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1. Introduction. Let I be a rational odd prime. Let % be an
algebraic number field of finite degree, K/k be a cyclic extension of
degree I, and p,, - - -, p, denote the prime ideals in % ramified in K. Then,
as is well-known, the genus number of K with respect to k is given by
h()l:Y/(E,: E, N Ng,,K*), where h(k) denotes the class number of % and
E, denotes the group of units in k. (See, for instance, [1].) Though
the genus number of K/k is determined uniquely by b, ---, p,, this ex-
pression does not give explicitly the relations between the genus number
of K/k and the prime ideals p, ---, p,.

Let p, denote the rational prime contained in p, and assume p, =1
modl for s =1, .--,¢t. In this note, we shall first show that the genus
number of K/k is calculated by the subgroup of Gal (&, E}")/k) which
is generated by the decomposition groups of prime divisors of p, in
k&, EYY, where { is a primitive I-th root of unity. .

Next, we shall apply the above result together with the Cebotarev
density theorem to the class field tower problem to show the existence
of fields which satisfy some properties.

Let %/Q be a cyclic extension of degree I and p,, ---, p, denote the
primes in @ ramified in k. It is well-known that the I-class field tower
of & is infinite if ¢ is sufficiently large. (Cf. [56].) Moreover, we know
by a result of Y. Furuta [2] that if p, ---, p, are prime to land 8 < ¢,
then the I-class field tower of % is infinite. On the other hand, if ¢ =1,
then 1} h(k) so the l-class field tower of k is finite. In this note, we
consider the case when ¢ = 2 and obtain the following theorems.

THEOREM 1. Let 1 and p, be odd primes with 13 <1 and p, =1
mod l. Then there exist infinitely many primes v, which satisfy the
following conditions:

(i) ., =1modl,

(ii) the l-class field tower of k is infinite for every cyclic extension
k/Q of degree l in which only p, and p, are ramified.

THEOREM 2. Let 1l be an odd prime and p, be an odd prime with
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», =1modl. Let k,/Q be the cyclic extension of degree l in which only
p, is ramified. Assume that 42 + 1) < h(k,), where h(k,) is the class
number of k,. Then there exist infinitely many primes p, which satisfy
the following conditions:

(1) p,=1modl,

(ii) the l-class field tower of k is finite but the class field tower
of k s infinite for every cyclic extension k/Q of degree l in which
only p, and p, are ramified.

2. The genus numbers of cyclic extensions. Let !/ be a rational
odd prime. Let k& be an algebraic number field of finite degree and let
K Dbe a cyclic extension of degree I over k. For an ideal a in %, let I(a)
denote the group of ideals in k& prime to a, P(a) the group of principal
ideals in I(a), and P, the ray mod a. Let p, ---, b, be the prime ideals
in k ramified in K, and put c=p, --- p,. Let K*® be the Hilbert class
field of K. Then, by definition, the genus field of K/k is the maximal
abelian extension of %k included in K™. If ¢ is prime to I, then the
conductor of K/k is c. So the following lemma is easily proved.

LEMMA 1. Let the notations be as above. Assume c is prime to l.
Then the genus field of K over k is the class field corresponding to the
ideal class group I(c)/P(c)'P..

Next, we shall study the order of P(c)/P(c)'P.. Let P*(k) be the set
of prime ideals p in & which are prime divisors of rational primes p
with p =1 modl. Let ¢ be a primitive I-th root of unity and put
ky = k(). Let k, = k(E)"), where E, is the group of units in k. Then
k, is a Galois extension of k. Put G = Gal (k,/k,) and E = E,/E!. Then
we see that

KBk ~E = E,/E. .

Indeed, for ¢ in E, if ¢ is in k!, then ¢ is in k', therefore ¢ is in E,.
Hence we can develop the Kummer theory for E, as follows. Let Z,
denote the group of I-th roots of unity. We define (, >: G X E — Z, by
{o,&) = 0(e")/e”". Then {,) is a non-degenerate bilinear form. Let
c=4p, -+ p, be a product of distinect primes in P*(k) and let E(c) =
(B, N k()'k.)/E,, where k() ={aeck|(a)e P(c)} and k.= {ack|(a)c P}.
Let G(c) be the group of elements orthogonal to E(c) with respect to
(o 0e

Let B; be a prime divisor of p, in &, and let G(P,) be the decomposi-
tion group of P,. Then G(P,) C G, since p, is completely decomposed in
k,. Therefore, by the Kummer theory, G($3;) is a normal subgroup of
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Gal (k,/k). Hence G(P,) depends only on p,.. Thus we may write G(p,)
instead of G($,).

