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Introduction. Let & be a two dimensional complex manifold and
let C be a non-singular one dimensional analytic subset of .& or an empty
set. Denote by D the unit disec || < 1 and by D* the punctured unit
disc 0 < |t] < 1 in the complex t¢-plane. We assume that a proper
holomorphic mapping 7:.%” — D* satisfies the following two conditions;

1) 7 is of maximal rank at every point of .&; and

2) by setting & =.9” — C and © = 7|5, the fibre S, = n"'(t) of
& over each te D* is an irreducible analytic subset of & and is of
fixed finite type (g, n) with 29 — 2 + n > 0 as a Riemann surface, where
g is the genus of S, and n is the number of punctures of S,. We call
such a triple (%%, D*) a holomorphic family of Riemann surfaces of
type (g, n) over D*. We also say that & has a holomorphic fibration
(&, D*) of type (g, n).

Our main problem is to construct a completion of (7 7, D*) canoni-
cally in such a way that the central fibre is a Riemann surface (possibly
with nodes) of the same type (g, n) modulo a finite group of automor-
phisms.

As a continuation of the preceeding paper [6], we treat the completion
of (&4 m, D*) in the first half of this paper. For a holomorphic family
(& =, D*) of Riemann surfaces of type (g, n) with 29 — 2 + n > 0, we
regard the fibre S, over t € D* as a point @(¢t) in a Teichmiiller space.
It should be noted that, in general, @ is a multi-valued analytic mapping.
In §1 and §2, we recall terminologies and notations in [6]. In §3, we
study the behavior of @ as ¢ tends to zero. In §4, using the result
of §3, we canonically construct a completion (Q %, D) of (& &, D*) and,
in §5, we prove an extension theorem for a holomorphic mapping F' of
& into & with © = #oF.

In the second half of this paper, as applications of the above results,
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in §6, we deal with a uniformization theorem of two dimensional pro-
jective algebraic manifolds, which supplements Griffiths’s uniformization
theorem in [5]. In §7, we study a compactification of two dimensional
Stein manifolds with holomorphic fibration of type (g, n) with 29 — 2+ n >
0 over finite Riemann surfaces and discuss a condition for an analytic
automorphism of C* to be a polynomial map.

The author would like to express his hearty gratitude to Professor
Tadashi Kuroda for his constant encouragement and advice.

1. Terminologies and notations. 1. Let G be a finitely generated
Fuchsian group, acting on the upper half-plane U, of the first kind
with no elliptic elements such that the quotient space S = U/G is a finite
Riemann surface of type (g, n) with 29 — 2 + n > 0. Denote by Q.om(G)
the set of all quasiconformal automorphisms w of U such that w(0) =0,
w(l) =1, w(eo) = o and wGw'c SL'(2; R), where SL'(2; R) is the set
of all real Mobius transformations. Two elements w, and w, of Quom(G)
are called equivalent if w, = w, on the real axis. The Teichmiiller space
T(G) of G is the set of all equivalence classes obtained by classifing
Quorm(G) by the above equivalence relation. We denote by [w] the equi-
valence class represented by an element w of Q....(G). Let ByL, G) be
the space of all bounded holomorphic quadratic differentials for G on the
lower half-plane L, that is, the set of all holomorphic functions ¢ on L
such that

#(9(2))9'(2)* = ¢(2)
for every z of L and for every g of G, and such that its norm
g1l = sup(Im 2)*|(2)|

is finite. This space B,(L, G) is a (8¢9 — 3 + m) dimensional complex vector
space. For any element w, of Q,...(G) with a Beltrami coefficient ¢ on
U, there is a unique quasiconformal automorphism w* of the Riemann
sphere C with w(0) = 0, w(l) = 1, w(ee) = oo such that w* has the Beltrami
coefficient ¢# on U and is conformal on L. Denote by ¢, the Schwarzian
derivative of w* on L. Then the Teichmiiller space T(G) is canonically
identified with a holomorphically convex bounded domain of By(L, G) by
the mapping sending [w,] into ¢,. We associate with every ¢ of By(L, G)
a uniquely determined solution W;(2) = 7,(2)/1.(z) of the Schwarzian
differential equation on L

(WY = S fw') =,
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where 7, and 7, are solutions of the linear differential equation on L
27" (2) + ¢(z)n(z) = 0

normalized by the conditions 7, =7; =1 and 7, =9, =0at 2z = —4. For
every point ¢ of T(G), the mapping W, defined as above is conformal on
L and has a quasiconformal extension of C onto itself, which is denoted
by the same notation. If we set Gy = W;oGoW;* and D, = W,(U), then
G, is a quasi-Fuchsian group and the definitions are legitimate since D,
is the complement of the closure of W,(L) and since W,|L depends only
on ¢. Koebe’s one-quarter theorem shows D, (Jw| < 2) for every ¢ of
T(G).

2. Let (&4 r, D*) be a holomorphic family of Riemann surfaces of
type (g, n) with 29 — 2 + n > 0. For a fixed point ¢, of D*, let + be a
quadratic differential in T(G) such that the quotient space Dy/G, is
conformally equivalent to the fibre S, of & over ¢. In a sufficiently
small neighborhood 6 of ¢ in D*, there is a uniquely determined
holomorphic mapping @, of ¢ into T(G) with @,(t) =+ such that
Dy 1y /Goysy is conformally equivalent to S, for every ¢ of 4. Moreover,
@, can be continued analytically along every path in D*. Thus we have
an analytic mapping @ of D* into T(G), but this is not necessarily
single-valued.

Let D be the unit dise |7| < 1 in the complex r-plane. We regard
D as a universal covering space of D* with the covering map p(t) =
exp [2n(z + 1)/(z — 1)], whose covering transformation group is generated
by the transformation

@ —2)r—1
M e

Take a point 7, of D with p(z,) = t,. Since D is simply connected, there
is a single-valued analytic mapping @ of D into T(G) with &(z,) = 4 such
that the quotient space D, /G5, is conformally equivalent to S,., for
every ¢ of D. We call & a representation of (&% x, D*) into T(G).
Moreover, there exists an element . of the modular group Mod(G) of
G with &(v(7)) = #Z(®(z)) for every = of D. This element .7 is called
the homotopic monodromy of (& w, D*) with respect to @.

