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Introduction. Let y be a two dimensional complex manifold and

let C be a non-singular one dimensional analytic subset of £f or an empty

set. Denote by D the unit disc \t\ < 1 and by D* the punctured unit

disc 0 < | ί | < l in the complex ί-plane. We assume that a proper

holomorphic mapping π: S^ —> D* satisfies the following two conditions;

1) π is of maximal rank at every point of &\ and

2) by setting £f = & - C and π = π \ St> the fibre St = π~\t) of
Sf over each ί G ΰ * is an irreducible analytic subset of £f and is of
fixed finite type (g, n) with 2g — 2 + w > 0 as a Riemann surface, where
g is the genus of St and n is the number of punctures of St. We call
such a triple (*$? π, D*) a holomorphic family of Riemann surfaces of
type (g, n) over D*. We also say that Sf has a holomorphic fibration
(S1π,D*) of type (g,n).

Our main problem is to construct a completion of {S^ π, Z)*) canoni-
cally in such a way that the central fibre is a Riemann surface (possibly
with nodes) of the same type (g, n) modulo a finite group of automor-
phisms.

As a continuation of the preceeding paper [6], we treat the completion
of (Sζ π9 D*) in the first half of this paper. For a holomorphic family
(Sζ π, D*) of Riemann surfaces of type (g, n) with 2g — 2 + n > 0, we
regard the fibre St over t e D* as a point Φ(t) in a Teichmiiller space.
It should be noted that, in general, Φ is a multi-valued analytic mapping.
In §1 and §2, we recall terminologies and notations in [6]. In §3, we
study the behavior of Φ as t tends to zero. In §4, using the result
of § 3, we canonically construct a completion (^f fr, D) of (Sζ π, D*) and,
in §5, we prove an extension theorem for a holomorphic mapping F of
Sf into 3" with π = πoF.

In the second half of this paper, as applications of the above results,
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in §6, we deal with a uniformization theorem of two dimensional pro-
jective algebraic manifolds, which supplements Griffiths's uniformization
theorem in [5], In §7, we study a compactification of two dimensional
Stein manifolds with holomorphic fibration of type (g, n) with 2g — 2 + n >
0 over finite Riemann surfaces and discuss a condition for an analytic
automorphism of C2 to be a polynomial map.

The author would like to express his hearty gratitude to Professor
Tadashi Kuroda for his constant encouragement and advice.

1. Terminologies and notations. 1. Let G be a finitely generated
Fuchsian group, acting on the upper half-plane U, of the first kind
with no elliptic elements such that the quotient space S = U/G is a finite
Riemann surface of type (g, n) with 2g — 2 + n > 0. Denote by QnOrm(G)
the set of all quasiconformal automorphisms w of U such that w(0) = 0,
w(ΐ) = 1, w(oo) = oo and wGw1 aSL\2) R), where SL'(2; R) is the set
of all real Mobius transformations. Two elements w1 and w2 of Qnorm(G)
are called equivalent if wx — w2 on the real axis. The Teichmϋller space
T(G) of G is the set of all equivalence classes obtained by classifing
Qnorm(G) by the above equivalence relation. We denote by [w] the equi-
valence class represented by an element w of Qnorm(G). Let B2(L, G) be
the space of all bounded holomorphic quadratic differentials for G on the
lower half-plane L, that is, the set of all holomorphic functions φ on L
such that

= φ(z)

for every z of L and for every g of G, and such that its norm

|| φ || =
zeL

is finite. This space B2(Lf G) is a (3# — 3 + n) dimensional complex vector
space. For any element wμ of QnOrm(G) with a Beltrami coefficient μ on
U, there is a unique quasiconformal automorphism wμ of the Riemann
sphere C with w(0) = 0, w(ϊ) = 1, w(°°) = oo such that wμ has the Beltrami
coefficient μ on U and is conformal on L. Denote by φμ the Schwarzian
derivative of wμ on L. Then the Teichmϋller space T(G) is canonically
identified with a holomorphically convex bounded domain of B2(L, G) by
the mapping sending [wμ] into φμ. We associate with every φ of B2(L, G)
a uniquely determined solution WΦ(z) = VΛZ)/V2^) of the Schwarzian
differential equation on L
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where ηλ and η2 are solutions of the linear differential equation on L

2y"(z) + φ{z)η(z) = 0

normalized by the conditions ηλ = η'2 = 1 and η[ = η2 = 0 at z = —i. For
every point φ of T(G), the mapping WΦ defined as above is conformal on
L and has a quasiconformal extension of C onto itself, which is denoted
by the same notation. If we set GΦ = WΦ°G°Wφι and Dφ =WΦ(U), then
Gφ is a quasi-Fuchsian group and the definitions are legitimate since Dφ

is the complement of the closure of WΦ(L) and since WΦ\L depends only
on φ. Koebe's one-quarter theorem shows Dφa{\w\ < 2) for every φ of
T(G).

2. Let (Sζ π, D*) be a holomorphic family of Riemann surfaces of
type (fir, n) with 2g — 2 + n > 0. For a fixed point ί0 of 2)*, let f b e a
quadratic differential in Γ(G) such that the quotient space DψjGψ is
conformally equivalent to the fibre Sto of S^ over ί0. In a sufficiently
small neighborhood S of ί0 in Z)*, there is a uniquely determined
holomorphic mapping Φo of δ into T(G) with Φ0(̂ o) = Ψ such that
DφQ(t)/Gφo{t) is conformally equivalent to St for every t of δ. Moreover,
Φo can be continued analytically along every path in D*. Thus we have
an analytic mapping Φ of D* into Γ(G), but this is not necessarily
single-valued.

Let D be the unit disc | τ | < 1 in the complex τ-plane. We regard
D as a universal covering space of D* with the covering map p(τ) =
exp [2π(τ + l)/(τ — 1)], whose covering transformation group is generated
by the transformation

7(τ) = ^ ^ τ X

τ - (1 + 2i)

Take a point τ0 of D with p(τ0) = t0. Since D is simply connected, there
is a single-valued analytic mapping Φ oί D into Γ(G) with Φ(r0) = ^ such
that the quotient space Dφ{τ)/Gφ{τ) is conformally equivalent to Sp(r, for
every r of ΰ . We call Φ a representation of (S^π, JD*) into Γ(G).
Moreover, there exists an element ^ of the modular group Mod(G) of
G with Φ(7(r)) = ^(Φ(τ)) for every τ of 5 . This element ^ C is called
the homotopic monodromy of {6^ π, D*) with respect to Φ.