Under the above notations, we have the following propositions.

ProPoOsITION 1.

(i) If p is in P*(k), then G(p) = G(b).

(ii) If ¢, and c, are relatively prime, then G(cc,) = G(c)G(c,).

(ili) If o is an automorphism of k, which induces an automorphism
on k, then G(ac) = oG(c)o™.

Proor. (i) Let ¢ be a unit of k. If ¢ is in k,k(p)’, then the equation
X'=cemodp has an integral solution in %. Therefore p is completely
decomposed in k(¢“!), hence ¢ is in the decomposition field k¢® of .
Conversely, if ¢ is in k§*, then ¢ is in k(). For (ii) it suffices to
note that E(cc,) = E(c)E(,). (iii) It is easy to see that ee E(oc) if
and only if o e E(c), and (z,¢) =1 if and only if {o7'zo, 07%) = 1.
Thus the assertion follows immediately.

PROPOSITION 2. Let c=p, --- P, be a product of distinct primes in
P*(k). Then & (P(c)/P()'P) = I/ (G(0)).

ProOOF. We first note that
P(0)/P(c)' P, m k(c)/ B}k (0)'k. .
Since k(c)/k(c)'k. is an elementary abelian group of rank ¢, we see that

¥ (P(O/P©)'P.) = % (k()/Ek(c)'k.)
= § (k()[K(c)'k.) [4 (B ko(c)'Fe./Re(c)'ke.)
= U/} (Bk(©)'k.[R(c)'E.) .
On the other hand,
E k(o). /l(0)'k. ~ E/(E, N k(0)'K.)

and # (E,/(E, 0 k(c)'k)) = UJE() = #(G(c)), where 7 is the Il-rank of E,.
Hence we have # (P(c)/P(c)'R) = I'/% (G(c)).

3. Proof of Theorem 1. Let ! be an odd prime. Let p, be an odd
prime with p, = 1mod !, and let %,/Q be a cyclic extension of degree !
in which only p, is ramified, where @ is the field of rationals. Let o
be a generator of Gal (k,/Q) and let < be the maximal order of Q((),
where { denotes a primitive I-th root of unity. Let E, be the group
of units in k. Then E,/E| is a module over Z[g]. Moreover, since
N(E,) = {+1}C E,, E,/E; is also a module over Z[g]/l + ¢ + - -+ ¢'")Z[0o],
where N denotes the norm map of k, to Q. Therefore we can consider
E,/E; as a module over ¢ by o+ C.



304 T. TAKEUCHI

LEMMA 2. E/E] is 7-isomorphic to &/I', where | is the prime
divisor of 1l in 2. ‘

Proor. Since lf h(k,), the cyclotomic units in %k, generate KE,/E!. On
the other hand, the cyclotomic units in %, are conjugate to each other.
Therefore E.,/E! is a principal <*~module. Since the rank of E.,/E} is
! — 1, we see that E,/E} is isomorphic to <7/I'.

PROPOSITION 3. Let p, be an odd prime with p, = 1 modl, and let
r be a natural number with 1 <r <1 — 1. Then there exist infinitely
many odd primes p, which satisfy the following conditions:

(i) p,=1modl,

(ii) the genus number of k.k, with respect to k, is h(k)l", where
k./Q is the cyclic extension of degree l im which only p, is ramified.

ProOF. Let M = (&Zrn® + Zn*™® + Zn*™ + --- 4+ Zw + Z)/I'""! be a sub-
group of &/I'', where 1 ={ —1 and s=1—1 —». Then the maximal
-submodule included in M is &z*/l'*, that is, Nizo.... &M = o[/l
Indeed, let @« = a,_a* 2+ --- + a, be in N M, where a,c Z/IZ. Then
la is in M. Hence we see that a, , =0, since {a = a,_,w* " + (@, +
Ay )T+ oo + (a, + @) + a,. Similarly, a =0 since {‘aecM for
i=2,---,1—1.