3. Let (S, f, S") be a marked Riemann surface, that is, S =U/G is
as before, S’ is an arbitrary finite Riemann surface of type (g9, n) and
f is a quasiconformal mapping of S onto S’ Two marked Riemann
surfaces (S, f, S’) and (S, g, S”) are said to be equivalent if there exists
a conformal mapping h of S’ onto S” such that g~'ohof is homotopic to
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the identity mapping of S. By using this equivalence relation, we classify
all the marked Riemann surfaces (S, f, S’) for a given S and we denote by
[S, f, S'] the equivalence class represented by a marked Riemann surface
(S, £, S"). We call the space T(S) of all equivalence classes [S, f, S’] the
Teichmiiller space of S. For each element [S, f, S’] of T(S), we can
uniquely determine the element [w] of T(G) such that a quasiconformal
mapping w of Q...(G) gives the following commutative diagram:

U-U

|

s-L.g.
Thus the point [S, f, S’] of T(S) uniquely determines a quadratic differ-
ential ¢ of T(G). This mapping sending [S, f, S’] into ¢ is a biholomorphic
mapping of T(S) onto T(G). Therefore, we may identify 7T(S) with
T(G).

2. Deformation spaces of Riemann surfaces with nodes. 1. In
order to discuss the behavior of @(z) as = tends to 1, we need the
deformation spaces and moduli spaces of Riemann surfaces with nodes
and punctures. In this section, we briefly explain them along Bers’s
line. (See [2] and [3].)

A Riemann surface S’ with nodes is a connected complex space,
every point P of which has either a fundamental system of neighbor-
hoods isomorphic to the unit disc {zeC | |z| <1} or a fundamental
system of neighborhoods isomorphic to the set {(z, 2,)€C? 24%,=0,
|2, <1 and |2,] < 1}. In the latter case, P is called a node. Each
component of the complement of the set of nodes is called a part of S’
and S’ is called stable if every part of S’ has the upper half-plane as
its universal covering space.

In the following, by a Riemann surface S’ of finite type we mean
a stable Riemann surface with or without nodes such that S’ is compact
except for n» punctures, where n is a non-negative integer. A puncture
can never be at a node. In this case, S’ has finitely many parts 3, ---, 3,
and each part X; is of genus g; and is compact except for »; punctures
with 2g; — 2 + n; > 0 and >, n; = 2k + n, where k is the number of
nodes of S’ and » is the number of punctures of S’. The total Poincaré
area of S’ equals 4 =273, (29; — 2 + n;). The genus g of S’ is
defined by the relation A = 27(29 — 2 + n). The pair (g, n) is called the
type of S'.

2. Let S; and S’ be two Riemann surfaces of the same type (g, n).
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A continuous surjection a: S’ — S; is called a deformation if the inverse
image of every node of S; is either a node of S’ or a Jordan curve on
a part of S', if, for every part ¥ of S;, the restriction a«™*|¥ is an
orientation-preserving homeomorphism of ¥ onto a (%), and if every
puncture of S’ corresponds to a puncture of S; under a.

Once and for all we choose an integer v (>3) which will be fixed
throughout the following discussion.

Two deformations a:S"—S; and g8:8S” — S; are called equivalent to
each other if there exists a homeomorphism f of S’ onto S” with a =
Bof such that f is homotopic to a product of v-th powers of Dehn twists
about Jordan curves on S’ mapped by a into nodes, followed by an
isomorphism. Denote by {(a) = {S’, a, S;> the equivalence class determined
by a deformation a: S’ — S;. For a given Riemann surface S; of type
(g, n), the deformation space X(S;) is the set of equivalence classes {(a)
obtained from all deformations a:S" — S,.

3. In order to reduce the case n > 0 to the case n = 0, we shall
associate with every Riemann surface S’ of type (g, ») a Riemann surface
a(S’) of type (g+g,, 0), that is, a compact Riemann surface of genus g-t+g,
with nodes, where g, = (49 + 8)n. This is accomplished by attaching to
each puncture P; on S’ a “tagging” Riemann surface V,. For a defor-
mation «a: S — S;, we denote by a(a) the unique deformation of a(S’)
onto a(S;) such that a(a)|S’ = a and that a(a)|V; is an isomorphism for
j=1, ---,n. We observe a(id) = id and a(a-B) = a(a)-a(8). Furthermore,
we see for a fixed type (g, n) that two Riemann surfaces a(S’) and a(S")
are isomorphic if and only if S’ and S” are isomorphic and that two defor-
mations a(a) and a(B) are equivalent if and only if a and B are equivalent.
Every deformation a(S’") — a(S;) is equivalent to one of the forms a(a).
Therefore, the deformation space X(S;) of a Riemann surface S; of type
(g9, n) is identified with the intersection of = + k, distinguished subsets
of X(a(S)), where k, = (12¢g + 22)n is the number of nodesonV,, ---, V,,
and for a given deformation g : S — S;, the allowable mapping g, : X(S)) —
X(S;) sending <S', a, S;) into {S', geax, S;) is the restriction of the allowable
mapping a(g), : X(a(S)) — X(a(S;)). Thus we see that the case n > 0 is
reduced to the case n = 0.

4. We assume that a Riemann surface S; of finite type (g, n) has
r parts X, ---, Y, and k& nodes and that each part ¥; has genus g; and
n; punctures. The associated compact Riemann surface a(S;) has genus
g+9,r+7r parts X, -+, 5,4, and k+n +k nodes P, ---, Ppipir,
where g, = (49 + 8)n, v, = (8¢9 + 15)n and k, = (129 + 22)n.

In order to construct the parametrization space X'(a(S;)) consisting
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of all Riemann surfaces with nodes which can be deformed to a given
Riemann surface a(S;), we choose r + 7, Fuchsian groups H,, -, H,+,,
acting on dises 4,,- - -, 4,+,, with disjoint closures as follows: i) Each H;, j=
1, ---, r, has n,; non-conjugate maximal elliptic cyclic subgroups with the
same fixed order v (>8) and, for 4; obtained from 4; by removing all
elliptic fixed points, the Riemann surface 4;/H; is conformally equivalent
to ¥;, ii) each H;, 5 =»+1,---, 7 + 7, has 8 non-conjugate maximal
elliptic cyclic subgroups with the same fixed order v and the Riemann
surface 4j/H; is of type (0, 3) and iii) H,, ---, H,,, generate a Kleinian
group H which is their product and has an invariant component 4,.

