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Introduction. Let M be the moduli space of a class of smooth
varieties. Then, the best compactification of M will be the moduli space
of an extended class of "degenerate" varieties which may have some
singularities. The main purpose of this paper is to study what kind of
singularities are reasonable for these degenerate varieties without
specifying any particular class of the smooth varieties. We would like
the singularities to be sufficiently simple so that invariants defined for
smooth varieties are generalizable, and that we can study the generically
smooth deformation of them. In the case of curves, the theory of the
stable curves by Deligne and Mumford [DM] shows that it is reasonable
to take only ordinary double points as the singularities. In the higher
dimensional cases, however, the degenerate Jacobian varieties of Oda,
Seshadri and Ishida [OS], [II] or more generally, the stable quasiabelian
varieties of Namikawa and Nakamura [Nl], [N2] show normal crossing
singularities to be too restrictive for the degenerate abelian varieties.
Looking at many examples of degenerate varieties, we came to take, as
the local models of singularities, subschemes, invariant under the torus
action, of torus embeddings. Thus they are generalizations of toroidal
embeddings by Mumford et al. [TE]. But these are too general, and we
must find out good conditions on them. It is meaningful to give the
condition for the local models to be Cohen-Macaulay or Gorenstein. In the
classification of smooth varieties, the canonical invertible sheaves play an
important role. The Serre duality theorem is generalized for Cohen-
Macaulay varieties with the canonical invertible sheaves replaced by the
dualizing sheaves. They are invertible if the varieties are Gorenstein.
The sphericity, which we define later, will be a good condition for the
local model to be Gorenstein.

We now explain the content of this paper in more detail.
Let N be a free Z-module of rank r ^ 0, and let M be the dual

Homz (iV, Z). Then for a fixed field k, an affine torus embedding of
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dimension r is written as X~ = Spec (k[M Π ττv]) for a cone π = JRo*̂  -\ h
R<β8 (βi, •- -, aseNR = iV(g)z JB) of JVΛ where Ro — {c e R; c ^ 0} and 7ΓV =
{α? e ΛfΛ; O, α> ̂  0 v α e TΓ}. The torus TN = Spec (k[M]) acts on X* natural-
ly. Set Γ(π) = {the faces of π}. Then there exists the following relation
between elements of Γ(π) and closed subschemes of Xπ.

(Af-homogeneous quotient] (TN-mvariant irre-
Γ(π) ~> j integral domains of ^ jducible reduced closed

(the ring k[M Π ττv] J Isubschemes of Xπ

Φ Φ Φ

<7 i > S(σ) = k[M f]πv Πσ1] i > F(σ) = Spec (S((τ)) ,

= {x e MR; <sc, α> = 0 v αeσ}, Furthermore, we know that
dimσ + dimS(cr) = r for every σeΓ(π).

DEFINITION. A subset Σ of Γ(π) is said to be star closed if Σ B σ,
Γ(π) B T and τ > o imply Σ B r, and it is said to be locally star closed if
Σ B p, σ, Γ(π) B τ and ρ> τ > σ imply ΣBT.

Then we can determine the ΪVinvariant closed subschemes of Xz as
follows.

rstar closed] (reduced ikf-homoge-] (ΪVinvariant
j subsets of I ^ jneous quotient | r^ j reduced closed
κΓ(π) ) wrings of k[M Π ττv]) Isubschemes of Xπ

0 ) 0 ) Φ

J M Π τrv n σJ-Ί i > Γv = Spec (SΣ)

The main purpose of this article is to characterize the properties of
the ring SΣ in terms of combinatorial conditions on the set ΣaΓ(π). In
the case π is non-singular and dimπ = r, i.e., when k[M Π ττv] is a poly-
nomial ring, Reisner [Rl] and Hochster [H2] gave conditions for SΣ to be
Cohen-Macaulay and Gorenstein, respectively. We will generalize their
results to an arbitrary π using a completely different method, that of
dualizing complexes.

For a face σeΓ(π) of dimension d, we set M(σ) = M Γί oL. Then
M(σ) is a free Z-module of rank r — d. We define a free Z-module Zσ of
rank one by Za = Ar~d Λfσ). For faces cr, r 6 Γ(ττ) with τ > σ and dim τ —
dim (7 = 1, there exists a natural isomorphism gΓ/<7: Za ~> Zτ. For a locally
star closed subset Φ, we define the complex C\Φ, Z) as follows. We set
C%Φ, Z)=(BσeΦiZa, where Φi — {σeΦ', dimσ = ΐ}, and the coboundary maps
are defined naturally by #r/σ's. Thus we can consider the cohomology
groups H^Φ, k) of the complex C"(Φ, k) = C\Φ, Z)®zk.
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Reisner's result is generalized as follows, where Σ(p) = {σ e Σ; p > σ),
and h = min {i; Σt Φ 0}, the "height" of Σ.

COROLLARY 3.5. The ring SΣ is Cohen-Macaulay if and only if
H\Σ{p)9 fc) = 0 for every i Φ h and for every peΣ.

DEFINITION. A star closed subset Σ of Γ(π) is said to be spherical
if

)=P y . z .
(0 if % Φ h

for every p in Σ.
The result of Hochster is generalized as follows.
THEOREM 5.10* The ring SΣ is Gorenstein if Σ is spherical.

This theorem is a consequence of Theorem 5.9 which is a generaliza-
tion of Stanley's characterization of Gorenstein normal semigroup rings
[SI].

In §3, we construct the dualizing complex K' of the ring SΣ which
consists of Λf-graded Sj-modules and coboundary homomorphisms of degree
0. The above theorems are obtained by considering the m-component
for each meM. In a special case the complex K' appeared in [N2].

In §7 and §8, we study special cases in more detail. In §7, we give
a natural one-to-one correspondence between the set of Gorenstein normal
semigroup rings of dimension r and the set of convex polytopes of
dimension r — 1. In §8, we show that every normal semigroup ring of
dimension 3 which is a complete intersection is of the form k[x, y, z, w, u]/
(xz — wbu% yw — ua) for a triple (α, 6, c) of non-negative integers.

The generalization of our theory to general torus embeddings or
toroidal embeddings and its relation to that of global duality will be
treated in a forthcoming paper.

Acknowledgment. The author would like to express his thanks to
Professor T. Oda who pointed out to him the complex in [N2] which
turns out to be the dualizing complex and gave him kind advice in the
preparation of this paper. The author also expresses his hearty thanks
to Professor K. Watanabe of Tokyo Metropolitan University who in-
formed him of the results of Hochster and Reisner and pointed out to
him the simplified proof of Lemma 4.5.

Notation.

Z: the ring of rational integers
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ZQ= {ceZ c^O}
R: the field of real numbers
RQ = {teR t ^ 0}
A\B = {x;xeA,x$B}

If A and B are subsets of an additive group,

A + B = {α + 6; α e A, 6 € B] ,

A - J5 = {α - 6; α 6 A, fe e JB} .

1. Cones and their faces. Throughout this paper, we fix a free
Z-module N of rank r ^ 0. By ^ we denote a strongly convex rational
polyhedral cone in NR (=N(g)zR), i.e., there exist alf -- ,α β in N with
π = J ^ + + Λ<A, and 7Γ Π (-π) = {0}. Let Λf be the dual Homz(iSΓ, Z)
of N. Then the dual cone 7ΓV = {cc 6 ilf*; <OJ, α> ^ 0 ^aeπ} is a convex
rational polyhedral cone of dimension r in MR. The following proposition
is fundamental. For the proof we refer the reader to [MO].

PROPOSITION 1.1. The map σ h-> σ* = ττv n oL gives rise to a bijection

{the faces of π} —> {the faces of πv} ,

where σ1 = {xeMR; (x, α) = 0 v α e σ ) . Moreover, σ* > r* if and only if
τ > σ, and dim σ + dim σ* = r /or ever̂ / pair o/ /aces σ, τ of π.