3. Let (S, /, Sf) be a marked Riemann surface, that is, S = C7/G is
as before, S' is an arbitrary finite Riemann surface of type (g, n) and
/ is a quasiconf ormal mapping of S onto S'. Two marked Riemann
surfaces (S, /, SO and (S, #, S'O are said to be equivalent if there exists
a conformal mapping h of S' onto S" such that g'^hof is homotopic to
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the identity mapping of S. By using this equivalence relation, we classify
all the marked Riemann surfaces (S, /, S') for a given S and we denote by
[S, f, S'] the equivalence class represented by a marked Riemann surface
(S,/, SO. We call the space T(S) of all equivalence classes [S,/, S'] the
Teichmuller space of S. For each element [S, /, S'] of Γ(S), we can
uniquely determine the element [w] of T(G) such that a quasiconformal
mapping w of Qnorm(G) gives the following commutative diagram:

Thus the point [S, /, Sf] of Γ(S) uniquely determines a quadratic differ-
ential ^ of T(G). This mapping sending [S, /, S'] into ^ is a biholomorphic
mapping of Γ(S) onto Γ(G). Therefore, we may identify T(S) with
Γ(G).

2. Deformation spaces of Riemann surfaces with nodes. 1. In
order to discuss the behavior of Φ(τ) as τ tends to 1, we need the
deformation spaces and moduli spaces of Riemann surfaces with nodes
and punctures. In this section, we briefly explain them along Bers's
line. (See [2] and [3].)

A Riemann surface S' with nodes is a connected complex space,
every point P of which has either a fundamental system of neighbor-
hoods isomorphic to the unit disc {z eC | | z | < 1} or a fundamental
system of neighborhoods isomorphic to the set {(zu z2) 6 C2 \ zλz2 — 0,
| s j < 1 and \z%\ < 1}. In the latter case, P is called a node. Each
component of the complement of the set of nodes is called a part of S'
and S' is called stable if every part of S' has the upper half-plane as
its universal covering space.

In the following, by a Riemann surface S' of finite type we mean
a stable Riemann surface with or without nodes such that S' is compact
except for n punctures, where n is a non-negative integer. A puncture
can never be at a node. In this case, S' has finitely many parts Σ19 , Σr,
and each part Σ, is of genus g3- and is compact except for n3- punctures
with 2gd — 2 + n, > 0 and Σί=i no = 2k + n, where k is the number of
nodes of S' and n is the number of punctures of S'. The total Poincare
area of S' equals A = 2π^/j=ι{2gό - 2 + %). The genus g of S' is
defined by the relation A = 2π(2g — 2 + n). The pair (̂ , ^) is called the
type of S'.

2. Let So and S' be two Riemann surfaces of the same type (g, n).
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A continuous surjection a: S' —> SO is called a deformation if the inverse
image of every node of So is either a node of S' or a Jordan curve on
a part of S', if, for every part Σ of SJ, the restriction a~ι\Σ is an
orientation-preserving homeomorphism of Σ onto a~\Σ), and if every
puncture of Sr corresponds to a puncture of So under α.

Once and for all we choose an integer v (>3) which will be fixed
throughout the following discussion.

Two deformations a: S' —> S'o and β : S" —> SJ are called equivalent to
each other if there exists a homeomorphism / of Sf onto S" with a =
/So/ such that / is homotopic to a product of v-th powers of Dehn twists
about Jordan curves on S' mapped by a into nodes, followed by an
isomorphism. Denote by (a) = <S', α, Sί> the equivalence class determined
by a deformation a: S' —> So'. For a given Riemann surface SO of type
(#, n), the deformation space X(SJ) is the set of equivalence classes <α>
obtained from all deformations a : S' —> So'.

3. In order to reduce the case w > 0 to the case n = 0, we shall
associate with every Riemann surface S' of type (g, n) a Riemann surface
a(S') of type (g+g0, 0), that is, a compact Riemann surface of genus g~\-g0

with nodes, where g0 = (Ag + 8)n. This is accomplished by attaching to
each puncture P3 on S' a "tagging" Riemann surface Vy. For a defor-
mation α: S' -> Si, we denote by a{a) the unique deformation of a(S')
onto α(Sό) such that a(a) | S' = a and that α(α) | Vs is an isomorphism for
j = 1, , ^. We observe α(id) = id and a(aoβ) = a(ά)oa(β). Furthermore,
we see for a fixed type (g, n) that two Riemann surfaces α(S') and α(S")
are isomorphic if and only if S' and S" are isomorphic and that two defor-
mations a(a) and α(/3) are equivalent if and only if a and β are equivalent.
Every deformation a(S') —> α(SJ) is equivalent to one of the forms α(α).
Therefore, the deformation space X(S'O) of a Riemann surface S'Q of type
(g, n) is identified with the intersection of n + kQ distinguished subsets
of X(a(SΌ)), where k0 = (12g + 22)n is the number of nodes on Vl9 , Fn,
and for a given deformation g : S[ —> SJ, the allowable mapping g* : X(S[) —>
X(Sό) sending <S', α, S[) into <S', ̂ °α, SJ> is the restriction of the allowable
mapping a(g)* : X(a(S[)) —> X(a(S'o)). Thus we see that the case n > 0 is
reduced to the case n — 0.

4. We assume that a Riemann surface So of finite type (g, n) has
r parts Σlf , Σr and Λ nodes and that each part Σά has genus gά and
%y punctures. The associated compact Riemann surface a(S'Q) has genus
g + Qo, r + r0 parts 2Ί, , J ^ ^ and & + n + &0 nodes Pl9 , Pfc+Λ+fco,
where gr0 = (4ff + 8)w, r0 = (8# + 15)^ and k0 = (12ff + 22)w.

In order to construct the parametrization space X'(a(S'o)) consisting
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of all Riemann surfaces with nodes which can be deformed to a given
Riemann surface a(S'o), we choose r + r0 Fuchsian groups Hu -—,Hr+r{

acting on discs Δlf , Δr+rQ with disjoint closures as follows: i) Each Hjf j =
1, , r, has n3- non-conjugate maximal elliptic cyclic subgroups with the
same fixed order v (>3) and, for Δ) obtained from Δ3 by removing all
elliptic fixed points, the Riemann surface Δ)IH5 is conformally equivalent
to Σjf ii) each Hi9 j = r + 1, , r + r0, has 3 non-conjugate maximal
elliptic cyclic subgroups with the same fixed order v and the Riemann
surface Δ'jjHύ is of type (0, 3) and iii) Hlf , Hr+ro generate a Kleinian
group H which is their product and has an invariant component ΔQ.

We assign to each node Pt of a(S'o) two non-conjugate maximal
elliptic cyclic subgroups Γ , Γϊ of H so that, if Pt joins Σs to Σlf then
Γ'i c Hά and ΓJ' c if*. Two elliptic fixed points not contained in Δo are
called related if they are fixed under elliptic cyclic subgroups conjugate
to either Γ or Γ '. These Γ{ are chosen in such a way that the union
of Δj/Hj, with the images of any two related elliptic fixed points identified,
is isomorphic to a(S'o).