We assign to each node P, of a(S; two non-conjugate maximal
elliptic eyclic subgroups I';, I'Y of H so that, if P, joins 3; to ¥,, then
I''c H; and I'Y C H,. Two elliptic fixed points not contained in 4, are
called related if they are fixed under elliptic cyclic subgroups conjugate
to either I'; or I'Y. These I'; are chosen in such a way that the union
of 4;/H;, with the images of any two related elliptic fixed points identified,
is isomorphie to a(S;).

A point (S, a, S;) in X(S;) is represented by a point (&, ) = (&, --*»
€y My "y My 0, - -+, 0) in X'(a(S))), where every &;, j=1,---,r, is a
point in the Teichmiiller space T(H,) and every 7, 41=1,--- k, is a
complex number. Let H(&, n) be the Kleinian group determined by the
point (£, %) in X'(a(S;). Denote by 2(g,7) the part of the region of
discontinuity of H(&, 1) corresponding to S’ and denote by 2'(¢ 7) the
complement, in 2(¢, n), of all elliptic fixed points. Then the quotient
space 2(&, 9)/H(&, 1), with the images of any two related elliptic fixed
points identified, is a Riemann surface S;, with nodes of type (g, n) and
is isomorphic to S’. This surface S,, is equipped with a canonical
deformation a,, with <S.,, a.,, S;» = (S, a, S;>, up to equivalence.

3. Holomorphic families of Riemann surfaces. Riemann’s moduli
space R(g, n) is the set of isomorphism classes [S’] of all Riemann surfaces

S’ without nodes and with signature (g, n; oo, ---, o). The moduli space
M(g, n) is the set of isomorphism classes [S’] of all Riemmann surfaces
S’ with nodes of signature (g, n; o, ---, ). We recall the fact stated

in §2 and §3 that the case » > 0 can be reduced to the case » = 0.
Then we see that R(g, n) can be regarded as a Zariski-open subset of
Mg, n).

For a holomorphic family (&%, D*) of Riemann surfaces of type
(9, n) with 29 — 2 4+ n > 0, the holomorphic mapping J: D* — R(g, n)
sending ¢ into [S,] has a holomorphic extension J : D — M(g, »). This fact
can be proved by a reasoning similar to that in the proof of Lemma 1
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in [6].

Now let S =U/G be the fixed Riemann surface as before. If we set
J(0) =[8S,] for a Riemann surface S, with or without nodes of signature
(9, n; oo, --+, ), then there exists a deformation a:S— S, such that
(8., aoft, S,» converges uniformly to (id) in X(S,) as = tends to 1 through
any cusp region 4 at 7 =1 in D, where [S, f,, S.] is the point of the
Teichmiiller space T(S) of S and corresponds to the point &(7) in T(G).

Thus we obtain the following theorem, whose proof is similar to
that of Theorem 1 in [6] and may be omitted.

THEOREM 1. Let (&% w, D*) be a holomorphic family of Riemann
surfaces of type (g, n) with 29 — 2 + n > 0. Then there is an element
¢, in the closure of T(G) in By(L, G) such that a representation (r) of
(& w, D*) into T(G) converges to ¢, uniformly as t© tends to 1 through
any cusp region 4 at T =1 in D. The homotopic monodromy .# of
(< &, D*) with respect to D is of finite order if and only if ¢ ¢ T(G),
and is of infinite order if and only if ¢, €0T(G), where 0T(G) 1is the
boundary of T(@) in By(L, G). In the latter case, the boundary group
G, corresponding to ¢, € 0T(G) is a regular b-group.

REMARK. In Theorem 1, let D, = 2(G) — 4(G,), 2(G,) be the region
of discontinuity of G, and let 4(G,) be the invariant component of G,.
Let S, be a Riemann surface with nodes of signature (g, n; oo, ---, )
with J(0) = [S,] obtained in the beginning of this section. Then the
quotient space D, U {fixed points of accidental parabolic elements of G,}/G,
is isomorphic to S,.

4. Completion of holomorphic families of Riemann surfaces. 1. In
order to canonically construct the completion (% 7, D) of a holomorphic
family (&7, &, D*) of Riemann surfaces of type (g, n) with 29 — 2 + n > 0,
we need some preliminaries. We use the previous notations. Let
[S, f., S.] be the point of the Teichmiiller space T(S) of the fixed Riemann
surface S =U/G corresponding to the point &(z) of the Teichmiiller space
T(G) of G for each 7 of D. Let S, be a Riemann surface with or without
nodes of signature (g, n; o, «--, o) obtained in §3. The point ¢S, aof:?,
S,y in X(S,) is represented by a point (&(z), n(z)) of the parametrization
space X'(a(S,) for each = of D and the point (£(z), 7(z)) determines the
point (S re)y ety ey Sop 0f X(S;). We denote by [X;, F; ., ¥;.] the point
of the Teichmiiller space T(JY;) of ¥, corresponding to the point &,(r) in
T(H,;) for j =1, ---,». Let H;, j=1,.--,7 be the Fuchsian group
determined by the universal covering of X;. We regard [Z;, F}; ., 3;.]
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as a point ¢;. of the Teichmiiller space T(H;) of H,. As was stated in
§3, (a(S.), alaof), a(S,))> converges uniformly to <(id> in X(a(S,) as ¢
tends to 1 through any cusp region 4 at z = 1in D. Hence we see that
holomorphic quadratic differentials ¢;. in T(H,) converge to zero as t
tends to 1 in 4. Since (S, acf=, Sop is equal to (S, .w Xewr o Sods BY
definition, there exists a homeomorphism g, : S:() ) — S. with the relation
Oeyne = Qoftog, such that g, is homotopic to a product d. of y-th
powers of Dehn twists about Jordan curves mapped by a.., . into nodes,
followed by an isomorphism. Thus we see that [S, 1., S.] =[S, d.cg'f.,
Sione] in T(S).

Let P, ---, P, be the nodes of S, and let d; be a sufficiently small
neighborhood of each P;, and let 6 =d,U--- Ud,. We may assume
that the deformations a and «., . are locally quasiconformal mappings
on S— Ui-,a(P;) and Si,ne — Ukt @ity n (Py), respectively. There
exists a quasiconformal mapping h,.:S — Siome with [S, £, S.] =
[S, ks,e, Seornn] and with k, . = d.og7tef. on S — a™*(9). Letz,:U—-U/G =
S and 7;:U; — f/ﬁj = J%; for each j be the natural projections, where
U; is the upper half z;-plane. Let 4,; be a connected component of
Totea™(2; — 0) and let zT,,,J- =n;'(2; — 0). We can lift a to a quasicon-
formal mapping A,;: 4,; — 4, ; such that A; conjugates the subgroup G}
of G corresponding to the fundamental group of S; = a™'(3,) into H,.