DEFINITION 1.2. We denote by Γ(π) the set of the faces of π.

For a face σ of π, we use the following notations.

Miσ) = Λf Π σ1

Clearly Nlσ) (resp. i\Γσ) is the dual Z-module of M{σ) (resp. Mσ) of rank
r — dim σ (resp. dim σ). For a face p of π with p > σ, we denote by
^ ( σ ) the image of |0 in the quotient N{R] = iVr(<7) (g)z Λ. We see easily that
p{σ) is a face of the cone π{σ) in NR

σ).

PROPOSITION 1.3. Let σ be a face of π. Then <7* = ^ f Ί ^ c J I ί ϊ * is
the dual cone of π{σ) c NR

σ), and p* = (ρ{σ))* for every p e Γ(π) with p > σ,
where (p{a))* = (ττ(σ))v Π (p{σ))L in MR

σ). In particular, the map

{peΓ(π);p>σ}-+Γ(πM)

p i > p^

is bijective.
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PROOF. Let x be an element of M%\ Then, xeπ{σ)V Π p{σ)1 <=>
(x, a) ^ 0 v α e π{σ) and x e (p^)1 <=> (x, α> ^ 0 v α 6 π and # e p1 <=> x e
πv n p1. Hence we have (p{σ))* — ̂ *. In particular, we have (7Γ(σ))v =
π v Π oL if we set p = σ. By Proposition 1.1, there are one-to-one corre-
spondences

^ > σ } - ϋ { t h e faces of <7*(=(ττ(σ))v)} * ϋ Γ(τr(σ)) .

Hence the bijectivity is clear. q.e.d.

For every face σ of 7Γ of dimension c£, we denote Za = /sί

r~d M{σ) which
is non-canonically isomorphic to Z. Let σ be a one-codimensional face
of τ. Then τ(σ) is a one-dimensional cone, and iNT(<7) Π τ{σ) is isomorphic to
the semigroup Zo. Let α be the generator of the semigroup Niσ) Π τ (σ).
We get an exact sequence

0 >M'τ) >MM^i*£z > 0

of Z-modules. By this exact sequence, we have a natural isomorphism

qτ/σ: Zσ^Zτ ,

i.e., if dim σ = p, then for any m16 M(σ) and m2, , mp e M{T\ the element
m1 A m2 A - - - A mp is sent to <mx, α>m2 Λ Λ ^ P .

LEMMA 1.4. Lei σ and p be faces of π with dim p — dim σ = 2 αwd
p > σ. Then there are exactly two faces τu τ2 0/ TΓ ̂ ϋfe dim |0 — dim r4 — 1

> τ£ > σ, i = 1, 2. Furthermore, we have qp/Tί o grχ/σ + g^^ o gΓ2/σ = 0.

PROOF. In view of Proposition 1.3, we may assume a — {0} and
= 2 by replacing π by π(σ). Then this lemma is obvious. q.e.d.

Let I be a subset of Γ(π). Then we set, for each i e Z,

C\Σ, Z)= 0 Za
αe Σι

where Σt = {σeΣ; dimσ = i}. We define a homomorphism

δ i:C ί(I r, Z)-+Cί+1(Σ, Z) ,

for each ί, as follows: For σ elt and τ e Σi+1, its (σ, τ)-component is
the isomorphism qτ/σ if τ > σ and the zero map otherwise.

DEFINITION 1.5. Let Φ be a subset of Γ(TΓ). Then for a subset Σ
of Φ, we say

star closed in Φ if Σ 3 σ, Φ 3 τ and τ > σ imply Σ 3τ

Σ is- star open in Φ if Σ 3 σ, Φ 3 τ and σ > τ imply ί a r

locally star closed in Φ if Σ 3 p, σ, Φ 3 τ and p > τ > σ imply Σ 3τ .
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PROPOSITION 1.6. If Σ is a locally star closed subset of Γiπ). Then
fii+i. gi. c*(j;9 z) —• Cί+\Σ, Z) is the zero map for every i, i.e., the sequence

C\Σ, Z) = ( > 0 -> C\Σ, Z) — C\Σ, Z) -> > Cr(Σ, Z) -> 0 -* •) is
α ^mίβ complex of free Z-modules.

PROOF. It is sufficient to show that the (σ, ^-component of δί+1 o δ*
is zero for every pair (σ, p) with α e ί i and peΣi+2. It is clearly the
case, if σ is not a face of p. Hence we may assume p > σ. Then τu τ2

in Lemma 1.4 is in Σ since I7 is locally star closed. Hence the (σ, p)
component of δί+1 o δι is equal to qp/Tl o qτι,a + g/0/Γ2 o qT2/σ, which is the zero
map by Lemma 1.4. q.e.d.

Hence we can define the cohomology group Hι{Σ, Z) (i e Z) for every
locally star closed subset Σ of Γ(π). Let Φ be a locally star closed sub-
set of Γ(π) and let Σ be a star closed subset (resp. star open subset) of
Φ. Then there exists a natural homomorphism C'(Σ, Z) —> C'(Φ, Z) (resp.
C\Φ, Z) -> C\Σ, Z)) of complexes.

DEFINITION 1.7. A locally star closed subset Φ of Γ{π) is said to be
homologically trivial if H\Φ, Z) = 0 for every ieZ.

PROPOSITION 1.8. Let Σ be a locally star closed subset of Tin). If
a subset Σr of Σ is star closed in Σ or equivalently Σ" = Σ\Σf is star
open in Σ, then there exists a cohomology exact sequence

0 -> H°(Σ', Z) -> H°(Σ, Z) -> H°(Σ", Z) -> H\Σ\ Z) ->

• • -> HP(Σ', Z) -> HP(Σ, Z) -> ί ί ^ r ' , Z) -> ff'+XJ', Z) -^ .

In particular, if any two of Σ, Σr, Σ" are homologically trivial, so is
the other.

PROOF. Since there is a short exact sequence

0 -* C\Σ', Z) -* C'{Σ, Z) -> C\Σ", Z)-+0

of complexes, the assertion is well known. q.e.d.

Let Σf and Σ" be locally star closed subsets of Γ(π) such that they
are star closed in the union Σf U Σ" and the intersection Σ' Π Σ" is star
closed in both of them. Then clearly Σ' U Σ" and Σf Π Σ" are locally
star closed in Γ(π), and we have a short exact sequence

0 -> C\Σf Π Σ", Z) -> C\Σ\ Z) 0 C\Σ", Z) -> C'(Σ' U Σ", Z) -> 0 .

Hence we have the following.

PROPOSITION 1.9 (Mayer-Vietoris). In the above situation, we have
an exact sequence
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> H'(Σ' n Σ", Z) -» H*(Σ'f Z) © H*(Σ", Z) -> i P ( ^ ' U J " , Z)

-> JEP+^I" ΓΊ Σ", Z) -> H*+\Σ', Z) φ HP+\Σ", Z) -> . .

2. Homologically trivial subsets of Γ(π). In this section we aim
to prove the homological triviality of certain subsets of Γ(τr) which will
reappear in §4 in connection with the dualizing complex.

DEFINITION 2.1. For an element x of MR, we define the star open
subset Γ(π)x of Γ(π) by Γ(π)x = {σ eΓ(π); (x, σ) aRQ} and Γλ(π)x =

Since a polyhedral cone is generated by its 1-dimensional faces, it
is easy to see that Γ(π)x = {σeΓ(π); every 1-dimensional face of σ is in
Γx(π)x}. Hence Γ(π)x is uniquely determined by Γx{π)x.