Now, let E, be the subgroup of E,/E. corresponding to M by the
isomorphism in Lemma 2. Let k, = k,(0), k, = ko(EY"), and k(M) = k,(EL}).
Then k,/k,(M) is a cyclic extension. Let = be a generator of Gal (k,/k.(M)).
Then we see by the Cebotarev density theorem that there exist infinitely
many prime ideals P, in %,, unramified over @, such that the Frobenius
symbol [, k,/Q] = 7. Let p, =L, NQand p, = B, N k,. Then p, = 1 mod [,
hence p, € P*(k,). Since k, is Galois over @, p, is completely decomposed
in k,. Let o be a generator of Gal (k,/Q). Then p, = p,(a},) - -+ (6'7'p,) in
k.. Since the prime ideals in k, ramified in k.k, are p,, (69,), - - -, (6'7',), the
genus field of k,k,/k, is the class field over &, corresponding to the ideal class
group I(p,)/P(p,)'P,, of k,. Hence the genus number is # (I(p,)/P(p,)'P,,)/!.
On the other hand, G(p,) = Gal (k,/ky(M)) and G(o'p,) = Gal (ko/ko(('M)) for
t=1,---,1 —1. Therefore by Proposition 1 G(p,) = G(py) - - - G 'p,) =
Gal (ko/keo( N C*M)). Hence #(G(py) = I (NEM) = U707 = o,
Thus by Proposition 2 we see that

% (I(p.)| P(p)' P,,) = h(k,) ¥ (P(p.)] P(p.)'P,,)
= h(k )17 = bkl .
This proves the proposition.
PrROOF OF THEOREM 1. Let p, be a prime satisfying the conditions
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in Proposition 8 for » =1 — 1. Let k/Q be a cyclic extension of degree
[ in which only p, and p, are ramified. Then k/k,/k is an unramified
cyclic extension of degree I. Let L be the maximal l-extension of k&,
included in the genus field of kk,/k.. Then L is the class field over %,
corresponding to I(p,)/I(p,)'P,,. Now, we apply [2, Theorem 3] to this
field L. Since the l-rank of Gal (L/k,) is I and 13 < I, we see that

2 42 —1+1+1)” < lrank (Gal (L/k) .

Thus the l-class field tower of L is infinite and the I-class field tower
of & is also infinite.

REMARK. Let p, be a prime satisfying the conditions in Proposition
3 for r =1. Let o be a generator of Gal (K/k,), where K = kk,. Then
we can consider the I-Sylow subgroup M, of the ideal class group of K
as a module over & by o+ {. Since the l-part of the genus number
of K/k, is l, My is, as is seen by [4 I, Theorem 1], <-isomorphic to <7/,
where ¢ is a natural number. Let 7 be a generator of Gal (K/k,). Then
7 operates on M, and hence on 7/I° as an automorphism. Since ¢ and
7 commute, 7 is an <-automorphism. Moreover, <7/I° is a principal -
module. Therefore 7 is represented by a unit & in &7/I°. Since 7/ =1,
a is of the following form; ¢ =1 + a,7 + B modI°, where 8 is in %, a,
is an integer with 0<a, <1 —1, and 7 ={ —1. Let 7 be a natural
number such that 7 £ Omod!l and j +a, #0modl. Let n' = afi — 1.
Since ali =a(l + ) =1+ (§ +a)r +y7*mod!*, #’ is in [ but not in
2. Therefore (Z/I°)/n'(C]l°) ~ <7/l. Thus we see that M /Mi'~ 1
for p = 7zo? in Gal (K/Q). Let k be the fixed field of p. Then %k/Q is a
cyclic extension of degree I in which only », and p, are ramified. There-
fore the I-Sylow subgroup M, of the ideal class group of % is a module
over ¢ by ¢ +—{, where ¢’ is a generator of Gal (£/Q), and it is -
isomorphic to <7/I" for a natural number ». Since K/k is an unramified
cyclic extension of degree I, we see that § (My/ Ny, My)=1and M,/ M '~
NyMiyC M, Hence we have that M, ~ <7/I*. On the other hand, we
know by [3, Proposition VI. 6] (see also [4 I, Corollary to Theorem 3])
that if M, ~ ~/* for some cyclic extension %/Q of degree ! in which only
p, and p, are ramified, then M, ~ ~7/I* for every cyclic extension %'/Q of
degree I in which only p, and p, are ramified.

