/P(c)zPc.

Next, we shall study the order of P(c)/P(c)Tc. Let P*(fc) be the set
of prime ideals p in k which are prime divisors of rational primes p
with p = 1 mod Z. Let ζ be a primitive Z-th root of unity and put
K = A(ζ). Let fc0 = ko(E)!1), where Ek is the group of units in k. Then
k0 is a Galois extension of k. Put G = Gal (Jeo/ko) and E = Ek/Eι

k. Then
we see that

Indeed, for ε in Ek if ε is in kι

0, then ε is in k\ therefore ε is in Ekι.
Hence we can develop the Kummer theory for E, as follows. Let Zt
denote the group of Z-th roots of unity. We define < , >: G x E -> Zt by
(σ, ε> = σ(ε1/ι)/ε1/ι. Then ( , ) is a non-degenerate bilinear form. Let
c = ft .. pt be a product of distinct primes in P*(k) and let E(c) =
(Ek f)_k(c)ιke)/Ekι, where k(c) = {aek\(a)e P(c)} and kc = {aek\(a) e Pc}.
Let G(c) be the group of elements orthogonal to E(c) with respect to

Let 5β< be a prime divisor of ft in k0 and let G(tβ<) be the decomposi-
tion group of fβ<β Then G(5R) c G, since ft is completely decomposed in
k0. Therefore, by the Kummer theory, G(5β<) is a normal subgroup of
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Gal(fco/λ0. Hence Gββ,) depends only on pt. Thus we may write G(pt)
instead of G(5β,).

Under the above notations, we have the following propositions.

PROPOSITION 1.

( i ) If p is in P*(k), then G(p) = Gφ).
(ii) // q and c2 are relatively prime, then Gfcfo) = G(Ci)G(c2).
(iii) // a is an automorphism of k0 which induces an automorphism

on k, then G(σc) = σG(c)σ~\

PROOF, (i) Let e be a unit of k. If ε is in kjc(p)\ then the equation
X' = εmod:p has an integral solution in k. Therefore p is completely
decomposed in k(s1/ι), hence ε is in the decomposition field fc£(p) of p.
Conversely, if ε is in fc£(p), then ε is in kpk{p)1. For (ii) it suffices to
note that ^(qcg) = E{c^)E{c^. (iii) It is easy to see that eeE(σz) if
and only if σ^ε e E(c)9 and <τ, ε> = 1 if and only if (σ^τσ, σ^ε) = 1.
Thus the assertion follows immediately.

PROPOSITION 2. Let c — ρt pt be a product of distinct primes in
P*(fc). Then # (P(c)/P(c)Tc) = /'/# (G(c)).

PROOF. We first note that

P(c)/P(c)Tc ^ k(ή/Ekk(c)% .

Since k(c)/k(c)ιkc is an elementary abelian group of rank t, we see that

# (P(c)/P(c)'Pe) - # (k(c)/Ekk(c)%)

= # (fc(c)/fc(c)'fce)/# (Ekk(c)%/k(c)%)

= /7# (Ekk(c)%/k(c)%) .

On the other hand,

and # (JEίfe/CĴ  Π Λ(c)'fce)) = /r/^(c) = # (G(c)), where r is the /-rank of #,.
Hence we have # (P(c)/P(c)ιPc) = ί'/# (G(c)).

3. Proof of Theorem 1. Let Z be an odd prime. Let px be an odd
prime with pί = l mod /, and let kJQ be a cyclic extension of degree /
in which only p1 is ramified, where Q is the field of rationale. Let σ
be a generator of Gal (kJQ) and let έ? be the maximal order of Q(ζ),
where ζ denotes a primitive /-th root of unity. Let E1 be the group
of units in k^ Then EJE[ is a module over Z[σ], Moreover, since
N(Eλ) = {±l}czElt EJEl is also a module over Z[σ]/(1 + σ + > + σ'-^Zlσ],

where N denotes the norm map of &x to Q. Therefore we can consider
EJEl as a module over & by σ t-> ζ.
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LEMMA 2. EJEl is ^-isomorphic to ^/ί'"1, where I is the prime
divisor of I in έ?.

PROOF. Since I \h(k?), the cyclotomic units in kx generate EJE[. On
the other hand, the cyclotomic units in kλ are conjugate to each other.
Therefore EJEl is a principal ^-module. Since the rank of EJEl is
Z — 1, we see that EJE[ is isomorphic to ^/Γ"1.

PROPOSITION 3. Let pt be an odd prime with ^ Ξ I mod Z, and let
r be a natural number with 1 <; r <Ξ, / — 1. Then there exist infinitely
many odd primes p2 which satisfy the following conditions:

( i ) p2 = 1 mod /,

(ii) the genus number of kjϋ2 with respect to kλ is h(kΐ)lr, where
k2jQ is the cyclic extension of degree I in which only p2 is ramified.