Let W;. =W,_ be the quasiconformal automorphism of C defined in
§1 by ¢. =[S, hs,r, Sece) 2], Which is induced by h,. on the upper half-
plane U and is conformal on the lower half-plane L. By the construction,
we see that W,. =W, . on 4,; for any 6 and ¢’ with ¢’Cd. So we may
abbreviate W,. to W.. We also abbreviate 4,; and 4,; to 4; and 4,
respectively. Similarly, let W;. =W, i be the quasiconformal automor-
phism of C defined by [3;, Fj., 3;.], which is induced by F;. on the
upper half-plane U; and is conformal on the lower half-plane L;. We
may assume that W; .(z;) is continuous for (z,2;) in D x U;. Then the
mapping

Vie=WoA; o Wik : W, (4,) — W.4))

is conformal, because W, and W; .o A; have the same Beltrami coefficients on
4;. Since ¢,.—0 in T(H,) as v tends to 1 in a cusp region 4 at t =1, we
may assume that W;. converges uniformly to the Mobius transformation
W, sending z; into 1/(z;+1) on any compact subset of U; as 7 tends to 1
in 4. Thus, noting that {V;.}.., is a normal family, we see that {W.}..,
is a normal family on U,=U—=n;*ca"*(0) for each 6. By contracting each
0; to the node P;, we can prove that W, converges uniformly on any
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compact subset of Uy=U — 7yt (P, U - - - U P,) to alocally quasiconformal
mapping defined on U, as 7 tends to 1 in 4. In fact, since {W.}.., is a
normal family on U; UL for each 0, there is a sequence {W. }i., of
{Wies with 7, —» 1 as n tends to < such that W. converges uniformly
on any compact subset of U, U L to a locally quasiconformal mapping W,
defined on U, U L as n — . The Schwarzian derivative of W, on L is
equal to ¢, in Theorem 1. Let G, be a quasi-Fuchsian group or a regular b-
group corresponding to ¢,. If W, is the limit of another sequence{ W }7-,
with the same properties as {W., }i_,, then W/o W' is a conformal mapping
of the region of discontinuity 2(G,) of G, onto itself such that W/ o W;!
conjugates G, into itself. Hence, by a theorem due to Abikoff and Marden,
the mapping W, W, can be extended to a conformal automorphism of
C. On the other hand, by Theorem 1, we have W, = W, on L, which
implies that W/ W, is the identity map of C. Thus we have W,= W/ on
U,U L. This shows that {W.}.., converges uniformly on any compact
subset of U, to the locally quasiconformal mapping W, defined on U, as
7 tends to 1 in a cusp region 4 at 7z = 1.

2. Now, for every reD, we set ¢. = &(r) and denote by G. the
quasi-Fuchsian group corresponding to ¢.. Let 2(G.) be the region of
discontinuity of G. and let 4(G.) =W, (L). We set D. = 2(G.) — 4(G.).
Similarly, we set D, = 2(G,) — 4(G,), where G, = G,, is a quasi-Fuchsian
group or a regular b-group corresponding to the point ¢, in T(G), whose
existence is guranteed by Theorem 1.

Let . be the set of all parabolic fixed points in 0D, of G. for each
v of D. Let % be the set of all non-accidental parabolic fixed points
in D, of G, and let &7 be the set of all accidental parabolic fixed points
in oD, of G,. We set D, = D.U.Z#. forreD, P =.2UP" and D, =
D, U .&. Finally, we set

= ={(,w)|teD, weD},
Z ={,w)|reD, weD},
2, ={1, w)|lwe D},
2, ={1, w)|lweD}, and
D=9 UG.
We will introduce a topology on <. Let us define its fundamental
system of neighborhoods as follows:
1) If a = (7, wy) is i~n 2, then we set z, = W.}(w,) and take a disc
¢ with the center 7z, in D and a disc K with the center z, in the upper
half-plane U. The set {(z, w)|tce, we W.(K)} is an element of the
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fundamental system %, of neighborhoods at a.

i) If a = (¢, w,) is in < — <, then we set z, = W:i(w,) and take
a disec ¢ with the center 7z, in D. Take a horocycle C at z, in U, that
is, a Euclidean circle in U tangent to the real line at 2,, We set K =
(Int C) U {#,}, where Int C denotes the domain bounded by the horocycle
C. The set {(z, w)|rce, we W.(K)} is an element of Z,.

From now on, we set 2% = (Int &) U {1}, where & is a horocycle
at c =1 in D.

iii) If a = (@1, w,) is in =, then we set 2z, = W;'(w,) and take a
disec K with the center z, in U. The set {(z, w)|t € 2%, we W.(K)} is an
element of %,.

iv) If a = 1, w,) with w,e &, then we set z, = W;'(w, and take
a horocycle C at z, in U and set K = (IntC) U {z,}. In this case, it is
observed that W, and W;* can be continuously extended to the points
2z, and w,, respectively. The set {(z, w)|r € .2, we W.(K)} is an element
of Z,.

v) If a =(1, w,) with w,e.&%’, then there exists a node P, on S,
corresponding to w,. Let d, be a sufficiently small neighborhood of P,
in S, and let K be the connected component of 7;'oax™*(d,) such that the
closure of W, (K N U, contains the point w,. Then the set

{zy w)|re 2z, we W(K)} U {a}

is an element of %,.

We can prove that {#Z/,}..s defined as above satisfies the axioms for
a fundamental system of neighborhoods and induces a Hausdor{f topology
on 2. In the following, we assume that T s equipped with this
Hausdorff topology.

3. Let N(G) be the set of all quasiconformal automorphisms @ of
U with wGw™ = G, and let @, be the set of all quasiconformal automor-
phisms of U which coincide with the identity on the real axis. The
modular group Mod(G@) of G is defined as the factor group

MOd(G) = (N(G)/(N(G) N Qo))/G ’

wherc every element of G is regarded as an element of N(G). Every
element (@) of Mod(G) defined by @w of N(G) induces an automorphism
of T(G) sending [w] into (w)([w]) =[w.(w)], where w € Quo:n(G) and @, (w)=
Nowo®™ € Quorn(G) With N € SL'(2; R).