A point <S', α, SO) in X(S'O) is represented by a point (£, 77) = (£1, ,
ίr, ft, , ft, 0, , 0) in Z'(α(S5)), where every ξjf j = 1, , r, is a
point in the Teichmϋller space T(HS) and every ^<f i — 1, , k, is a
complex number. Let iϊ(f, 77) be the Kleinian group determined by the
point (ζ,η) in X'(a(S'Q)). Denote by Ω(ς,η) the part of the region of
discontinuity of H(ξ, η) corresponding to S' and denote by Ω'(ξ, η) the
complement, in Ω(ξ, η), of all elliptic fixed points. Then the quotient
space Ω(ξ, η)/H(ζ, η), with the images of any two related elliptic fixed
points identified, is a Riemann surface SξtV with nodes of type (g, n) and
is isomorphic to S'. This surface Sξ>v is equipped with a canonical
deformation aξfV with (Sξ>v, aζί7]t SO) = (S\ a, S'o), up to equivalence.

3. Holomorphic families of Riemann surfaces. Riemann's moduli
space R(g, n) is the set of isomorphism classes [Sf] of all Riemann surfaces
S' without nodes and with signature (g,n; <*>, , °°). The moduli space
M(g, n) is the set of isomorphism classes [S'] of all Riemmann surfaces
S' with nodes of signature (g9n; °°, •••, ©o). We recall the fact stated
in §2 and §3 that the case n > 0 can be reduced to the case n = 0.
Then we see that R(g, n) can be regarded as a Zariski-open subset of
M(g, n).

For a holomorphic family (^f π, D*) of Riemann surfaces of type
(g,n) with 2g — 2 + n > 0, the holomorphic mapping J: D* ->R(g,n)
sending £ into [St] has a holomorphic extension J: D-^M(g, n). This fact
can be proved by a reasoning similar to that in the proof of Lemma 1
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in [6].
Now let S = U/G be the fixed Riemann surface as before. If we set

J(0) = [SQ] for a Riemann surface So with or without nodes of signature
(g,n; ° s ••*> °°)> then there exists a deformation a:S-*S0 such that
(Sτ, a°f~\ SQ) converges uniformly to <id> in X(S0) as τ tends to 1 through
any cusp region Δ at τ = 1 in D, where [S, /„ Sτ] is the point of the
Teichmiiller space T(S) of S and corresponds to the point Φ(τ) in T(G).

Thus we obtain the following theorem, whose proof is similar to
that of Theorem 1 in [6] and may be omitted.

THEOREM 1. Let {S^y π, D*) be a holomorphic family of Riemann
surfaces of type (g, n) with 2g — 2 + n > 0. Then there is an element
φλ in the closure of T(G) in B2(L, G) such that a representation Φ(τ) of
GP? π, D*) into T(G) converges to φx uniformly as τ tends to 1 through
any cusp region Δ at τ = 1 in D. The homotopic monodromy ^ of
(«5f 7Γ, D*) with respect to Φ is of finite order if and only if φγ e T(G),
and is of infinite order if and only if φ1edT(G)f where dT(G) is the
boundary of T(G) in B2(L, G). In the latter case, the boundary group
Gx corresponding to φ1edT(G) is a regular b-group.

REMARK. In Theorem 1, let D1 = Ω(Gλ) - ^(Gx), ΩiG^ be the region
of discontinuity of Gx and let Δ(GJ be the invariant component of Gλ.
Let So be a Riemann surface with nodes of signature (g, n; <*>, ...f oo)
with J(0) = [So] obtained in the beginning of this section. Then the
quotient space Dλ U {fixed points of accidental parabolic elements of GJ/Gi
is isomorphic to So.

4. Completion of holomorphic families of Riemann surfaces. 1. In

order to canonically construct the completion ( ^ π, D) of a holomorphic
family (£f, π, J9*) of Riemann surfaces of type (g, n) with 2g — 2 + n > 0,
we need some preliminaries. We use the previous notations. Let
[S, /„ iSΓ] be the point of the Teichmiiller space T(S) of the fixed Riemann
surface S — U/G corresponding to the point Φ(τ) of the Teichmiiller space
T(G) of G for each r of D. Let So be a Riemann surface with or without
nodes of signature (g,n; oof . . . , oo) obtained in §3. The point <SΓ, aof~\
SQ) in X(S0) is represented by a point (f (τ), ^(τ)) of the parametrization
space X'(a(S0)) for each τ of D and the point (ί(r), η(τ)) determines the
point <S 5 ( r M ( r ) , aHτ)Mτ), So> of X(S0). We denote by [Σ3, FjfT, ΣjtV] the point
of the Teichmiiller space T{Σ3) of Σά corresponding to the point ζό(τ) in
T(Hj) for j = 1, , r. Let Hj9 j = 1, , r, be the Fuchsian group
determined by the universal covering of Σό. We regard [Σjf FjtT, Σ3,τ]
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as a point φhτ of the Teichmϋller space T(Hά) of H3. As was stated in
§3, <α(Sr), a(aof-ι)f a(S0)} converges uniformly to <id> in X(a(S0)) as τ
tends to 1 through any cusp region Δ at τ = 1 in D. Hence we see that
holomorphic quadratic differentials <ρj)T in T(H3) converge to zero as r
tends to 1 in Δ. Since <SΓ, α°/;\ So> is equal to <S f { r y ? ( r ) , aMMτ)f So>, by
definition, there exists a homeomorphism gτ: SζMyV{τ) —> Sτ with the relation
α f ( r, f ? ( r) = oίof-ιogτ such that grr is homotopic to a product dτ of v-th
powers of Dehn twists about Jordan curves mapped by aξ{T)iV{τ) into nodes,
followed by an isomorphism. Thus we see that [S, fT, Sτ] — [S, dτ°g~ι°fτ,
SiMtVM] in T(S).

Let Pi, , Pk be the nodes of So and let δ3- be a sufficiently small
neighborhood of each P3, and let δ = ^ U U δk. We may assume
that the deformations a and c^ ( r M ( r ) are locally quasiconformal mappings
on S - Ui=i a~\Pj) and SζMMτ) - Ui=i oίj{\)tη{τ)(Ps)9 respectively. There
exists a quasiconformal mapping hδtT: S —> Sζ{τ)iVM with [<S, /Γ, »SΓ] =
[S, Λίιr, Sf(Γ),,(r)] and with hδtV = d^g-Ό^ on S - α " 1 ^ ) . Let πQ:U-+U/G =
S and ftjiUj-^Uj/Hj = I'j for each i be the natural projections, where
ZZ,- is the upper half £ rplane. Let J^^ be a connected component of
π^ocΓ^Σj ~ δ) and let Iδ>j = πγ(Σό — δ). We can lift α to a quasicon-
formal mapping Ay: 4,,y —> Ĵ .y such that Ay conjugates the subgroup Gy
of G corresponding to the fundamental group of SJ = α" 1^^) into H3.