PROOF. Let M = {^πs + Zπs~2 + Zπs~3 + - + Zπ + Z)βι~ι be a sub-
group of έ?/V-1, where π - ζ — 1 and s = Z — 1 — r. Then the maximal
^-submodule included in ikf is ^ π /I1"1, that is, fVo. i- . i- iC^ = έfπ'β1"1.
Indeed, let a = as_2π

s~2 + - + α0 be in fl C*Λf, where α* e Z/ZZ. Then
ζa is in M. Hence we see that as_2 = 0, since ζα = αs_2τr8^1 + (αs_2 +
αs_3)τz:s-2 + . . . + ( t t l + aQ)π + α0. Similarly, α = 0 since ζja e ikf for
i = 2, . - . , / - 1 .

Now, let EM be the subgroup of EJEl corresponding to M by the
isomorphism in Lemma 2. Let kQ = fc^ζ), fc0 = ko(E{/ι), and &0(M) = ko(E)ίι).
Then ϊco/ko(M) is a cyclic extension. Let r be a generator of Gal (kQ/k0(M)).
Then we see by the Cebotarev density theorem that there exist infinitely
many prime ideals φ 2 in kOf unramified over Q, such that the Frobenius
symbol [φ2, ko/Q] = τ. Let p2 = ^ 2 n Q and p2 = φ 2 Π fclβ Then p 2 = l mod Z,
hence fee P * ^ ) . Since fcj. is Galois over Q, p2 is completely decomposed
in klm Let σ be a generator of Gal (kJQ). Then p 2 = p2(σp2) (al"%) in
&!. Since the prime ideals in &x ramified in kLk2 are fe, (<Jfe), , (σι~%), the
genus field of kιk2jk1 is the class field over kx corresponding to the ideal class
group I(p2)/P(p2)

ιPP2 of k,. HenceJ he genus number is # ( / ( ^ / P C ^ ' ^ / Z .
On the other hand, G(fc) = Gal (kJko(M)) and G^fc) = Gal (kQlkQ{QM)) for
i = 1̂  . . . , / - 1. Therefore by Proposition 1 G(p2) = Gφ2) Giσ^p,) =
Gal (fco/fco( Π ζ'AΓ)). Hence # (G(p,)) = V~'\% (Π ζ'Λf) - V~^~^ = V-'-\
Thus by Proposition 2 we see that

# (I(p2)/P(p2)
ιPP2) = Λ ^ ) # (P(p2)/P(p2)

ιPP2)

This proves the proposition.

PROOF OF THEOREM 1. Let p2 be a prime satisfying the conditions
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in Proposition 3 for r = Z — 1. Let k/Q be a cyclic extension of degree
Z in which only p± and p2 are ramified. Then kjc2/k is an unramified
cyclic extension of degree /. Let L be the maximal /-extension of ky

included in the genus field of kjcjk^ Then L is the class field over kx

corresponding to I(p2)/I(p2)
ιPP2. Now, we apply [2, Theorem 3] to this

field L. Since the /-rank of Gal (L/kx) is / and 13 <; /, we see that

2 + 2(Z - 1 + ί + 1)1/2 ^ /-rank (Gal (L/fcJ) .

Thus the /-class field tower of L is infinite and the /-class field tower
of k is also infinite.

REMARK. Let p2 be a prime satisfying the conditions in Proposition
3 for r = 1. Let σ be a generator of Gal (K/k^), where iΓ == kjc2. Then
we can consider the Z-Sylow subgroup Af* of the ideal class group of K
as a module over έ? by σ H* ζ. Since the /-part of the genus number
of Kjky is /, Mκ is, as is seen by [4 I, Theorem 1], ^-isomorphic to έ?/V,
where β is a natural number. Let τ be a generator of Gal(jBΓ/fc2). Then
r operates on Mκ and hence on έ?β* as an automorphism. Since σ and
τ commute, τ is an ^-automorphism. Moreover, ^βe is a principal £?-
module. Therefore τ is represented by a unit α in ^/Γ. Since τι = 1,
α is of the following form; a — 1 + ĈTΓ + /9 mod Γ, where β is in ϊ2, αx

is an integer with 0 <Ξ a1 ^ / — 1, and π = ζ — 1. Let j be a natural
number such that i ΐ O mod / and i + αj ί 0 mod /. Let π' = αζ5" — 1.
Since αζJ' = α(l + 7r)J' = 1 + (j + αjπ + 7π2modί% π1' is in I but not in
P. Therefore (έ?ββ)/π'(/7/lβ) ^ έ?β. Thus we see that M^M^r1 ^ έ?β
for p = wJ" in Gal (K/Q). Let Λ be the fixed field of p. Then k/Q is a
cyclic extension of degree / in which only px and p2 are ramified. There-
fore the Z-Sylow subgroup Mk of the ideal class group of & is a module
over ^ by α Ή ζ, where σf is a generator of Gal (k/Q), and it is <£*•
isomorphic to ^/Γ for a natural number r. Since JSΓ/Λ is an unramified
cyclic extension of degree /, we see that # (Mκ/Nκ/kMκ) = l and MK/M^1^

Nκ/kMκaMk. Hence we have that Mk ^ ^/l2. On the other hand, we
know by [3, Proposition VI. 6] (see also [4 I, Corollary to Theorem 3])
that if Mk f* έ?/l2 for some cyclic extension k/Q of degree / in which only
pι and p2 are ramified, then Mk, ^ ^/P for every cyclic extension k'/Q of
degree / in which only pγ and p2 are ramified.