Let w, be an element of N(G@) inducing the homotopic monodromy ._#
of (& m, D*) with respect to the representation @, that is, (w,) = #
We set @ = gow? for geG and necZ. Let w. € Quom(G) for e D be the
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quasiconformal automorphism of U defined by [S, k-, S:cn»] as in §4.1.
We set W. = M.ow.ow™, where ). € SL'(2; R) is taken in such a way that
W € Quorm(G). Then [w.] is identical with [w;x.,] in T(G), where 7 is the
generator of the covering transformation group of the universal covering
p:D— D* in §1.2. Let W. be the quasiconformal automorphism of C
which has the same Beltrami coefficient as that of w, on U and which
is conformal on L such that

_ 1 :
W.(z) =T + O0(z + 1))

as z tends to z = —4. Similarly, let W. be the quasiconformal automor-
phism of C induced by w.. We set

H.(w) =W oo W:'(w) .

Then H. is a conformal bijection of D. onto D».. Denote by g, the
analytic automorphism of <& sending (z, w) into (v*(z), H.(w)). The set
< =1{9.19€G, neZ} is a discrete and fixed-point-free subgroup of the
analytic automorphism group of <.

4. Here we will show that every element g, of & can be extended
naturally to a homeomorphism §, of <7 onto itself. First we observe
that g, can be extended naturally to a homeomorphism g, of <7 onto
itself. By the same reasoning as in §4.1, we can show that W, converges
uniformly on any compact subset of U, = @(U,) to a locally quasiconformal
mapping W, defined on U, as 7 tends to 1 through any cusp region 4 at
7 =11in D. Hence H. converges uniformly on any compact subset of
D, to a conformal mapping H, of D, onto itself as = tends to 1 in 4.
Since G, is a quasi-Fuchsian group or a regular b-group, every component
of D, is bounded by a quasi-circle. Therefore, by Carathéodory’s theorem,
the conformal mapping H, of D, onto itself can be extended to a homeo-
morphism H, of D, onto itself, where D, is the closure of D, in C. To
define the extension §, of g,, we set §, = §, on = and we set §,(1, w) =
(1, H,(w)) on .

We shall show that §, is continuous on . We will prove the
continuity of g, at a = (1, wo)e_%— 2, with w,e Z”], since in the
other cases, the proof is similar. We set %, = H,(w,) and denote by P,
and by P, the nodes of S, corresponding to w, and 1, respectively.
Assume that §, is not continuous at the point a. Then we can choose
an infinite sequence {r,}5, of points of D with p(r;) » 0 as j tends to
«, a neighborhood 6 of P, in S, and an infinite sequence {3;%, of
neighborhoods of P, in S, with 6;24d;s, for each 7 and N5, d; = {Py}
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such that, if K is the connected component of =,'ca™(6) with the
property W, W (KNU, and if K; denotes the connected component of
T;'oa!(9;) for each j with the property w,e W (K; NU,), then Wi, (K)
does not include W, oa)(K) for each j, where w = gow} is as before.
Since the mapping H, is continuous on D, we may assume that
H (W(K;NnU,)) is contained in W, (KN U,. By the same argument as in
§4.1, we can prove that W;.., converges to W, uniformly on any compact
subset of U, as j tends to o, and we can also prove that W, ; converges
to W, uniformly on any compact subset of (U, as j tends to co. Thus
we may assume that Wi, (K) intersects W,J.oco(K,) for each 5. Then there
are a point {; on the boundary 0K of K and a point z; in K; such that

WT"(.—j)(Ci) = W:jow(zj) = Hrjo er(z:i) .

Since Wrn(,j):W,j on L and since, for the hyperbolic transformation h of
G which makes K; invariant, K is invariant under 2’ = w-ho®™, we may
assume that {; converges to a point { in 6KNU as j tends to . If
0, is a sufficiently small neighborhood of { in U, then H:}oWin.; con-
verges to H;'o W, uniformly on §, as j tends to o, which implies that

H.—__,}-lo W;‘"(rﬁ(Cj) = er<zj)

converges to the point w, = H;'o W,({) in the region of discontinuity of
G, as j tends to . On the other hand, W.,(z;) converges to the point
w, of the limit set of G, as j tends to . Hence we have a contradiction.

As was mentioned already, the argument is similar in the other cases.
Therefore, §, is a homeomorphism of < onto itself. Denote by < the

group of all such topological automorphisms §, of .

5. Next we introduce a normal complex structure on the quotient
space = /3/2, which will give the completion (f/A; 7, D) of (& &, D*).

Let f, be an element of the modular group Mod(S) of the Teichmiiller
space T(S) corresponding to the homotopic monodromy .2 of (<4 &, D*).
As is stated in §3, the mappmg J: D*— R(g, n) sending ¢ into [S,] has
a holomorphic extension J:D-— M(g, n) with J(O) [S]. Further, as is
shown by Bers [2], there exist a neighborhood N of (id) in X(S,) and
the (finite) isotropy group I'\(S,), in I'(S;), of the origin {id) of X(S,)
such that the quotient space N/I'\(S,) is a neighborhood of [S,] in M(g, n).
Hence there is a positive integer p such that f* is homotopic to a
product of v-th powers of Dehn twists about Jordan curves mapped by
« into nodes, where a:S— S, is a deformation as in §3. Now we set
E=(¢| <1) and E* = E — {0} in the -plane. Let £:E — D be the
mapping sending { into {*. We consider the holomorphic family (<" n’, E*)
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constructed from (&4 z, D*) by the relation ¢ ={*. Let S! be the fibre of
" over { in E* and let [S, f{, Si{] be a point of T(S) corresponding to
a point &(z) of T(G) for a certain v in D with {° = p(zr). Then the
analytic mapping K: E* — X'(a(S,)) sending { into {a(S}), a(a-fI™), a(Sy))
is single-valued. Thus K has a holomorphic extension K : E— X "(@(S,))
with K(0) = <id).

Let H({) be a Kleinian group determined by the point K () of
X'(a(Sy). Let 2(C) be the part of the region of discontinuity of H(Z)
corresponding to S} for { in F, and let 2'(() be the open set obtained
from Q) by deleting all elliptic fixed points of H({). We set

= [ED LB, [¢]eQ©)/HO)

and
# = =) | EY, [2]e QQ/HQ)

Then, by definition, .# and .<# are two dimensional complex manifolds
and .77 is a Zariski open subset of #. U I:% >E*andl: % —E*
are canonical projections, then (<2, Il, E*) is a holomorphic family of
Riemann surfaces of type (g9, ») and (.@‘?, ﬁ, E*) is a holomorphic family
of compact Riemann surfaces of genus g.