Let Wί|Γ = Wί5r be the quasiconformal automorphism of C defined in
§1 by φτ = [S, hδ,τy jSe{r),,(r)], which is induced by hδ>τ on the upper half-
plane U and is conformal on the lower half-plane L. By the construction,
we see that Wδ,τ — Wδ,,τ on Δδtj for any δ and δ' with <5' c δ. So we may
abbreviate Wδ,τ to Wτ. We also abbreviate Δδtj and ΔδιS to Δ3 and Δiy

respectively. Similarly, let W3-,τ = W ŷfΓ be the quasiconformal automor-
phism of C defined by [Σ3, FitVf Σ3)τ], which is induced by Fj}T on the
upper half-plane U3 and is conformal on the lower half-plane L3. We
may assume that W3-,τ(z3) is continuous for (τ, z3) in D x Z7y. Then the
mapping

is conformal, because Wτ and W3,τ°A3 have the same Beltrami coefficients on
Δs. Since ^ ,Γ->0 in Γ(Hy) as τ tends to 1 in a cusp region Δ at τ = 1, we
may assume that TΓy,Γ converges uniformly to the Mobius transformation
TΓy.i sending ^ into l/(z3 + i) on any compact subset of U3- as r tends to 1
in Δ. Thus, noting that {V3jT}τej is a normal family, we see that {PΓΓ}rej
is a normal family on Uδ= U— πo1<>oΓ1(δ) for each δ. By contracting each
δy to the node P 3 , we can prove that Wτ converges uniformly on any
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compact subset of Uo = U — πo1oa~1(P1 U U i\) to a locally quasiconformal
mapping defined on Uo as τ tends to 1 in Δ. In fact, since {Wτ}τej is a
normal family on Uδ U L for each δ, there is a sequence {WVn}n=i of
{TFr}Γ6j with rw -> 1 as % tends to °o such that WTn converges uniformly
on any compact subset of £70 U L to a locally quasiconformal mapping Wi
defined on ?70 U L as w —> °°. The Schwarzian derivative of WΊ on L is
equal to φγ in Theorem 1. Let G1 be a quasi-Fuchsian group or a regular b-
group corresponding to <ρx. If W[ is the limit of another sequence{ Wr'Jn=ι
with the same properties as {WVn}»=u then Wΐ° Wr1 is a conformal mapping
of the region of discontinuity Ω(Gλ) of Gx onto itself such that Wl^Wr1

conjugates Gι into itself. Hence, by a theorem due to Abikoff and Marden,
the mapping W[ ° Wr1 can be extended to a conformal automorphism of
C. On the other hand, by Theorem 1, we have W1 = W/ on L, which
implies that WloWr1 is the identity map of C. Thus we have TFΊ= Wl on
J70 U ί/. This shows that {TΓr}re4 converges uniformly on any compact
subset of Ul} to the locally quasiconformal mapping Wx defined on Uo as
r tends to 1 in a cusp region Δ at τ — 1.

2. Now, for every τ eD, we set ^Γ = Φ(τ) and denote by Gτ the
quasi-Fuchsian group corresponding to φτ. Let Ω(GT) be the region of
discontinuity of Gτ and let Δ(Gτ) = WΦτ(L). We set Dτ = Ω(Gτ) - Δ(Gτ).
Similarly, we set D1 = Ω(GJ — Δ{G^), where Gλ = GΦl is a quasi-Fuchsian
group or a regular δ-group corresponding to the point φλ in T(G), whose
existence is guranteed by Theorem 1.

Let 3?τ be the set of all parabolic fixed points in dDτ of Gτ for each
τ of D. Let ^ be the set of all non-accidental parabolic fixed points
in dD1 of Gi and let &*" be the set of all accidental parabolic fixed points
in 3D, of Gv We set Dτ = AU ^ Γ for τ e ΰ , ^ = &{U M " and A =
A U ̂ . Finally, we set

& = {(r,

^ = {(r, W) I r e D, w e Dτ) ,

^ ί = {(1, w)|we A ) ,
^ = {(1, w)\weD1} , and

^ = Sf U ̂ ί .

We will introduce a topology on & Let us define its fundamental
system of neighborhoods as follows:

i) If a — (τ0, w0) is i n &* then we set zQ — W7*(w0) and take a disc
ε with the center τ0 in D and a disc K with the center 20 in the upper
half-plane U. The set {(τ, w)\τ eε, w e Wτ(K)} is an element of the
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fundamental system ^ a of neighborhoods at α.

ii) If a = (r0, w0) is in & — &r, then we set zQ = W^(wQ) and take
a disc ε with the center τ0 in D. Take a horocycle C at z0 in U, that
is, a Euclidean circle in U tangent to the real line at z0. We set K —
(Int C) U {z0}, where Int C denotes the domain bounded by the horocycle
C. The set {(τ, w)\τeε, we Wτ(K)} is an element of ^ α .

From now on, we set 3ίΓ = (Int ^ ) U {1}, where & is a horocycle
at τ = 1 in D.

iii) If α = (1, w0) is in <%r19 then we set z0 = Wϊ\w0) and take a
disc K with the center z0 in ?7. The set {(r, w)\τ e JsΓ, w e Wτ(K)} is an
element of ^ β .

iv) If α = (1, w0) with w0 e ^ / , then we set ^0 = Wϊ\w0) and take
a horocycle C at 20 in U and set i£ = (Int C) U {zo} In this case, it is
observed that Wx and Wϊ1 can be continuously extended to the points
z0 and w0> respectively. The set {(r, w)\τ e^Γ, w e Wτ{K)} is an element
of ^ a .

v) If a = (1, w0) with wo6«^i", then there exists a node Po on So

corresponding to w0. Let δ0 be a sufficiently small neighborhood of Po

in So and let K be the connected component of 7r0"
1oα~1(δ0) such that the

closure of WΊCK" ΓΊ Uo) contains the point w0. Then the set

{(τ, w) I τ 6 3έT, we Wτ{K)} U {a}

is an element of ^ α .
We can prove that {^}α 6^ defined as above satisfies the axioms for

a fundamental system of neighborhoods and induces a Hausdorίf topology
on i&. In the following, we assume that £& is equipped with this
Hausdorίf topology.

3. Let N(G) be the set of all quasiconformal automorphisms ω of
U with ωGω~x = G, and let Qo be the set of all quasiconformal automor-
phisms of U which coincide with the identity on the real axis. The
modular group Mod(G) of G is defined as the factor group

Mod(G) - (N(G)KN(G) Π Qo))/G ,

where every element of G is regarded as an element of N(G). Every
element <α)> of Mod(G) defined by ω of N(G) induces an automorphism
of T(G) sending [w] into <α>>([w]) = [α)J|s(w)], where w eQnoτm(G) and α>3|t(w) =
λowoαΓ'eQnormtG) with λ G SL'(2', R).