Thus we have the following.
For any odd prime p1 with ^ = 1 mod /, there exist infinitely many

primes p2 which satisfy the following conditions:

(ii) Mk f*d έ?β* for every cyclic extension k/Q of degree / in which



306 T. TAKEUCHI

only pι and p2 are ramified.

4. Proof of Theorem 2. Let px and kx be as in 3. Let K be the
Hubert class field of klf Ko = K(ζ), and iζ, = K^W).

PROPOSITION 4. Le£ £/&e notations be as above. Then there exist
infinitely many primes which satisfy the following conditins:

( i ) p2 = 1 mod /.

(ii) l\\h(k), i.e., /|Λ(fc) and I2\h(k), for every cyclic extension k/Q
of degree I in which only p^ and p2 are ramified.

(in) Z-rank (Gal (L/K)) ^ Λ(fci), where L is the genus field of Kk
with respect to K.

PROOF. Since K/Q is Galois, KJQ is Galois. Let σ be an element
in Gal (Ko/Q) such that σι = 1 and that σ $ Gal (Ko/Ko). Such σ certainly
exists. Indeed, the inertia group of a prime divisor of p1 in Ko is a
cyclic group of order /, and is not included in Gal (Ko/Ko). Then, by
the Cebotarev density theorem, we see that there exist infinitely many
unramified primes % in Ko such that the Frobenius symbol Dβ2, Ko/Q] = σ.
Let ί?2 = Q Π ?2 and p2 — K Π %. Since p2 is completely decomposed in
Q(ζ), it follows that p2 = 1 mod/ and that £2 is in P*(K). On the other
hand, σ generates Gal(kJQ). Indeed, since l\h(k^) and ϋΓo/fci is Galois,
Gal(Xo/-Ko) is the unique /-Sylow subgroup of Gal (KJk^). Hence p 2 is not
decomposed in hγ and p2 is non /-th power residue mod^!. Therefore, by
the genus theory, the /-Sylow subgroup Mk of the ideal class group of k
is a cyclic group of order I. Thus we have l\\h(k). Since p2 is not de-
composed in klf it follows that p2 is a principal prime ideal in fc1# Hence
p 2 is completely decomposed in if/^, say p2 = p2Λ &,*, where £8 i l = }j2
and t = h(k^). Since σ £ Gal (Ko/Ko) and Gal (Ko/Ko) is normal, every ele-
ment conjugate to σ is not contained in G&l (Ko/Ko). Hence p2tl p2tt

are completely decomposed in KJK. Therefore by Proposition 1

G(p2) = G(p2Λ fcfi) = G(fcfl) G(p2Λ) - {1} .

Thus by Proposition 2 we see that # (P(P2)/P(P2)ιPP2) — I1- Moreover, only
t>2,i, •• ,t>2,ί a r e ramified in Kk/K, since only p 2 is ramified in kjc/k^
Therefore the genus field L of Kk/K is the class field over K correspond-
ing to the ideal class group I(p2)IP(p2)PP2 of K. Hence we have that

Z-rank (Gal (L/K)) - Z-rank (I(p2)/P(p2)
ιPP2)

^ t = h(kx) .

This completes the proof.

PROOF OF THEOREM 2. Let p2 be a prime satisfying the conditions in



CLASS FIELD TOWERS 307

Proposition 4. Then l\\h(k), hence the /-class field tower of k is finite.
Let L be the genus field of Kk with respect to K. Now, we apply [2,
Theorem 3] to this L. We first note that h{kx) ^ 4(2 + /) implies hQc^ ^
2 + 2{lh{k1) - 1 + Λ(&i) + l)1/2 On the other hand, ί-rank (Gal (L/K)) ^ hfc).
Hence we have that

/-rank (Gal (L/K)) ^ 2 + 2(ίΛ(fc1) - 1 + h(kx) + 1)1/2

^ 2 + 2(/-rank (Eκ) + t + 1)1/2 .

Thus the /-class field tower of L is infinite. Since L/Kk and Kk/k are
unramified abelian extensions, the class field tower of k is infinite. This
proves our theorem.

REMARK. In the case 1 = 2, an argument similar to Theorem 2
holds.
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