Let ¥ and ¥, be the representations of (&', n’', E*) and (2, II, E*)
into T(G) as in §1.2, respectively. For a certain positive integer o = p,,
we see that ¥ = ¥,. Hence we may assume that (&, n’, E*) and
(=2, II, E*) have the same homotopic monodromy . .7 for a certain positive
integer p = p,. So we can naturally identify (&', #', E*) with (&2, II, E*).

For each { of E*, we set R, = Q2'({)/H() = II"*({) and ﬁ’c = Q2Q)/HQ) =
I17(C). Let R, = 2'(0)/H(0) and let R, be the union of R and the images
of all elliptic vertices of H(0) corresponding to the nodes of S, where
all related elliptic vertices are identified. Then, by the construection, R,
is isomorphic to S,. We also set R, = 2(0)/H(0) with the images of all
related elliptic vertices of H(0) identified, that is, the compactification
of R,. Finally, we set

R, =R U0, [2)|[z] € R}
and
Zy =B U0, [2]) | [z] e Ry} .

Then .77, is a two dimensional complex manifold. By the same reasoning
as in the proof of Theorem 4 in [6], we can prove that &%, has a normal
complex structure such that its restriction to .72, is the same one given



482 Y. IMAYOSHI

on &, and .73, — %, is a proper analytic subset of 9?0 Thus the
projection IT:<% — E* has a holomorphic extension H Qoﬁ K.

If we take an element w,e N(@) with {(®,) = .# and set w, = w;",
then {w,) = ._#. It should be noted that the action of I,,Oeqf on
g, is trivial, where I€G is the identity and < is the one defined in
§4.2. Let %, be the subgroup of & generated by w, and G. Denote
by ii/;l the subgroup of < induced by %,. Let p,:D-— E* be the
holomorphic mapping with the relation p(r) = p,(r)*, where p: D — D*
is as in §1.2.

We will canonically construct a biholomorphic mapping &% . 2/&, —
. Tor that purpose, let 7,:U— S =U/G be the canonical projection.
For a point 7 of D and for a point [2] of D./G., we set

FT([z]) = hﬁ,roﬂoo W:l(z) ’

where h; . and W. are those in §4.1. Then the mapping F.: D./G. — R,
is conformal. If two points (7, z) and (z/, 2’) in & are equivalent under
<, then F.([z]) = F.([z']). Thus these mappings {F'}..,. induce a biholo-
morphic mapping ¥ : &2/%, — . This mapping . can be extended
to a homeomorphism T T /:i%1 — .%70. In fact, by the argument similar
to that in the proof of Lemma 2 in [6], we can construct an analytic
isomorphism F, of (D, U {parabolic fixed points on 4D, of G,))/G, onto R,
by using the mappmgs V“ =W.oA; oW; ' appearing in §4.1. For a
pomt 1, 2) in &, we set & F ([1 z]) = (0, Fl([z])) Since the action Ip0 on
, is trivial, the mapping Z is well-defined and is bijective. By the
definition of topologies of < /3?"1 and of (%A’Q and by the construction of
j’, we can prove that F s homeomorphie.

6. Let F(G) be the fibre space over the Teichmiiller space T(G) and
take an element (@) = _#. For every element [w] of T(G), we set w’' =
Nowo® ! € Quorm(G), Where N is a real Mobius transformation. Let ¢ and
¢" be the quadratic differentials associated with [w] and [w'], respectively.
We set 2 = W, owo W;'(z) for ze D,. Then [w].(w], 2) = ((w'], 2) induces
an analytic automorphism [w], of F(G). This analytic automorphism [w],
induces a finite subgroup X of the analytic automorphism group of
2%, and every element ¢ of ¥ can be extended to a homeomorphism
o of Q/E}‘l onto itself. We set 5 ={6|oe3} and 5, = F oSo 5 .
Since @0 is a normal complex space as mentioned in §4.5, every element
of 5, is an analytic automorphism of 9?0. By Cartan’s theorem, QAZ,/ZA'O
becomes a normal complex space and .# induces an analytic isomorphism
of A =(Z|%)|X onto /S, which can be extended to a homeomorphism
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of & = (é /?Al)/f onto %/ZAO. By this identification, .&° has a normal
complex structure. Let 7,:.% — D* and #:.5 — D be the natural
projections, respectively Then (& n, D*) is analytically equivalent to
(%, Ty, D*) and (,9’ %, D) is a completion of (<4 x,, D*). Therefore,
& =g / € is a normal complex space and (y %, D) is a completion of
(A, D*).

Summarizing the results obtained above, we have the following
theorem.

THEOREM 2. For a holomorphic family (&4 «, D*) of Riemann surfaces
of type (g, m) with 2¢ — 2 + n > 0, a completion (& %, D) of (& x, D*)
18 canonically constructed in such a way that (5% %, D) is a holomorphic
family of compact Riemann surfaces of genus g with or without a

singular fibre over t=0 and that & is a two dimensional normal complex
space.

5. An extension theorem.

THEOREM 3. Let &7 be a two dimensional complex manifold and let
7 be a proper holomorphic mapping of & onto the unit disc. Assume
that there is a one dimensional analytic subset C of & such that, setting
Y = — T OUC, =7 and D* = the punctured wunit disc,
7w .9 — D* is a holomorphic family of Riemann surfaces of type (g, n)
with 29 — 2+ n>0. Let (& %, D*) be the completion of (& x, D¥)
canonically constructed in Theorem 2. Then every holomorphic mapping
F:& . with © = #F can be extended to a meromorphic mapping
.o

PrOOF. By the construction of 5:”, the argument similar to that in
the proof of Lemma 1 in [6] which uses Kobayashi’s extension theorem
shows that F can be extended to a holomorphic mapping F: (& — A4)—
5;; where A is the set of singular points of ZX(0)UC. If S, is the
fibre of .&” over ¢ = 0, then the graph I = {(P, F(P))|Pe.&” — A} of F
is an analytic subset of (& x &) — (4 x §,). Since dim(4A x §,) =1
and dim,(I") = 2 for every point 2 of I, Remmert-Stein’s theorem 1mphes
that the closure I" of " in &2 X & is an analytlc subset of &7 x .
Further, for the canonical projections I7:.% x & - and I:.9 x
K7 QN .9; the mappings /7|I° and 1 |I’ are both proper holomorphic
mappings. Thus F' can be extended to a meromorphic mapping F. o
& This completes the proof of Theorem 3.
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6. Uniformization of algebraic surfaces. 1. In the first place, we
explain the uniformization theorem due to Griffiths [5] along Bers’s line
[1] and [4].