LEMMA 2.2 // £feβ cardinality *Γx(π)x is not less than 2, then there
exist 7 e Afa)* ατi(Z y, zeNR such that jay1, Γ(π)y — Γ(π)x and Λ(τr)z =

PROOF. Let {yl9 •• ,7(} be the set of 1-dimensional faces of π and
let Γ^π)^ = {7i, , 7P} for some 2 <; p ^ s. We take ateNfor 1 ^ i ^ s
such that 7* = i?oαi Then <sc, α<> ^ 0 for i = 1, , p and (x, at) < 0
for ί = p + 1, , s. Furthermore, by adding to x an element of
sufficiently small norm in the interior i n t π v of ττv, we may assume
(x, α{> > 0 for every i = 1, •••,??. Let w be an element of int ττv, then
since <w, α*) > 0 for every ί, there exists a positive number ti with
<ίc — ttw, aty = 0 for each 1 ^ ΐ ^ p. If ί< = t, for some 1 ^ i < j ^ p,
then (x, α<> — < ί ^ , â > = 0, <#, αy> — <ί<w, α̂  ) = 0 and ^ satisfies the
linear equation (x, aty(w9 αy> — <a?, a/)(w, at) = 0, which is non-trivial
since a{ and aά are linearly independent. Hence if we take w which
satisfies this equation for no 1 ^ i < j <£ p, then ί2, , ίp are mutually
distinct. Since int ττv is an open subset of MR, this is possible. By
renumbering ylf , 7P, if necessary, we may assume tλ > t2 > > ίp.
Set y = x — ΐpw and z = x — tow for some tp<t0< tp_λ. Then <?/, αέ> and
<z, αέ> are positive (resp. negative) for 1^ i ^ p — 1 (resp. p + 1 ^ i ^ s),
and <2/, αp> - 0, (z, ap}<0. Hence Γ1(τr)lf = {7i, , τp}, 7P e T/1 and Λ(7r)z =
ίτ l f - , V i } ^ e d

For the subset {alf , αβ} in the proof of the above proposition and
for an element x in MR, we have Γ1{π)x = {τ4; <», αέ> ^ 0}. Since int πv =
{yeMR; (y, at) > 0, i = 1, , β}, the set Λ(π) x is empty if and only if
x is in —int 7ΓV.



118 M.-N. ISHIDA

PROPOSITION 2.3. Γ(π)x is homologically trivial if x is outside
-intτr v .

PROOF. We prove this proposition by double induction on l/\(7r)* a n d
dim π. If Γλ{π)x = {7}, then

C\Γ(π)x, Z) = (0 — * Z{0} Ά z r > 0)

and Γx{π) is homologically trivial. If dim7Γ = l, then */1

1(7r)a. = l and Γ{π)x

is homologically trivial. We assume *JΓI(*O* ^ 2 and dim TΓ ̂  2. Then by
Lemma 2.2, there exist jeΓ^π),. and y,zeMR such that Γ(π)y = Γ(π)x

and A(π)z = i~Ίfa)*\M Since Γ(π)2 is star open in Γ(π)zf and Γ(π)z is
homologically trivial by the induction assumption, it is sufficient to prove
that Γ(π)y\Γ(π)z is homologically trivial in view of Proposition 1.8.
Γ(π)y\Γ(π)z = {(7eΓ(π); (y, σ> c i ί 0 and <τ > 7} - Γ(π™\. Since 'Afr), ^ 2,
there exists an αeτr(r)\{0} with (y, α> ̂ 0 . Hence y$ — int (π ( r ))v and we
are done again by the induction assumption. q.e.d.

If we take x in π, Γ(π)x is equal to Γ(π). Hence the above proposi-
tion implies, in particular, that Γ(π) itself is homologically trivial if
dim π > 0.

DEFINITION 2.4. For a star closed subset Σ of Γ(π) and for an
element m in M, we define the locally star closed subset Σ{m) of Σ by

Σ{m) = {peΣ me -ρy and m1 Γ\peΣ} .

REMARK 2.5. For m e i k ί n π v , it is easy to see that Σ{m) = Σ(η),
where η — π Π mL 6 Γ(7r) and Σ(τj) = {p e Σ; η > p).

PROPOSITION 2.6. // mgJlίfl7Γv, then Σ(m) is homologically trivial
for any star closed subset Σ of Γ(π).

PROOF. If Σ = Γ(π), then Σ{m) is equal to Γ(π)_m, since m 1 Π p is in
Γ(p)aΓ(π) for every me—pv. Hence 2r(m) is homologically trivial by
Proposition 2.3. We prove this proposition by induction on the cardinality
oi.Γ(π)\Σ. Let η be a face of the highest dimension in Γ(π)\Σ, and let
Σ' = {77} U 2\ Then 2" is a star closed subset of Γ(π) and 2"(m) is homo-
logically trivial by the induction assumption. It is clear that Σ{m) is a
star closed subset of 2"(w), and hence it is sufficient to prove the homo-
logical triviality of Σ'im)\Σ™. If m 1 does not contain η, then Σnm) = Σ{m)

and there is nothing to prove. Assume m13 η. Then, Σnm)\Σ{m) =
{peΣ'; me-pv and m 1 n p = )?} - {p(7?) eΓ(π(7?)); m 6 -(/O(^)v and m 1 Π
^> = {0}} = {pw e Γiπ^y, <~m, ^( \̂{0}> c (R0\{0})} = Γ(π('>)_m_β, where a?
is an element of int(7r(3?))v of sufficiently small norm. Since m e M(v)\(πiv))v,
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the point —m — x is not in — (ττ(3?))v = — (ττv Π 3?1) and Γ(πiv))_m_x is
homologically trivial by Proposition 2.3. Thus Σ'{m)\Σ{m) is homologically
trivial. q.e.d.

3. Homogeneous quotients of semigroup rings. We fix a field k of
an arbitrary characteristic from this section on. Let N, M and π be as
in §1. We denote ka = fc(x)zZσ for every σeΓ(π), and we use the same
symbol qτ/σ for the isomorphism lk (x) #Γ/σ: &σ ̂  &Γ. We denote by k[M]
the &-vector space with the basis {e(m)}me3f which has the ά-algebra
structure defined by e(m)e(m') = e(m + m') for every pair (m, m') of
elements in ikf. For a subsemigroup ^ of M with O e ^ we denote by
k\£f\ the Λ-subalgebra 0me^&e(m) of k[M], If a subset ^ a ^ is an
ideal of ^ i.e., me<_^ and m ' e ^ imply m + mre^ then k[<J^] =
(Bme^ke(m) is an ideal of k[S^]. In order to simplify the notation, we
denote by k\£f\yr\ the quotient ring of k[S^] with respect to the ideal
M ^ L identify it with the Λ-vector subspace φ m 6 ^ \ ^ fce(m) of Λ[ikf]. Note
that, in this ring, the multiplication e(m)e(m') for m and m' in £S\J?
is equal to e(m + m') if m + m' ί ^ and 0 if m + m' e ̂ " These rings
and ideals have the structure of Λf-graded objects. We take M{\πy as
such a semigroup S? of M, and study the semigroup ring S = k[M Π ττv].
Then X* = Spec (S) is a torus embedding, i.e., the torus TN = Spec (fc[ilί])
is an open subset of Xπ and acts on Xπ. According to the remark of
[MO, (5, 3)], the map

rγ x (Γ^-invariant irreducible reduced )
^ ' "^ (closed subschemes of X* )
Φ CD

σ 1 • V{σ) = Spec (fc[Λf Π πv Π ^ i )

is bijective. Note that &[.M (Ί τrv Π o*1] is thought of as the quotient of
S by the ikf-homogeneous prime ideal P(σ) = k[M Π (πw\σL)\. For a star
closed subset Σ of Γ(π), define the ideal J(J) = f\a,ΣP{σ). Then J(^)
is an Λf-homogeneous semiprime ideal of S. Conversely, it is clear that
every ikf-homogeneous semiprime ideal of S is equal to J(Σ) for a star
closed subset Σ of Γ(π). Thus we have a bijection

(star closed subsets) (ΪVinvariant reduced closed)
(of Γ(π) j ~* (subschemes of Xπ )

Φ ω
Σ 1 > Γ^ = Spec (S/J(Σ)) .