Let ω0 be an element of N(G) inducing the homotopic monodromy
of (̂ $f 7Γ, 2?*) with respect to the representation Φ, that is, <α>0> =
We set a) = goo)% for ^ e G and n e Z . Let wΓeQnoτm(G) for τ e ΰ be the
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quasiconformal automorphism of U defined by [S, hitT9 Se<rM(r)] as in §4.1.
We set wτ = X.ow-oQ)"1, where XreSL'(2; R) is taken in such a way that
w r eQ n o r m (G). Then [wτ] is identical with [wrn{τ)] in T(G), where 7 is the
generator of the covering transformation group of the universal covering
V'.D—> Z>* in §1.2. Let Wτ be the quasiconformal automorphism of C
which has the same Beltrami coefficient as that of wτ on U and which
is conformal on L such that

Wτ{z) = — ί ^ + O(| 2 + i\)
z + %

as z tends to z — — ί. Similarly, let Wτ be the quasiconformal automor-

phism of C induced by wτ. We set

Hτ(w) = WTOQ)O W;\w) .

Then Hr is a conformal bijection of Dτ onto Drn{τ). Denote by gn the
analytic automorphism of 3ί sending (τ, w) into (7Λ(τ), Hτ(w)). The set
^ = {#« IQ € <?, w 6 Z) is a discrete and fixed-point-free subgroup of the
analytic automorphism group of £&.

4. Here we will show that every element gn of ^ can be extended
naturally to a homeomorphism gn of 3ί onto itself. First we observe
that gn can be extended naturally to a homeomorphism gn of £& onto
itself. By the same reasoning as in §4.1, we can show that Wr converges
uniformly on any compact subset of Uo = ω(U0) to a locally quasiconformal
mapping Wx defined on Uo as τ tends to 1 through any cusp region A at
τ = 1 in JD. Hence iίΓ converges uniformly on any compact subset of
D1 to a conformal mapping Hx of A onto itself as τ tends to 1 in A.
Since Gx is a quasi-Fuchsian group or a regular δ-group, every component
of Dλ is bounded by a quasi-circle. Therefore, by Caratheodory's theorem,
the conformal mapping Hx of Όx onto itself can be extended to a homeo-
morphism Hι of Z?! onto itself, where D1 is the closure of D1 in C. To
define the extension gn of #n, we set gn = gn on £^ and we set £n(l, te;) =
(1, ^ N ) on Jr1 #

We shall show that (/w is continuous on &. We will prove the
continuity of gn at α = (1, w0) e ^ — ^ with ^;0 6 ^ Γ , since in the
other cases, the proof is similar. We set wQ = H^WQ) and denote by P o

and by Po the nodes of So corresponding to w0 and w0, respectively.
Assume that gn is not continuous at the point α. Then we can choose
an infinite sequence {ΓyJJU of points of D with p(τ3) ->0 as i tends to
co, a neighborhood δ of Po in So and an infinite sequence {dj}J=1 of
neighborhoods of Po in So with δά => δ i + 1 for each i and Π?=i ^ =
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such that, if K is the connected component of π^ooΓ^δ) with the
property wQ e WX{K Π Uo) and if K3 denotes the connected component of
πoι°a~\d3) for each j with the property wύe WX{K3- Π Uo), then Wrn{Tj)(K)
does not include Wτj°ω(K3) for each j , where ω = g°ω" is as before.
Since the mapping Hx is continuous on Dί9 we may assume that
H^W^Kjf] Uo)) is contained in W^KΠ Uo). By the same argument as in
§4.1, we can prove that Wrn{Tj) converges to Wλ uniformly on any compact
subset of Uo as j tends to co f and we can also prove that Wτ. converges
to Wλ uniformly on any compact subset of (θ(UQ) as j tends to ©o. Thus
we may assume that Wrn{τj)(K) intersects Wr.°ω(Kj) for each j . Then there
are a point ζ3 on the boundary dK of K and a point z3 in K3 such that

Wrn(7j)(ζ3) =Wτ

Since Wrn{τj) = WTj on L and since, for the hyperbolic transformation h of
G which makes K3 invariant, K is invariant under h! = ωohoco'1, we may
assume that ζ3 converges to a point ζ in dK Π U as j tends to oo. If
<50 is a sufficiently small neighborhood of ζ in [/, then fljϊo ϊfrΛ(ri) con-
verges to i i r 1 0 ^ ! uniformly on <50 as i tends to co, which implies that

converges to the point w[ — Hϊ^W^ζ) in the region of discontinuity of
G1 as j tends to oo, On the other hand, WTj(z3) converges to the point
wQ of the limit set of Gx as j tends to oo. Hence we have a contradiction.

As was mentioned already, the argument is similar in the other cases.
Therefore, gn is a homeomorphism of 3f onto itself. Denote by gf the
group of all such topological automorphisms gn of ϋ^.

5. Next we introduce a normal complex structure on the quotient
space & = 3f\Φ, which will give the completion (^π, D) of (^f π, 2)*).

Let /* be an element of the modular group Mod(S) of the Teichmϋller
space T(S) corresponding to the homotopic monodromy „# of (^π, D*).
As is stated in §3, the mapping J : D* —>R(g, n) sending t into [St] has
a holomorphic extension J: D-^ M(g, n) with J(0) = [SQ], Further, as is
shown by Bers [2], there exist a neighborhood N of <id> in X(S0) and
the (finite) isotropy group Γ0(SQ), in Γ(S0), of the origin <id> of X(S0)
such that the quotient space N/ΓQ(S0) is a neighborhood of [So] in M(g, ri).
Hence there is a positive integer p such that fp is homotopic to a
product of v-th powers of Dehn twists about Jordan curves mapped by
a into nodes, where a:S-^SQ is a deformation as in §3. Now we set
E = (|ζ| < 1) and E* = E - {0} in the ζ-plane. Let tc:E->D be the
mapping sending ζ into ζp. We consider the holomorphic family (.i/f π\ E*)
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constructed from GP? π, D*) by the relation t = ζp. Let Sζ' be the fibre of
6/" over ζ in E* and let [S, /ζ', SJ] be a point of Γ(S) corresponding to
a point Φ(τ) of Γ(G) for a certain τ in 5 with ζp = p(τ). Then the
analytic mapping if: 7£* —> X'(a(SQ)) sending ζ into <α(Sζ'), αίαo/J"1), α(S0)>
is single-valued. Thus K has a holomorphic extension K : 7? -» X'(α(S0))
with JSΓ(O) - <id>.