Let X be a two dimensional irreducible non-singular projective
algebraic variety over C and let X, be a non-empty Zariski open subset
of X. Assume that X is embedded in the N-dimensional projective
space P, for some N. We can find two homogeneous polynomials F| and
F, of the same degree in N + 1 variables and two non-empty Zariski
open subsets Y(cX,) and Z(C P, such that the mapping = of P, onto
P, sending { into (F,(©), F.(Q) is a well-defined mapping of Y onto Z
and is of maximal rank at all points of ¥ and such that for every z of
Z, the fibre S, =77'®)NY of Y over z is a Riemann surface of (fixed)
finite type (g, n) with 29 — 2 + n > 0. Replacing Z by a smaller Zariski
open subset if necessary, we may assume that the universal covering
space Z of Z is the unit disc in the complex plane. Let p:Z—Z be
the universal covering.

Let G be a finitely generated Fuchsian group of the first kind with
no elliptic elements acting on the upper half-plane U such that the
quotient space S =U/G is of type (g, n). By the same argument as in
§1.2, we see that there is a holomorphic mapping @ : Z— T(G) such that
D;.,/Gs) is conformally equivalent to S,., for every teZ.

Let = be the set of all pairs (z, w) with 7€ Z and we Dj.,. Then
<7 is a bounded Bergman domain in C®. The group G operates on &
as a discrete and fixed-point-free group of analytic automorphisms by
the rule

9z, w) = (7, Wiyogo Wie(w))

for (v, w)e & and g € G, where Wj5, is the quasiconformal automorphism
of C defined by @(r) as in §1.1. The quotient space /G is a two
dimensional complex manifold and the canonical projection & — /G is
a universal covering. A point of &/G may be regarded as a pair (c, a)
with 7eZ and a€S,. such that w(e) = p(r). Follow the canonical
projection & — /G by the holomorphic mapping which sends (z, a) to
a. Then the composed mapping & —Y is considered to be a universal
covering. Hence the universal covering space ¥ of Y is the bounded
Bergman domain <7 in C? This is Griffiths’s uniformization theorem of
algebraic surfaces.

2. As an application of the completion of holomorphic families of
Riemann surfaces of type (g, n) stated in §4, we can give a supplement
to the above uniformization theorem.
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Let I' be the covering transformation group of the universal covering
p:Z—Z. The group I” acting on the unit dise Z is a finitely generated
Fuchsian group of the first kind. Denote by & the set of all parabollc
fixed points of I'. For each point 7, in &, we set &(z,) = lim.. »,OQ)(T),
where the limit is taken in a cusp region at 7, in Z. For each e Z U
%, we set G, = Gy, £(G.) = the region of discontinuity of G., 4(G.) =
the invariant component of G. corresponding to the lower half-plane, and
D. = 2(G.) — 4(G.). We denote by .7 the set of all parabolic fixed points
on 8D, of G, for every e ZU%. We set

Z ={r,w)|reZU%, weD.UF}.
Each point of & — <7 is called a cusp point of &. We can canonically
introduce a Hausdorff topology on < as in §4.2.

3. As was stated in §4.3, every element of I' or G induces an
analytic automorphism of <, which can be extended to a topological
automorphism of <. Denote by & the discrete and fixed-point-free
group of all such analytic automorphisms of < induced by I" and G,
and denote by < the group of all topological automorphisms of <&
induced by %. The quotient space & = Z/¥ is a two dimensional
manifold and & is biholomorphically equivalent to Y. By this identifi-
cation of . with Y, the canonical projection &7 — & is the universal
covering of Y and its covering transformation group is . By Theorem
2, the quotient space L =g /? is a two dimensional compact normal
complex space. Further, by Theorem 3, X is bimeromorphically equivalent
to .&4

Thus we have the following theorem.

THEOREM 4. Let X be a two dimensional, irreducible, non-singular
projective algebraic variety over C and let X, be a mon-empty Zariski
open subset of X. Then there is a non-empty Zariski open subset Y of
X, such that the universal covering space =Z of Y can be canonically
constructed and is a bounded Bergman domain im C:. Moreover, if
18 the union of & and all its cusp points and if & 1s its covering
transformation group, then < has a natural Hausdorff topology and
every element of & can be extended to a topological automorphism of
9 I f & is the group of all topological automorphisms of T induced
by &, then the quotient space L =g / Z is a two dimensional compact
normal complex space and is bimeromorphically equivalent to X.

7. Compactification of two dimensional Stein manifolds with holo-
morphic fibration. 1. We consider the compactification of a two dimen-
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sional Stein manifold with a certain holomorphic fibration. Let M be a
compact analytic space and T be an analytic subset of M. We call M
a compactification of a complex manifold X if M — T and X are biholo-
morphically equivalent.

We can prove the following.

THEOREM 5. Let & be a two dimensional Stein manifold, let R, be
a compact Riemann surface and let R be a non-empty Zariski open subset
of R,. Assume that there exists a holomorphic mapping 7 :.&” — R such
that

1) 7 is of maximal rank at every point of & and

2) for every point t of R, the fibre S, = w7 (t) of & over t is an
irreducible analytic subset of & and is of fixed finite type (g, n) with
29 —2+n >0 as a Riemann surface.