For a non-empty star closed subset Σ, we call min {dim σ; σ e Σ} the
height of 21 and denote it by ht Σ. Since ht P(σ) = dim σ, the height of
Σ is equal to that of the ideal J(Σ) or the codimension of YΣ in Xπ.
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We now fix a non-empty star closed subset Σ of Γ(π). Our main
purpose is to find the condition for the ring SΣ — S/J(Σ) to be Gorenstein
or Cohen-Macaulay.

Since J(Σ) c P(σ) for every σ in 21, the ring S/P(σ) is an S^-module.
If or is a face of τ, then P(σ) is contained in P(τ). When dimτ —
dim σ = 1, we denote by Qτ/σ the homomorphism S/P(σ) ®fc kσ —• S/P(τ) (x)fc kτ

defined by the tensor product of the quotient map and qτ/σ. Define the
jSj-module Kι to be the direct sum ®σeΣiS/P(σ)(S}kK f° r every i —
0, .., r = rank N, and define the coboundary map δ*: Kι —> Ki+1 by

Note that all our rings and modules are naturally M-graded. Moreover,
for every i with 0 <; i ^ r — 1, δ̂  is a homomorphism of M-graded SΣ-
modules of degree 0. Hence we can consider the m-component K'm of

the sequence K' - ( > 0 -> iί 0 ̂  K1 >̂ . -^> JBΓr — 0 -^ -) for every
m in M. Recall that, for ρeΓ(π), we denote (̂/o) = {σeΣ; p> σ}. It
is clear that Σ(p) is a locally star closed subset of Γ(π) and is empty if
ρ$Σ.

PROPOSITION 3.1. The m-component K'm of K' is the 0-complex if
m$M{\πy. If meMf)πv, then there exists a natural isomorphism
K'm^C\Σ(p)9 k) where p = π Π m1. In particular, K'm is the 0-complex
if p&Σ. Let m' be an element of M Π πy and let η = π Π (m + mry.
Then the diagram

commutes, where e{mf) x : K*m —> K'm+m' is the multiplication by the homo-
geneous element e(mf) e S, and C\Σ(p), h) —> C\Σ(η), k) is the natural
homomorphism corresponding to the star open inclusion Σ{η) ̂  Σ(p).

PROOF. If m$MΠπv, then k[M Π π v Π σλ]m = 0 for every σ e Γ(π),
and the first assertion is obvious. For m in MΓ\πv, the m-component
of k[M Π τrv Π cr1] is equal to ke(m) if m1 3 σ and zero otherwise. Since
p = 7Γ (Ί m 1 is a face of TΓ, we have the natural isomorphism

Ki = 0 fce(m) (x) feσ 2 ; C*(Σ(p), fc) = © fcβ .
σeΣ(p)i k σel(ρ)i

(β(m) (x) αβ)βeί(/»)11 • W . e i ^ .

Hence the sequences K'm and C\Σ(p),k) are isomorphic since the coboundary
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maps are defined by qr/σ'a. If p$Σ, then Σ(p) is empty and K'm is
the 0-complex. Clearly η = π Π (m + m')1 is a face of ô, and hence
Σ(-η) is a star open subset of Σ(p). Since e(mf)e{m) is e(m + m') in
Λfikf Π τrv Π 0"1] if o e J?(ip) and is zero otherwise, we get a commutative
diagram

φ ke(m) (g) kσ > φ kσ

Um')x

^ ^ Γvκ>\ΠU ~ lib ) \^\) tυa r ^p

for every i, where j>i((αJσ6ΓW<) = (aσ)oeΣ(η)i9 for every (α j σ 6 j ( ^. . Hence
we are done. q.e.d.

COROLLARY 3.2. The sequence K' is a complex.

PROOF. By Propositions 1.6 and 3.1, K' for each m in M is a com-
plex. Hence K' is also a complex.

The following is our main theorem.

THEOREM 3.3. K' is the dualizing complex of the ring SΣ.

Recall that, for a noetherian ring A with Spec (A) connected, the
dualizing complex R' of A is determined uniquely up to quasi-isomorphism,
dimension shift and the tensor product of protective modules of rank
one, where a homomorphism R[ —• R2 is a quasi-isomorphism if the induced
homomorphism H\IQ —> H\R2) is an isomorphism for every ieZ. For
the detail, see [RD, Ch. V]. The important fact is that if the dualizing
complex R exists, then

A : Cohen-Macaulay — H, H\R) = 0 H Φ d ,

A : Gorenstein *=> 3d, H\R) = 0 v i Φ d and Hd(R) is a protective

A-module of rank one.

When A is Cohen-Macaulay, Hd(R) is usually called a dualizing module
or a canonical module of A.

When dim TΓ is equal to r = rank N, then τrv = {0} and P(π) =
®meMc\^\[o})ke{m) is a maximal ideal of S. We denote the maximal ideal
P(π)/J(Σ) of SΓ by m. Theorem 3.3 is a rather easy consequence of the
following proposition, which we prove in the next section.

PROPOSITION 3.4. // dim π = r, then the hyper extension groups are

{SΣ/m if i = r

) if i Φ r .
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REMARK. Note that K° corresponds to the sequence
v Λ v AT\ (~\ /ON If. v fT\ (~\ /O\ If, v v (~\ /O\ I* v C\ v

" \ I / "Via) Vy v<x \J/ ^V{β) Kjy ™β — # " ^ F ( τ r ) VcS' "'JΓ ^ >
aeΣQ k βeΣt k k

if we consider them as a sheaf and complex of sheaves on YΣ = Spec (SΣ).
For a face p of π in J?, the restriction of K' to the affine open set XP =
Spec(fc[M Π |θv]) coincides with the complex defined similarly for p and
Σ(p) = {σ e Σ; p > σ) as we defined K' for π and Σ.

PROOF OF THEOREM 3.3. We prove this theorem by induction on r.
If r = 0, then SΣ and K' are both equal to k. Hence the assertion is
obvious. If dim7Γ is less than r, then Xπ is the product of a torus T
of dimension r — dim π and the torus embedding Xf

π of dimension dim π
defined by the pair (π, Nx). Hence ΓΓ is also a product Γ'x Yl. We are
done by the induction assumption, since K' is isomorphic to the pull-back
of that of YΣ for the projection YΣ —> YΣ and we can apply [RD, Ch. 5,
Theorem 8.3], Thus we may assume dimπ = r. For a proper face p of
π the restriction iΠx, ίs the dualizing complex of YΣ Π X^ in view of
the above remark and what we have seen above. Since [Jperw.p** Xp =
Xπ\V(π), it is sufficient to prove that K' is a dualizing complex at the
unique TV-invariant point V(π) of Xπ. Since m = P(π)/I(Σ) is the ideal
of V(π) in yΓ, we are done by [RD, Ch. 5, Proposition 3.4] and our
Proposition 3.4. q.e.d.

COROLLARY 3.5. SΣ is Cohen-Macaulay if and only if H*(Σ(p), k) = 0
for every i Φ h and for every p e Σ, where h = ht Σ.

PROOF. If SΣ is Cohen-Macaulay, there exists an integer d and
H\K') = 0 for every i Φ d. By Proposition 3.1, this is equivalent to
H*(Σ(p), k) = 0 for every peΣ and every i Φ d. For an element peΣh,
we have Σ(p) = {p} and Hh(Σ(ρ), k) ~ k. Hence we have d = h. The
converse is obvious. q.e.d.

DEFINITION 3.6. We call a star closed subset Σ of Γ(π) Cohen-
Macaulay if Σ satisfies the condition of Corollary 3.5.

This definition depends on the fixed field k. Since C\Σ, k) =
C\Σ, Z) (g)z k, it actually depends on its characteristic (cf. Reisner [Rl,
§1, Remark 3]).