Let 77(ζ) be a Kleinian group determined by the point K(ζ) of
X\a(S0)). Let i2(ζ) be the part of the region of discontinuity of 77(ζ)
corresponding to S[ for ζ in E, and let Ω'(Q be the open set obtained
from Ω(ζ) by deleting all elliptic fixed points of 77(ζ). We set

^ = {(ζ,[s])|ζeJS*, [z]eΩ\ζ)/H(ζ)}

and

, # = {(ζ, [z]) I ζ 6 E*, [z]e β(ζ)/H(ζ)} .

Then, by definition, . ^ and & are two dimensional complex manifolds
and . ^ is a Zariski open subset of ^#. If 77 : . ^ -> #* and Π \έk ~±E*
are canonical projections, then (.^, 77, £7*) is a holomorphic family of
Riemann surfaces of type (g, n) and (.^, 77, .E*) is a holomorphic family
of compact Riemann surfaces of genus g.

Let Ψ and $\ be the representations of (^ ' , π', E'*) and (^, 77, E*)
into T(G) as in §1.2, respectively. For a certain positive integer p = p0,
we see that ?Γ = Ψv Hence we may assume that {S^\ π', E*) and
(.^, 77, E*) have the same homotopic monodromy ^//γ for a certain positive
integer p = pQm So we can naturally identify (£fr, π', E*) with (,^, 77, £;*).

For each ζ of #*, we set 72ζ = Ω\ζ)/H(ζ) = Π~%) and β ζ = Ω(Q/H(ζ) =
Π~\ζ). Let 720 = Ω'(0)/H(0) and let 720 be the union of R[ and the images
of all elliptic vertices of i7(0) corresponding to the nodes of So, where
all related elliptic vertices are identified. Then, by the construction, RQ

is isomorphic to So. We also set Ro = Ω(0)/H(0) with the images of all
related elliptic vertices of 77(0) identified, that is, the compactification
of 7?0. Finally, we set

and

Then .^o is a two dimensional complex manifold. By the same reasoning
as in the proof of Theorem 4 in [6], we can prove that ^ 0 has a normal
complex structure such that its restriction to &Q is the same one given
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on ^ o and ,^ 0 — ̂ 0 is a proper analytic subset of ,^ 0 Thus the
projection Π : & -> E* has a holomorphic extension 770: ^ 0 —> £7.

If we take an element ω0 e N(G) with <α>0> = ^ and set α^ = α>6°,
then <<#!> = ^/^. It should be noted that the action of ϊPoeg3 on
&Ί is trivial, where IeG is the identity and i§ξ is the one defined in
§4.2. Let gfx be the subgroup of <& generated by ω1 and G. Denote
by φλ the subgroup of φ induced by <&x. Let px: D -> 2ί* be the
holomorphic mapping with the relation p(τ) — Pι(τ)Po, where p : D -+ D
is as in §1.2.

We will canonically construct a biholomorphic mapping JΓ\
&. For that purpose, let π0 :U-^ S — U/G be the canonical projection.
For a point τ of D and for a point [z] of Dz/Gz, we set

where hδ)T and T7Γ are those in §4.1. Then the mapping Fτ: DJGT-+RPlM

is conformal. If two points (r, z) and (r', z') in Sf are equivalent under
^ , then Fr([z]) = ^r,([«;]). Thus these mappings {jPr}rejD* induce a biholo-
morphic mapping J^ : ^ / ^ —> ^ . This mapping ^" can be extended
to a homeomorphism ^ " : 2^\Φ^ -> ,^ 0. In fact, by the argument similar
to that in the proof of Lemma 2 in [6], we can construct an analytic
isomorphism Fλ of (D1 (J {parabolic fixed points on dDλ of G$)IG1 onto R{

by using the mappings VίtV =Wτ°Aj1<>Wj,\ appearing in §4.1. For a
point (1, z) in ^ , we set ^ ( [ 1 , z\) = (0, ^([z])). Since the action /^ on
^ is trivial, the mapping jβ~ is well-defined and is bijective. By the
definition of topologies of 3ϊ\(&1 and of ^?0 and by the construction of
^ 7 we can prove that J^ is homeomorphic.

6. Let F(G) be the fibre space over the Teichmiiller space T(G) and
take an element (ω) = ^/f. For every element [w] of T(G), we set w' =
XowoO)^ βQnorm(G), where λ is a real Mobius transformation. Let φ and
φf be the quadratic differentials associated with [w] and [wf], respectively.
We set z = WφΌCΰoWφ^z) for zeDφ. Then [α>]*([w], 2) = ([^Ί, «) induces
an analytic automorphism [ω]* of F(G). This analytic automorphism [ω]*
induces a finite subgroup Σ of the analytic automorphism group of
i^V^Ί and every element σ oί Σ can be extended to a homeomorphism
£ of i^/gh onto itself. We set Σ = {σ\σeΣ} and l 0 = J^^Σojr-1.
Since ^ 0 is a normal complex space as mentioned in §4.5, every element
of i?0 is an analytic automorphism of ^ 0 . By Cartan's theorem, 3SQ\ΣQ

becomes a normal complex space and ά?" induces an analytic isomorphism
of J??= {^l^^jΣ onto &jΣQ, which can be extended to a homeomorphism

Ό
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of 3* = (^l&dlΣ onto &0/Σ0. By this identification, 3* has a normal
complex structure. Let πγ: ^ —> 2?* and π : S^ -> D be the natural
projections, respectively. Then (<5f π, 7?*) is analytically equivalent to
ςpf, π-i, J3*) and (3^ π, D) is a completion of ςpf, π x, D*). Therefore,
3* = &1& is a normal complex space and (^f π, D) is a completion of

Summarizing the results obtained above, we have the following
theorem.

THEOREM 2. For a holomorphic family {6^, π, D*) of Riemann surfaces
of type (g, n) with 2g — 2 + n > 0, a completion (S^f ft, D) of (*$? π9 D*)
is canonically constructed in such a way that (<_5t if, D) is a holomorphic
family of compact Riemann surfaces of genus g with or without a
singular fibre over ί = 0 and that & is a two dimensional normal complex
space.

5. An extension theorem.

THEOREM 3. Let £? be a two dimensional complex manifold and let
π be a proper holomorphic mapping of & onto the unit disc. Assume
that there is a one dimensional analytic subset C of S^ such that, setting
£f = S^ — π"1 (0) U C, π = π\&* and Z>* = the punctured unit disc,
π : £f —> D* is a holomorphic family of Riemann surfaces of type (g, n)
with 2g - 2 + n > 0. Let (& ft, D*) be the completion of {S^ π, JD*)
canonically constructed in Theorem 2. Then every holomorphic mapping
F: Sf -> & with π = ftoF can be extended to a meromorphic mapping
F\& -+&

PROOF. By the construction of ^ the argument similar to that in
the proof of Lemma 1 in [6] which uses Kobayashi's extension theorem
shows that F can be extended to a holomorphic mapping F: ( ^ — A) ->
&Z where A is the set of singular points of π~\0) U C. If So is the
fibre of 3" over t = 0, then the graph Γ = {(P, F(P))\Peέ> - A} of F
is an analytic subset of ( ^ x 3*) — (A x So) Since dim(A x So) = 1
and diπiβί/1) = 2 for every point & of Γ, Remmert-Stein's theorem implies
that the closure Γ of Γ in S? x ^ is an analytic subset of ^ x ^
Further, for the canonical projections 77 : &* x ^ —> ^ and Π : £? x
3" —> ^ the mappings 771Γ and 771Γ are both proper holomorphic
mappings. Thus F can be extended to a meromorphic mapping F: ^ —>
& This completes the proof of Theorem 3.
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6. Uniformization of algebraic surfaces. 1. In the first place, we
explain the uniformization theorem due to Griffiths [5] along Bers's line
[1] and [4].