Then a compactification & of & can be camonically constructed
and & is normal and is bimeromorphically equivalent to a projective
algebraic surface. Moreover, every compactification of & is bimero-
morphically equivalent to R

PROOF. We can construct a two dimensional complex manifold .o
such that & can be regarded as a Zariski open subset of .5 and that

C =% —.% is a non-singular one dimensional analytic subset. (See
Theorem II in Nishino [10].) The mapping 7 :.%” — R can be extended to
a proper holomorphic mapping 7:.% — R. Hence Theorem 2 implies
that a completion (Q 7, Ry) of (¥ m, R) can be canonically constructed
and .& is a two dimensional compact normal complex space. This space
& is a compactification of .o~

In order to prove that & is bimeromorphically equivalent to a
projective algebraic surface, it is sufficient to show that the algebraic
dimension a(y ) of & is equal to 2. (See Theorem 3.1 in Kodaira [8].)
In our case, obviously a(?) =1 or 2. The set C =.& —.% can be
regarded as a one dimensional non-singular analytic subset & of & =
& — 7 Y (R, — R). By the same reasoning as in the proof of Theorem
3, we can prove that & has an analytic extension f%, that is, Z is an
analytic subset of & with @ =% N.%. Thus the one dimensional
compact analytic subset & intersects every fibre S, = 77'(¢) of &
Therefore, Kodaira’s theorem implies that a(ﬁ ) is not equal to 1. (See
Theorem 4.3 in Kodaira [9].) So we have a(f/) =2 and we see that
& is bimeromorphically equivalent to a projective algebraic surface.
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For a compactification M of . with the inclusion map j’, we set
' =3"(S) and 7w’ =moj'"t. The triple (&', #', R) is a holomorphic
family of Riemann surfaces of type (g, ). Let j be the inclusion map
of & into & and let J = jog’™t. Denote by A the one dimensional
analytic subset M — &’ of M. In the same manner as in the proof of
Theorem 3, we can prove that J can be extended to a holomorphic
mapping J : M — Sing(4) — ﬁ where Sing(A) is the set of singular points
of A. By the relation 7z’ = #oJ on &', the mapping 7’ : &' — R can be
extended to a holomorphic mapping 7 : M — Sing(4) — R,. Since the
codimension of Sing(4) is not less than 2 and since the compact Riemann
surface R, is a projective algebraic curve, Levi’s extension theorem
implies that /7 can be extended to a meromorphic mapping of M onto
R,. There exists a finite succession ¢ : M — M of o-processes centered
at the points of Sing(4) such that /7 = IJoc of M onto R, is a proper
holomorphic mapping. Hence we have a holomorphic family (¢7(¢"),
11, R) of Riemann surfaces of type (9, n). Theorem 3 implies that the
holomorphic mapping Joc of ¢7(5) into & with the relation 7 =
#o(Joo) on ¢ (") can be extended to a bimeromorphic mapping of M
onto .&# Since M is bimeromorphically equivalent to M, we see that M

is also bimeromorphically equivalent to &% This completes the proof of
Theorem 5.

REMARK. If 29 — 2 - n < 0, then there is a two dimensional Stein
manifold . with a holomorphic fibration (&, w, R) of type (g, ») such
that a compactification .&° of .&” is not bimeromorphically equivalent to
a projective algebraic surface. We shall give an example. Let T be a
linear automorphism of C® sending (z, w) into {(1/2)(z + w), (1/2)w} and
let G be the group generated by T. Since G is a properly discontinuous
group with no fixed points in C*—{0}, the quotient space & = c*—{0h/G
is a two dimensional compact complex manifold. Such a surface .&° is
called a Hopf surface. Since & is diffeomorphic to S* x S° the first
Betti number is odd and is equal to 1, which implies that & is not a
Kshler manifold. Thus . is not algebraic. Moreover, we can prove
that there is no meromorphic functions on & other than constant
functions. We can also prove that there is no one dimensional analytic
subset of & except for a non-singular elliptic curve C = {(, 0)|z€C —
{0}}/G. If we set &7 = & — C and II([z], [w]) = exp@rmiz/w) for (z, w)
of C* — {w = 0}, then .&” is biholomorphically equivalent to C* x C* by
the mapping sending [z, w] into {exp(2wiz/w), w exp((z/w) log 2)} and the
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triple (&4 II, C*) is a holomorphic family of Riemann surfaces of type
(0, 2), where C* = C — {0}.

Finally, as an application of Theorems 3 and 5, we will prove the
following Theorem 6 which is due to Kizuka [7].

Let P(xz, y) be a non-constant polynomial of two complex variables x
and y. For any complex number ¢, each irreducible component S, of
the analytic subset {(x, ¥) € C*| P(z, y) = ¢} of C? is called a prime surface
of P with value ¢. If S, is the desingularization of S, and if S, is of
type (g, ») as a Riemann surface, we say that S, is of type (g9, n). For
all values of ¢ except for a finite number of values, every prime surface
S, of P is non-singular and is of fixed finite type (g,, #,). If 2¢g, — 2 +
n, > 0, then the polynomial P is said to be of general type.

THEOREM 6. Let T be an analytic automorphism of C:. If there
exists a polynomial P of general type such that PoT is also a polynomial,
then T s a polynomial map.

PrROOF. For the polynomial P, there exists a polynomial P,(x, ¥) and
a polynomial ¢(z) of a complex variable z such that P(x, y) = ¢(Py(x, v))
and that, for all values except for a finite number of values, the analytic
subset {(x, y) | P,(x, y) = ¢} of C* is non-singular, irreducible and of order
1. So we may assume that the analytic subset {(x, )| Pz, y) = ¢} is
non-singular, irreducible and of order 1 for all values except for a finite
number of values.

We set @ = PoT. There are two one dimensional analytic subsets C,
and C, of the two dimensional complex projective space P, such that, if
we set =P, —C, . % =P,—Cy,yn,=P| n,=Q|%% and R = a
Zariski open subset of P,, then (¢4, w,, R) and (.%%, @, B) are holomorphic
families of Riemann surfaces of type (g, n,) with 2g,— 2 4+ n,> 0. The
analytic automorphism 7 of C*® induces a biholomorphic mapping 7, of
. onto &4 with 7, = 7,0 T,

Let (LA/ #, P) and (<% #, P) be the completions of (<, =, R) and
( /g, 7, R) constructed canonically in Theorem 5, respectively. If j,:.

& and 7, .5 — / are the inclusion mappings, then Theorem 3 1mp11es
that j. and j, have bimeromorphic extensions J;: P2—>% and J,: P,—
%, respectively. Similarly, the biholomorphic mapping j,o Tyosi* : 7.(S%) —
Jo(¢4) has a bimeromorphic extension of é’;’ onto % Thus the biholo-
morphic mapping T: C*— C? has a bimeromorphic extension 7: P,— P,
which implies that 7' is a rational map. Since 7|C? is holomorphic, T
is a polynomial map. This completes the proof of Theorem 6.
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