δh

COROLLARY 3.7. If Σ is Cohen-Macaulay, then Ker [Kh —> Kh+1] is a
dualizing module of the ring SΣ.

PROOF. Since Σh_λ— 0, we have Kh~x = 0 and the assertion is
obvious. q.e.d.
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PROPOSITION 3.8. The ring SΣ is Gorenstein if and only if Σ is
Cohen-Macaulay and there exists an M-graded isomorphism SΣ 2$ Hh(K*)
with h = ht Σy where the degree of the isomorphism may not be zero.

PROOF. The "if" part is obvious since K' is the dualizing complex
of the ring SΣ. Assume SΣ is Gorenstein. Then Σ is Cohen-Macaulay
and Hh(K') is a free S^-module generated by a homogeneous element by
Proposition 8 of Appendix. Thus the assertion is proved. q.e.d.

We will give a more precise condition for the Gorensteinness of the
ring SΣ in §5, which is a generalization of the results of Hochster [H2]
and Stanley [SI].

4. Proof of Proposition 3.4. We need some elementary facts on
M-graded rings and modules. We list them here without proof, since
they can be proved as in the Z-graded case or in the non-graded case.
Some of them were proved by Goto and Watanabe [GW1], [GW2].

Let A be an M-graded noetherian ring with Ao ~ k.

DEFINITION 4.1. For M-graded A-modules E, F, and for an element
m of M, we denote by Horn? (E, F) the set of A-homomorphisms of
degree m from E to F. We denote Horn,, (E, F) = φ m e j t f Horn? (E, F).

LEMMA 4.2. The natural homomorphism

Horn, (E, F) -> Hom^ (E, F)

is an isomorphism if E is an A-module of finite type.

For an M-graded A-module E, we denote E* = Homfe (E, k)9 where
k (CZAQ) is considered as an M-graded ring concentrated at OeM.

LEMMA 4.3. HomA.( , k) is an exact functor for the category of Un-
graded k-modules.

For M-graded A-module E and F, the tensor product E ®A F has the
structure of an M-graded A-module such that for homogeneous elements
xeE and y eF, we have deg (x (x) y) = deg x + deg y.

LEMMA 4.4. There exists a natural isomorphism

Horn, (E, Horn, (F, G)) -> Horn, (E (g) F, G)
A

for every pair of M-graded A-modules E, F, and for every M-graded
k-module G.

Recall that, for a ring A and for complexes E', F' of A-modules
bounded above and below, respectively, the hyperextension group
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Exti (E\ F') depends only on the quasi-isomorphism classes of E' and F\
Furthermore, if either E' is a complex of protective A-modules or F' is
a complex of injective A-modules, Extl (E\ F') is equal to the i-th
cohomology group of the complex Hom^ (E\ F'). (Cf. [RD, Ch. 1 §6].) In
order to calculate Ext^Γ (SΣ/m, K9), we replace K' by a complex /' which
is quasi-isomorphic to K' and plays the role of an injective object as far
as M-graded modules are concerned.

For a p in Σ, let Bp be the set of homogeneous elements of
SΣ\P(p)/I(Σ). Then the localization B^SΣ is an M-graded ring which can
be written as k[\JσeΣ{p)MΠ ρw Π σ1].

LEMMA 4.5. Hom.^ (-, (B^SΣ)*) is an exact functor for the category
of M-graded SΣ-modules, where (B^SΣ)* = Homfc (B^SΣ, k).

PROOF. For an M-graded Sj-module F, the S^-module

RomSΣ (F9(B^SΣy)

is equal to Homfe (F (%)l9j B^SΣ, k) by Lemma 4.4. Since the functor
O&SΣB^SΣ is exact, this lemma follows from Lemma 4.3. q.e.d.

(B^SΣ)* is an S^-module of the form k[-\Jσ&Σ{p) MΠ pv Π σ1]. Since
we see easily that πv Π ( — UσejFw M Π pv Γ\ o1) is equal to M Π ττv D p1,
there exists a natural inclusion S/P(ρ) = k[M Π τrv Π pL] ~> (B^SΣ)*. NOW

we set I* = φ^e J. (B^SΣ)* ®fc fe^ and define a coboundary map 3*: Γ —> / ί + 1

by

δί((gσ)oeΣi) — CΣlσeΣ^σ Qr/o(ΰσ))τeΣi + 1 ,

where Qr/σ: (B^Sv)* ®kka -^{B^SΣY ®kkr is the Sj-homomorphism defined
by the tensor product of the dual of the natural Sx-homomorphism
B^SΣ -> 5 7 ^ and ^r/σ. Then there is a natural inclusion Kι ^ / ί which
makes the diagram

-i + 1

commutative for every ΐ.

PROPOSITION 4.6. The sequence Γ is a complex and the homomor-
phism K' —> Γ of complexes is a quasi-isomorphism.

PROOF. Since Γ (i = 0, , r) are Λί-graded and δίfs are homomor-
phisms of degree 0, it is enough to check the assertion for m-components
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Γm and K'm —» Γm for every meM. For an m in Mf the m-component of
k[—\JσεΣ(p)MΓ\ρvΓ\σ1] is isomorphic to k if and only if p is in Σ{m) (see
Definition 2.4). Hence the m-component of /* is isomorphic to Ci(Σlm\ k).
Thus clearly Γm is isomorphic to C\Σ{m\ k), and I' is a complex. If m is
in Mf]πv, the induced homomorphism K'm-*Γm is an isomorphism by
Remark 2.5 and Proposition 3.1. If m is not in Afnπ v , K*m is the 0-
complex by Proposition 3.1. On the other hand, all the cohomology
groups of Γm vanish since Σ{m) is homologically trivial by Proposition 2.6.
Hence K'm —> Γm is a quasi-isomorphism. Thus the homomorphism K' —> 7'
is a quasi-isomorphism. q.e.d.

Let > F~2 -> F1 -^F0^ SΣ/m -^0 be an SΣ-ίree resolution of
Sv/m. We can choose this resolution in such a way that Fίys are un-
graded free Sj-modules of finite type, and the homomorphisms Fι —• Fί+1

are of degree 0. Then E x t ^ (SΣ/m, K') is equal to the i-th cohomology
group of the complex Hom^ (F\ Γ) since /' is quasi-isomorphic to K' and
F' is projective. In the double complex

ΐ T ΐ
Horn*,. (F~\ Γ) > Hom5 j (F~\ Γ) > Hom^ (F~\ Γ) >

Ί \ ί
Homs, (F~\ Γ) > HomSP (F~\ P) > HomSv (F~\ P) —-

"I "1 ' ί
HomSi, (F°, Γ) >-ΆomSs{F\P) * HomS j (F°, P) >

every column is exact in view of Lemma 4.5. Hence in one of the as-
sociated spectral sequences for the double complex, we have

HomβJ (SΣ/m, P) if p = 0

0 if p Φ 0 .

By Lemmas 4.2 and 4.4, we have

Homs, (SΣ/m, (B^SΣ)*) ~ Horn, (SΣ/m (g) S ^ ^ , k) .
SΣ

Since m Π B'1 is non-empty for p Φ π, we have SΣ/m (g)SΣ B^SΣ = 0 for
such p. By our assumption dim π = r, we have Hom^ (SΣ/m, Iq) = 0 for
q < r. Thus we have

otherwise .

Hence we conclude that
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SΣ/m if i = r

0 if i φ r .

Since Extl^ (SΣ/m, K') = i ί^Hom^ (F\ /')), we are done. q.e.d.

5. The condition for the ring SΣ to be Gorenstein. Recall that
for a non-empty star closed subset Σ of Γ(π), we denote ht2 r =
min{dimσ σeΣ} and it is equal to the codimension of YΣ in the torus
embedding Xπ or the height of the ideal J(Σ) of k[M Π πv].