Let X be a two dimensional irreducible non-singular protective
algebraic variety over C and let Xx be a non-empty Zariski open subset
of X. Assume that X is embedded in the iV-dimensional projective
space PN for some N. We can find two homogeneous polynomials Fo and
F1 of the same degree in N + 1 variables and two non-empty Zariski
open subsets 7(cXi) and Z{aP^ such that the mapping π of PN onto
P1 sending ζ into (F0(Q, ί\(ζ)) is a well-defined mapping of Y onto Z
and is of maximal rank at all points of Ϋ and such that for every z of
Z, the fibre Sz = π~\z) Π Y of Y over s is a Riemann surface of (fixed)
finite type (g, n) with 2g — 2 + w > 0. Replacing Z by a smaller Zariski
open subset if necessary, we may assume that the universal covering
space Z of Z is the unit disc in the complex plane. Let p:Z->Z be
the universal covering.

Let G be a finitely generated Fuchsian group of the first kind with
no elliptic elements acting on the upper half-plane U such that the
quotient space S = U/G is of type (g,ri). By the same argument as in
§1.2, we see that there is a holomorphic mapping Φ : Z—> T(G) such that
Dφ{7)IGφ{τ) is conformally equivalent to Sp{τ) for every τ eZ.

Let 3ϊ be the set of all pairs (τ, w) with τeZ and weDφ{τ). Then
S is a bounded Bergman domain in C2. The group G operates on £&
as a discrete and fixed-point-free group of analytic automorphisms by
the rule

g(τ, w) = (r, Wφ{τ)°g°W$\τ)(w))

for (τ, w)e£& and geG, where Wφ{τ) is the quasiconformal automorphism
of C defined by Φ(τ) as in §1.1. The quotient space 2$\G is a two
dimensional complex manifold and the canonical projection 3ί —> &\G is
a universal covering. A point of 3f\G may be regarded as a pair (τ, a)
with r e 2 and aeSp{τ) such that τr(α) = p(τ). Follow the canonical
projection £^ —> 3f\G by the holomorphic mapping which sends (τ, α) to
α. Then the composed mapping 2$ —>Y is considered to be a universal
covering. Hence the universal covering space Ϋ of Y is the bounded
Bergman domain 2H in C2. This is Griffiths's uniformization theorem of
algebraic surfaces.

2. As an application of the completion of holomorphic families of
Riemann surfaces of type (g, n) stated in §4, we can give a supplement
to the above uniformization theorem.
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Let Γ be the covering transformation group of the universal covering
p : Z-> Z. The group Γ acting on the unit disc Z is a finitely generated
Fuchsian group of the first kind. Denote by ^ the set of all parabolic
fixed points of Γ. For each point τ0 in ^, we set Φ(τ0) = limr^0 Φ(τ),
where the limit is taken in a cusp region at τ0 in Z. For each τ e Z (j
r^, we set Gτ = G#(r), β(Gr) = the region of discontinuity of GΓ, 4(Gr) =
the invariant component of Gτ corresponding to the lower half-plane, and
Dτ = Ω(Gτ) - A(Gτ). We denote by &τ the set of all parabolic fixed points
on dDτ of Gr for every τ e Z U ^ . We set

^ = {(r, w)\τeZUrέf, weDT

Each point of £^ — 3f is called a cusp point of 3f. We can canonically

introduce a Hausdorff topology on 2$ as in §4.2.
3. As was stated in §4.3, every element of Γ or G induces an

analytic automorphism of £&, which can be extended to a topological
automorphism of 3f. Denote by 'gf the discrete and fixed-point-free
group of all such analytic automorphisms of Sf induced by Γ and G,
and denote by Sf the group of all topological automorphisms of &
induced by ^ . The quotient space £f = S?]^ is a two dimensional
manifold and £f is biholomorphically equivalent to Y. By this identifi-
cation of £f with Y, the canonical projection £2f —• £f is the universal
covering of Y and its covering transformation group is 2 .̂ By Theorem
2, the quotient space ^ = ^ / S ^ is a two dimensional compact normal
complex space. Further, by Theorem 3, X is bimeromorphically equivalent
to &

Thus we have the following theorem.

THEOREM 4. Let X be a two dimensional, irreducible, non-singular
protective algebraic variety over C and let X1 be a non-empty Zariski
open subset of X. Then there is a non-empty Zariski open subset Y of
Xi such that the universal covering space & of Y can be canonically
constructed and is a bounded Bergman domain in C2. Moreover, if 3ί
is the union of & and all its cusp points and if Sf is its covering
transformation group, then 2ϊ has a natural Hausdorff topology and
every element of & can be extended to a topological automorphism of
3Zf. If *§? is the group of all topological automorphisms of Sf induced
by gf, then the quotient space <9* = &/5f is a two dimensional compact
normal complex space and is bimeromorphically equivalent to X.

7. Compactification of two dimensional Stein manifolds with holo-
morphic fibration. 1. We consider the compactification of a two dimen-
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sional Stein manifold with a certain holomorphic fibration. Let M be a
compact analytic space and T be an analytic subset of M. We call M
a compactification of a complex manifold X if M — T and X are biholo-
morphically equivalent.

We can prove the following.

THEOREM 5. Let & be a two dimensional Stein manifold, let RQ be
a compact Riemann surface and let R be a non-empty Zariski open subset
of Ro. Assume that there exists a holomorphic mapping π : Sf —> R such
that

1) π is of maximal rank at every point of S^, and
2) for every point t of R, the fibre St — π~\t) of S^ over t is an

irreducible analytic subset of <9* and is of fixed finite type (g, n) with
2g — 2 + n > 0 as a Riemann surface.

Then a compactification & of <9* can be canonically constructed

and S^ is normal and is bimeromorphically equivalent to a projective

algebraic surface. Moreover, every compactification of Sf is bimero-

morphically equivalent to £/*.