Thus we have the following.

For any odd prime p, with p, = 1 mod !/, there exist infinitely many
primes p, which satisfy the following conditions:

(i) p.=1 modl,

(ii) M,~ O for every cyclic extension %/Q of degree I in which
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only p, and p, are ramified.

4. Proof of Theorem 2. Let p, and %, be as in 3. Let K be the
Hilbert class field of %, K, = K({), and K, = K,(E¥").

PROPOSITION 4. Let the motations be as above. Then there exist
infinitely many primes which satisfy the following conditins:

(i) p,=1 modl.

(ii) 1||hk), i.e., Llh(k) and ) h(k), for every cyclic extension k/Q
of degree l in which only p, and p, are ramified.

(iii) l-rank (Gal (L/K)) = h(k,), where L is the genus field of Kk
with respect to K.

ProOF. Since K/Q is Galois, K,/Q is Galois. Let ¢ be an element
in Gal (X,/Q) such that ¢' =1 and that ¢ ¢ Gal (X,/K,). Such o certainly
exists. Indeed, the inertia group of a prime divisor of p, in K, is a
cyclic group of order I, and is not included in Gal (K,/K,). Then, by
the Cebotarev density theorem, we see that there exist infinitely many
unramified primes 93, in K, such that the Frobenius symbol [, K,/Q] = o.
Let p,=Q NP, and p, = KNP,. Since p, is completely decomposed in
Q(), it follows that p, =1 modl and that p, is in P*(K). On the other
hand, o generates Gal(k,/Q). Indeed, since I} h(k) and K,/k, is Galois,
Gal (K,/K,) is the unique I-Sylow subgroup of Gal (K,/k,). Hence p, is not
decomposed in %, and p, is non I-th power residue mod p,. Therefore, by
the genus theory, the I-Sylow subgroup M, of the ideal class group of %
is a cyclic group of order I. Thus we have I||h(k). Since p, is not de-
composed in k,, it follows that p, is a principal prime ideal in %,. Hence
p, is completely decomposed in K/k,, say p, =,, -+ P,,, Where p,, = p,
and ¢t = h(k,). Since o¢ Gal (K,/K,) and Gal (K,/K,) is normal, every ele-
ment conjugate to ¢ is not contained in Gal (K,/K,). Hence p,, --- b,,
are completely decomposed in K,/K. Therefore by Proposition 1

(—;(pz) = G(pm t pZ.t) = G(‘pZ,I) e G('pZ,t) = {1} .
Thus by Proposition 2 we see that # (P(p,)/P(p,)'P,,) = I'. Moreover, only
Poiy v+, Do, are ramified in Kk/K, since only p, is ramified in kk/k,.
Therefore the genus field L of Kk/K is the class field over K correspond-
ing to the ideal class group I(p,)/P(p,)P,, of K. Hence we have that
l-rank (Gal (L/K)) = l-rank (I(p,)/P(p.)'P,,)
=t=hk,).

This completes the proof.

ProoF oF THEOREM 2. Let p, be a prime satisfying the conditions in
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Proposition 4. Then l||h(k), hence the l-class field tower of % is finite.
Let L be the genus field of Kk with respect to K. Now, we apply [2,
Theorem 3] to this L. We first note that h(k,) = 4(2 + I) implies h(k,) =
2 + 2(Ih(k,) — 1 + h(k,) + 1)"2. On the other hand, l-rank (Gal (L/K)) = h(k,).
Hence we have that

I-rank (Gal (L/K)) = 2 + 2(h(k) — 1 + h(k,) + 1)
> 2 + 2(l-rank (Ey) + t + 1)

Thus the l-class field tower of L is infinite. Since L/Kk and Kk/k are
unramified abelian extensions, the class field tower of %k is infinite. This
proves our theorem.

REMARK. In the case I =2, an argument similar to Theorem 2
holds.
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