LEMMA 5.1. Let rr be the dimension of π and let Σ be a non-empty
star closed subset of Γ(π). Then if ht Σ < r', the cohomology group
Hr'(Σ, k) is equal to zero.

PROOF. Σt is non-empty for every i with ht Σ ^ i ^ r\ Hence
2r,_1 is non-empty and the homomorphism Cr'~~\Σ,k) ->Cr'(Σ,k) — kκ is
surjective. q.e.d.

LEMMA 5.2. Let 2", 2 " 6e non-empty star closed subsets of Γ(π).
If h t 2 ' and t h 2 " are less than r' and if Σ'ΠΣ" = {π} then Hr'~\Σ' U 2",
fc)^0.

PROOF. In the Mayer-Vietoris exact sequence

Hr'-\Σ' U 2", fc) -> H'\{π}9 fc) — £P'(r, fc) 0 H'XΣ", k)

we have Hr\{π}, fc) = fcff and Hr'(Σ', fc) = ίί r ' (2", fc) = 0 by Lemma 5.1.
Hence we have Hr'-\Σ' U 2", fc) Φ 0. q.e.d.

Let 2 be a Cohen-Macaulay subset of Γ(π) with h = ht 2. Then 2Λ

is the set of the minimal faces of 2, i.e., 2 is the star closure of Σh.
Indeed, for peΣ with dimp>h, we have Hύimp(Σ(ρ), fc) = 0. Hence
j£(̂ >) 9t {̂ } and p is not minimal in Σ.

PROPOSITION 5.3. Let Σ be Cohen-Macaulay with h = htΣ. If non-
empty subsets Σ' and Σ" of Σ are the star closures of their subsets Σr

h

and Σ'h' with Σh = Σ'h U Σ'h' and Σ'k Π Σ'h' = 0, then Σ'h+ί and Σ'h'+ί in-
tersect.

PROOF. Let p be an element of the minimal dimension in 2" Π 2".
Then Σ\p) Π Σ"(p) is equal to {p} and Σ(ρ) = Σ\p) U Σ'\p) is a Cohen-
Macaulay subset of Γ(p). Hence by Lemma 5.2, we have Hdimp~\Σ(p),
k) Φ 0. Since ht Σ(p) = h, the dimension of p is equal to h + 1. q.e.d.

PROPOSITION 5.4. Let Σ be a Cohen-Macaulay subset of Γ(π) with
ht 2 = h < dim π. Assume Hh(Σ(p), fc) ̂  fc /or ever?/ p e Σh+1. Then for
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any non-zero cocycle a = (aσ)σeΣfι in Ch(Σ, k), the component aσekσ is not
zero for every σ in Σh.

PROOF. Set Σ'h = {σ e Σh; aσ = 0} and Σΐ = {σe Σh; aa Φ 0}, and let Σf

and Σ" be their star closures, respectively. If the proposition were
false, then 2" and Σ" would clearly satisfy the condition of Proposition
5.3. Hence there exist p e Σh+1, σr e Σ'h and σ" e Σ" with p > σ', σ". Our
assumption Hh(Σ(ρ), k) ~k implies Σ{ρ) = {p, σ', σ"). Hence the ^-com-
ponent of δh(a) = (ΣσeΣh,r>σQτ/σ(aσ))τeΣh+ί is equal to qP/a>>{<ιa») Φ 0. This

is impossible since a is a cocycle. q.e.d.

COROLLARY 5.5. Under the same condition as in Proposition 5.4,
Hh(Σ, k) is at most 1-dίmensional.

PROOF. Let a and 6 be two non-zero cocycles of Ch(Σ, k). Then the
above proposition implies 6 — ta — 0 for some t in k. Thus a and b are
linearly dependent. q.e.d.

COROLLARY 5.6. In addition to the condition of Proposition 5.4,
assume Hh(Σ, k) ~ k. Then, for every τ in Σ, the induced homo-
morphism

is an isomorphism.

PROOF. Since Ch~ι(Σ, k) = 0 (resp. Ch~\Σ(τ), k) = 0), the cohomology
group H\Σ, k) (resp. H\Σ(τ\ k)) is a submodule of C\Σ, k) (resp.
Ch(Σ(τ), k)). Hence by Proposition 5.4, the kernel of this homomorphism
is 0. Since Hh(Σ(τ), k) is at most one-dimensional, we are done, q.e.d.

DEFINITION 5.7. A non-empty star closed subset Σ of Γ(π) with
ht Σ = h is said to be spherical if

for every ηeΣ. We say Σ is semispherical if there exists |O 6 J? such
that Σ(p) contains all the minimal elements of Σ and if Σ(p) is spherical
in Γ{p).

In view of Corollaries 5.5 and 5.6, Σ is spherical if and only if Σ is
Cohen-Macaulay, Hh(Σ(p), k) ~ k for every p e Σh+1, and if Hh(Σ, k) Φ 0.

PROPOSITION 5.8. If a star closed subset Σ c Γ(π) is semispherical
with respect to peΣ, then H\Σ(η), k) = 0 for every i and for every
Ύ] e Σ\Σ(p). In particular, J? is Cohen-Macaulay and p is unique for Σ.
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PROOF. Since Σ is semispherical with respect to p, the intersection

p Γl V ί s i n Σt a n ( * Γ{η) -Ώ Σ(ή) is semispherical with respect to ρΓ\η.

Hence it is sufficient to prove the proposition in the case η = π and

p φ π. Consider the double complex A" defined by

— \VλeΣi,σeΣ(p)j,λ>σKλγyKσ J

where the coboundary maps are defined naturally by qτ/p'a in §1. Fix
an isomorphism k^>H

h(Σ(p), k) for h = htΣ. Then since Aifj — (&χeΣtkχ(2)
Cj(Σ(p Π λ), k), the composite homomorphism

k ~ H\Σ(p), k) ~ H\Σ{p n λ), k)

induces an exact sequence

0 -+ C\Σ9 k) ̂ > A''h -• A^h+1 ~> - -

for every i. Since, obviously, φ/s are commutative with the coboundary
maps, we get a homomorphism C\Σ> k) —• A'h of complexes. Hence Έl'q

of the spectral sequence for the double complex A" is as follows.

>E,., ~ \HP(Σ> k) i f q = h

(θ if q Φ h .

On the other hand, A'j is isomorphic to φαe^).,- C'({λ e l ; λ > σ1}, fc). Since
21 is star closed, { λ 6 l ' ; λ > ( ; } is in bijective correspondence with Γ(π{σ)),
and hence by the remark before Definition 2.4, {λel 7; λ > σ) is homologi-
cally trivial unless σ = π. Thus we know "El*q — 0 for every pair (p, q).
Hence by the general theory of the spectral sequences, we have
HP(Σ, k) = 0 for every p. q.e.d.

For a face σ of π, we denote by rel. int (7ΓV Π 0"1) the relative in-
terior of the cone πv Π σL, i.e., its interior in M{R . Let a; be a point
of τrv. Then a? is contained in rel. int (τrv (Ί σ1) if and only if σ — π Π a?1.
Hence ττv is decomposed into the disjoint union Ilσer^) rel. int (π v Π ^ 1 ) .