PROOF. We can construct a two dimensional complex manifold &

such that Sf can be regarded as a Zariski open subset of S?' and that

C = S^ — £f is a non-singular one dimensional analytic subset. (See

Theorem II in Nishino [10].) The mapping π: Sf7—>R can be extended to

a proper holomorphic mapping π : £? —> R. Hence Theorem 2 implies

that a completion ( ^ >̂ Λo) of {&\ π, R) can be canonically constructed

and 3* is a two dimensional compact normal complex space. This space

S^ is a compactification of Sf.

In order to prove that & is bimeromorphically equivalent to a

projective algebraic surface, it is sufficient to show that the algebraic

dimension a(S^) of &* is equal to 2. (See Theorem 3.1 in Kodaira [8].)

In our case, obviously a{&) = 1 or 2. The set C = & — S? can be

regarded as a one dimensional non-singular analytic subset ^ of S^ =

&* — π~x{R0 — R). By the same reasoning as in the proof of Theorem

3, we can prove that ^ has an analytic extension <if, that is, & is an

analytic subset of £f with ^ = <9? Π S^- Thus the one dimensional

compact analytic subset ^ intersects every fibre Si = τt~ι{t) of 3".

Therefore, Kodaira's theorem implies that α ( ^ ) is not equal to 1. (See

Theorem 4.3 in Kodaira [9].) So we have a(3*) = 2 and we see that

&* is bimeromorphically equivalent to a projective algebraic surface.
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For a compactification M of Sf with the inclusion map j ' , we set
S<" = ?(&) and π' = πof'1. The triple {&", π', R) is a holomorphic
family of Riemann surfaces of type (g, n). Let j be the inclusion map
of S? into & and let J — j j ' ' 1 . Denote by A the one dimensional
analytic subset M — &" of M. In the same manner as in the proof of
Theorem 3, we can prove that J can be extended to a holomorphic
mapping J:M— Sing(A) —> ^ where Sing(A) is the set of singular points
of A. By the relation π' = ftoj on £f\ the mapping π': £^r -^R can be
extended to a holomorphic mapping Π : M — Sing(A) —> RQ. Since the
codimension of Sing(A) is not less than 2 and since the compact Riemann
surface Ro is a projective algebraic curve, Levi's extension theorem
implies that Π can be extended to a meromorphic mapping of M onto
Ro. There exists a finite succession σ: J0Γ —> M of tf-processes centered
at the points of Sing(A) such that Π = Πoσ of M onto JB0 is a proper
holomorphic mapping. Hence we have a holomorphic family (a~\S^f),
ff, R) of Riemann surfaces of type (g, n). Theorem 3 implies that the
holomorphic mapping Joσ of σ~\&") into & with the relation Π =
πo(Joσ) on σ~\£f') can be extended to a bimeromorphic mapping of M
onto Jk Since ikf is bimeromorphically equivalent to M, we see that M
is also bimeromorphically equivalent to & This completes the proof of
Theorem 5.

REMARK. If 2g — 2 + n ^ 0, then there is a two dimensional Stein
manifold S? with a holomorphic ίibration (Sζ π, R) of type (g, n) such
that a compactification ^ of Sf is not bimeromorphically equivalent to
a projective algebraic surface. We shall give an example. Let T be a
linear automorphism of C2 sending (z, w) into {(1/2)(2 + w), (1/2)w} and
let G be the group generated by T. Since G is a properly discontinuous
group with no fixed points in C2—{0}, the quotient space S? = (C2—{0})/G
is a two dimensional compact complex manifold. Such a surface ^ is
called a Hopf surface. Since S? is diffeomorphic to S1 x S3, the first
Betti number is odd and is equal to 1, which implies that & is not a
Kahler manifold. Thus &* is not algebraic. Moreover, we can prove
that there is no meromorphic functions on S/* other than constant
functions. We can also prove that there is no one dimensional analytic
subset of &* except for a non-singular elliptic curve C = {(2, 0)\zeC —
{0}}/G. If we set Sf = & - C and Π([z], [w]) = exv(2πiz/w) for (z, w)
of C2 — {w = 0}, then Sf is biholomorphically equivalent to C* x C* by
the mapping sending [z, w] into {exp(2τrΐ2/w), w exp((z/w) log 2)} and the
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triple (S*9 /7, C*) is a holomorphic family of Riemann surfaces of type
(0, 2), where C* = C - {0}.

Finally, as an application of Theorems 3 and 5, we will prove the
following Theorem 6 which is due to Kizuka [7].

Let P(x, y) be a non-constant polynomial of two complex variables x
and y. For any complex number c, each irreducible component Sc of
the analytic subset {($, y) eC2\ P(x, y) = c} of C2 is called a prime surface
of P with value c. If Sc is the desingularization of Se and if Sc is of
type (flf, n) as a Riemann surface, we say that Sc is of type (g, n). For
all values of c except for a finite number of values, every prime surface
Sc of P is non-singular and is of fixed finite type (g0, n0). If 2g0 — 2 +
w0 > 0, then the polynomial P is said to be of general type.

THEOREM 6. Let T be an analytic automorphism of C2. If there
exists a polynomial P of general type such that P° T is also a polynomial,
then T is a polynomial map.

PROOF. For the polynomial P, there exists a polynomial P0(x9 y) and
a polynomial φ(z) of a complex variable z such that P(x, y) = φ(P0(x, y))
and that, for all values except for a finite number of values, the analytic
subset {(x, y) \ PQ(x, y) = c) of C2 is non-singular, irreducible and of order
1. So we may assume that the analytic subset {(x, y) \ P(x, y) = c} is
non-singular, irreducible and of order 1 for all values except for a finite
number of values.

We set Q = P° T. There are two one dimensional analytic subsets C1

and C2 of the two dimensional complex protective space P2 such that, if
we set Si = P2 - Cu Si - P2 - Ctf π, = P|^f, ττ2 = Q\Si and Λ = a
Zariski open subset of P19 then (.5t, TΓ̂  i2) and (SΊ9 π2, R) are holomorphic
families of Riemann surfaces of type (g0, n0) with 2g0 — 2 + 9t0 > 0. The
analytic automorphism T of C2 induces a biholomorphic mapping To of
<Pf onto Si with π̂  = τr2° To-

Let (^t, 7?!, PJ and (S%, π2, Px) be the completions of (Si, πl9 R) and
(S%9 π2, R) constructed canonically in Theorem 5, respectively. If j \ : S^-+
Si and j 2 : Sί—> S% are the inclusion mappings, then Theorem 3 implies
that jι and j2 have bimeromorphic extensions J±: P2—>S^ and J2: P2—>
Si, respectively. Similarly, the biholomorphic mapping J V I W Γ 1 3ι(Si) —>
i2(^a) h a s a bimeromorphic extension of Si onto ^ . Thus the biholo-
morphic mapping T: C2-+ C2 has a bimeromorphic extension f:P2-+ P2,
which implies that f is a rational map. Since f\C2 is holomorphic, T
is a polynomial map. This completes the proof of Theorem 6.
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