THEOREM 5.9. Let Σ be a star closed subset of Γ(π). Then SΣ is
Gorenstein if and only if Σ is semispherical with respect to an element
pe Σ and if there exists moe M with

M Π ( I I rel. int (ττv n O ) = m0 + M Π ( U (^ Π σ

PROOF. Assume SΣ is Gorenstein. Then by Proposition 3.8, Hh(K')
is an ikf-graded free Sj-module of rank one generated by a homogeneous
element u. Let m0 be the degree of u. Clearly m0 is in M Π πv- Let
u = (aσ)σe'he(DσeΣhk[Mf) πv Π σL]®kka. Assume av = 0 for an 97 in Σh.
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Take an m i n l f l rel, int (πv Π ηL). Then m + m0 is not in MΠ πy Π oL

for every tfel^ except for η. Hence e(m)u = (e(m)aσ)σeΣh = 0. This is
a contradiction, since n is a generator of the free module Hh(K'). Hence
aσ Φ 0 for every d 6 Σh. In particular m0 e M Π ττv f] ̂ ± for every σ eΣh

and |0 = π n Wo1 contains every σ in 2\. Since Σ is Cohen-Macaulay, J£Λ

is the set of minimal faces of Σ. We have to show that Σ(p) is spheri-
cal in Γ(p). It is Cohen-Macaulay by Corollary 3.5 and Proposition 3.8.
Let τ be an element of Σ(p). Take an element m^'m Mf\ (rel. int (ττv (Ί r 1 )).
Then, since πv Π τ 1 Z) ττv Π pL, the element m2 = m0 + mi is also in Λf Π
(rel. int (ττv n T 1 )) . Then H\Ki2) = (S^)W 2 = ^ ( m j ^ - fc. Since i ^ -
C\Σ(τ), k) by Proposition 3.1, we have Hh(Σ(τ), k) ̂  ifc. Hence Σ(p) is
spherical in JΓ(|O), and Σ is semispherical with respect to p. By Proposi-
tions 3.1 and 5.8, we have

{m e M; H\K')m Φ 0} = M Π f II rel. int (ττv Π ί/1

Since Hh(K') — SΣu, the equality of the theorem holds. Conversely,
assume Σ is semispherical with respect to p e Σ and satisfies the equality
of the theorem for an m0 6 M. Since <m0, α> ̂  <m, α> for every a in π
and for every m in m0 + If Π (Uσe^(^ v Π o 1)), the cone π Π < is the
maximal element ^ of I'dt)). Let u be a non-zero homogeneous element
of Hh(K') of degree m0. We have to show that Hh{K') = S ^ . Let m
be an element of Uσej (M Π ττv Π ̂ x ) . Then by the equality in the
theorem, m0 + m is in rel. int (πv n τL) for an element τ 61'do). By
Proposition 3.1, we get a commutative diagram

H\Σ{p\k) >H\Σ{τ\k)

I ?

Hh(KmQ) > Hh(KmQ+m)

u i > e(m)u .

Since Σ(p) is spherical in Γ(ρ), Hh(Σ(p)y k) and H\Σ(τ), k) are 1-dimen-
sional and e(m)u is not zero by Corollaries 5.5 and 5.6. Hence Hh(K^Q+m) =
ke(m)u. For meMf)πv which is not in m0 + MΠ (Uσej(^v ΓΊ 0"1)), the
face τ = TΓ Π m 1 is not in Σ{p) by the equality in the theorem. Hence
Hh{K'm) ~ Hh(Σ(τ)y k) is equal to zero by Proposition 5.8. Thus we have
Hh(K') — MUαei-MΠ π v Π oL\u = SΣu, and SΣ is Gorenstein by Proposi-
tion 3.8. q.e.d

The following theorem implies that SΣ is Gorenstein if Σ is
spherical.
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THEOREM 5.10. A star closed subset ΣaΓ(π) is spherical if and
only if SΣ is Gorenstein and π is the unique element of Γ(π) which
contains all the minimal faces of Σ.

PROOF. If SΣ is Gorenstein, then by Theorem 5.9, Σ is semispheri-
cal with respect to an element peΣ. Since p must contain all the
minimal faces of Σ, we necessary have p — π and we are done. Assume
Σ is spherical. Since we always have

Π rel. int (πv n ηL) = U ( II rel. int (πv n σ1)) = U (πv Π V1) ,
ηeΣ yeΣ \αe2'(i?) / η e Σ

the equality of Theorem 5.9 holds for m0 = 0. Hence SΣ is Gorenstein.
If Σ{p) contains Σh (h = ht Σ) for an element p e Σ, then Σ is semi-
spherical with respect to p. Hence we have p = π by Proposition 5.8.

q.e.d.

COROLLARY 5.11 (Stanley [SI]). The ring k[M Π πv] is Gorenstein if
and only if M T) (int πw) — m0 + M Π π v for an element m0 e M.

PROOF. This corollary is an easy consequence of Theorem 5.9, since
k[M Π π v] = SΣ for Σ = Γ{π) and Γ(π) is semispherical with respect to
p - {0}. q.e.d.

Now, consider the case π is non-singular, i.e., for a Z-basis {alf , ar}
of N and for an integer 0 <̂  c? ̂  r, we have π = RQa1 + + Road. Let
{mj, , mr) dM be the basis of ikί dual to {au , αr}.

LEMMA 5.12. /-̂  £/&e above situation, let Σ be a star closed subset
of Γ(π). If an element p = Roa1 + + RQap of Σ, for a p with 0 ^
p <̂  d, contains all the minimal faces of Σ. Then we have

M n ( II rel. int (ττv n yL)) = Σ m£ + I n ( U (^v Π ̂ ) ) .

PROOF. Let σ be a minimal face of Σ. Then we have

UveΣw,y>o rel. int (ττv Π ηL) = {xeπv f] σL; x1 Π π e Σ(p)} .

Then we see easily that

UvBΣiP),v>a M Π (rel. in t (ττv n ηL)) = Σ> m> + M Π (πv Π σ1) .
i = P + l

The lemma is proved by taking the union of these equalities for all the
minimal faces σ of Σ, since for every η e Σ there exists a minimal face
σ e Σ with 77 > σ and 7ΓV Π rjL a πv Π cr1. q.e.d.

The following proposition is a consequence of Theorem 5.9 and
Lemma 5.12.
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PROPOSITION 5.13. // π is non-singular, then SΣ is Gorenstein if
and only if Σ is semispherίcal.

The assertion of this proposition is stated in [H2, Added in proof],

6. Applications. In this section we give some applications of the
results in §3.

For a star closed subset Σ of Γ(π), we denote by KΣ the dualizing
complex K' which we constructed for Σ in §3.

Let I7 be a star closed subset of Γ(π)f and let q be an integer with
ht Σ ^ q £ r' = dim π. We denote Σίg = {σ e Σ; dim σ ^ q}. Clearly Σ[q

is a star closed subset of Γ(π).

PROPOSITION 6.1. If Σ is Cohen-Macaulay, then Σίg is also a Cohen-
Macaulay subset of Γ(π) of height q.

PROOF. By the definition of KΣ, it is clear that

κ Σ ί q = { > o -> κ \ -* KΫX -> > κr

Σ -* o - > . . o .
Hence we have H^KΣ^) = 0 for every i Φ q. q.e.d.

Recall that π is an arbitrary strongly convex rational polyhedral cone.
Hence k[M Π πv] is a normal semigroup ring.

PROPOSITION 6.2. (1) The normal semigroup ring k[Mf)πw] is
Cohen-Macaulay. (2) The ideal fc[MΠ(intτrv)] is a dualizing module of
the ring k[M Π π v ] .

PROOF. (1) We apply Corollary 3.5 to Σ = Γ(ττ). Then, for any
peΓ(π), the star open subset Σ(p) is equal to Γ(|θ), and this is homologi-
cally trivial by the remark after Proposition 2.3 if p Φ {0}. It is clear
that Σ satisfies the condition of Corollary 3.5 with h = 0. Thus SΣ —
k[Mf) τrv] is Cohen-Macaulay. (2) Since ht i ; = 0 and KΣ = k[MΠπw] ®k

k{0], this ideal is isomorphic to Ker [KΣ^>KΣ] = H°(KΣ). q.e.d.

(1) of this proposition was first proved by Hochster [HI], and (2) is
stated in [TE, Ch. 1, Theorems 9 and 14].

COROLLARY 6.3. For every integer q with 0 <; q ^ dim π, the star
closed subset Σ — Γ(π\q is Cohen-Macaulay.

PROOF. This follows from Propositions 6.1 and 6.2.

This corollary means that the union of orbits of codimension ^q of
an affine torus embedding Xπ is Cohen-Macaulay for every q with 0 ^ q ^
dim 7Γ. For q = 1, we have the following better result.
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PROPOSITION 6.4. If Σ = Γ(π) t l (=Γ(τr)\{{0}}), then Σ is spherical.
In particular, the ring SΣ is Gorenstein.

PROOF. For a p in Σ, the subset Σ(ρ) is equal to Γ(ρ)\{{0}}. Since
Γ(p) is homologically trivial by the remark after Proposition 2.3, we
have

Hence 21 is spherical, and SΣ is Gorenstein by Theorem 5.10. q.e.d.

REMARK 6.5. This proposition means that for any torus embedding
X with the torus T, the reduced subscheme X\T is Gorenstein. Further-
more, since a noetherian local ring R is Gorenstein if and only if its
completion R is, it follows that the boundary of any toroidal embedding
is Gorenstein. For the definition of toroidal embeddings, see [TE, Ch.
2, §1].

7. Gorenstein semigroup rings. In this section, we aim at classify-
ing Gorenstein semigroup rings. In §7 and §8, by a semigroup ring,
we always mean the ring k[M Π πv] for a strongly convex rational poly-
hedral cone π dNR of dimension r = rank N. Hence this is equivalent
to classifying Gorenstein affine ΪVembeddings with a ΪVinvariant point,
where TN is the torus Spec (k[M]). For the Gorensteinness of semigroup
rings, Stanley obtained the fundamental result which we generalized in
§5. The translation of Stanley's characterization in terms of πv into
the dual condition in terms of π enables us to classify Gorenstein semi-
group rings.

PROPOSITION 7.1 (Stanley [SI]). The semigroup ring k[MΓιπw] is
Gorenstein if and only if there exists an element mπ in M with m~ +
M f| π v — M Π (intττv). Furthermore, such an mπ is unique for π.

PROOF. In view of Corollary 5.11, it is sufficient to prove the uni-
queness of mz under the condition dim π = r. If two elements mπ and
m' in M have the property mπ + M Γϊ πv = m' + M f] πv, then we have
mπ — m'π e M f] (τrv Π ( — πv)). Since dim π = r, the intersection πv π
( — τrv) = 7Γ1 is equal to {0}. Hence we have mπ = m'.

DEFINITION 7.2. An element m in M is said to be primitive if m Φ 0
and Zm = M f] Rm. An affine hyperplane E of NR is primitive if E —
{aeNR; (m, a) = 1} for a primitive element m in M.
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Let & be the set of the pairs {E, P) of a primitive hyperplane E
in NR and a poly tope P ( = the convex hull of a finite set of points) of
dimension r — 1 in E with vertices in N ΓΊ E.

If the semigroup ring k[M Π πv] is Gorenstein, then obviously the
element mπ in Proposition 7.1 is primitive. We set Eπ = {mr = 1} =
{a e NR; <mΓ, α> = 1}. Then Pπ = Eπ Π π is an (r — l)-dimensional poly-
tope, since mπ is in the interior of ττv.

PROPOSITION 7.3. In the above situation, every vertex of the poly-
tope Pπ is in N Π E~, i.e., {Eπ, Pr) is an element of %?.

PROOF. Let a be a vertex of Pπ. Then a is the intersection point
of a 1-dimensional face 7 of π and Eπ. Let b be the element of N with
Zoδ = JV Π 7. It is sufficient to show that b — a. The number q — (mπ, b)
is a positive integer because m* is in M Π (intττv). Consider the hyper-
plane {5 = 1} = {x e MR; (X, b) = 1} in MR. Then the intersection {6 = 1} Π
(intττv) contains mπ/q + πv π 7 1. Since 7ΓV Π 7 1 is an (?• — l)-dimensional
convex cone in {6 = 0}, its parallel translation mπ/q + πv Π 7 1 c {b = 1}
contains an element of ikfΠ{& = l}. Hence there exists an meΛf in
{6 = 1} Π (int 7ΓV). Since m e M Π (int ττv) = mr + AT Π ττv, we have 1 =
(m, b) ^ <mff, δ> = q > 0. Hence the integer g is equal to 1, and b is
the intersection point of 7 and Eπ. q.e.d.

By the definition of Pπ, it is clear that π = R0Pπ. Hence this pro-
position shows that if k[M Π ττv] is a Gorenstein semigroup ring, then
π — R0P for an element {E, P) in 2 .̂ The following proposition shows
that the converse is true.

PROPOSITION 7.4. Let {E, P} be an arbitrary element of &. If we
set π = RQP, then k[M f] πv] is Gorenstein and {E, P) = {Eπ, Pπ}.

PROOF. Let {alf •• ,αβ} be the set of the vertices of the polytope
P, and let m0 be the primitive element of M with E = {m0 = 1}. Then
τrv = {x eMR; (x, â > ^ 0, i = 1, , s}, and <m0, α̂ > = 1 for every i =
1, , s. Hence m0 is in int π v , and we have m0 + M Γ\πv dM Γ\ (int π v ).
Let m be an element of M Γ\ (intττv). Then <m, a^ is a positive integer
for every i, hence we have m — m0 e M Π τrv. Thus m0 + Jlf Π ττv = M Π
(intτz:v), and k[MΠπv] is Gorenstein by Proposition 7.1. By the uni-
queness of mπ, we have m0 — mπ, E = Eπ and P = Pπ. q.e.d.

By Propositions 7.3 and 7.4, we have the following.

THEOREM 7.5. The semigroup ring k[Mf]^] is Gorenstein if and
only if π is equal to R0P for an {E, P) in &. Furthermore, such an
element [E, P} in & is unique for π.
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Let GLz(N) be the automorphism group of the free Z-module N.
Then each element g in GLZ(N) induces an automorphism g*:M~>M of
the dual Z-module M of N.

If there exists an isomorphism a: M f] π? ~>M Π ic* of semigroups,
then a is extended to an automorphism ά of M. Hence there exists
g e GLz(N) with g* — a. Clearly we have g(π2) = πx. Hence there exists
a natural one-to-one correspondence between the set of isomorphism
classes of Gorenstein semigroup rings and the quotient of Ŝ  by the
following equivalence relation: {E, P) ~ {E\ P'} if and only if there exists
g e GLZ(N) with g(E) = E' and g(P) = P'. Note that, by isomorphisms
of semigroup rings, we always mean those induced by isomorphisms of
semigroups.

We identify N with Zr by a fixed isomorphism. We also identify
M with {ZrY by the dual isomorphism. Let m0 = (1, 0, , 0) e(Z r ) v .
Then Eo — {m0 = 1} = {(1, c2, , cr); c29 , cr 6 R} is a primitive hyper-
plane. We identify Eo with Rrl by the bijection defined by (1, c2, , cr) \-+

DEFINITION 7.6. An affine transformation /: iJr~x —• Rrl is Z-rational
if it sends Z7""1 onto itself. Two polytopes P, P ' in Rr~λ with vertices
in Z*"1 are equivalent if there exists a Z-rational affine transformation
/: Rr λ -+ Rr ' with /(P) - P\

It is clear that, for every primitive hyperplane E, there exists g in
GLz(N) with #(2?) = 2£0, and that for every Z-rational affine transforma-
tion /: Rrl -• Rr~\ there exists Λ 6 GLZ(N) with fe(JE0) = Eo and Λ]^ = /.
Hence the quotient of S? by GLZ(N) is in natural one-to-one cor-
respondence with the set of equivalence classes of (?• — l)-dimensional
polytopes in Rrl with vertices in Zr~\ Thus we get the following by
Theorem 7.5.

THEOREM 7.7. Let ^ 0 be the set of (r — ϊ)-dimensional polytopes in
Rrl with vertices in Zr~x. For a polytope P in &0 with vertices
{al9 , aq}f let π be the convex cone in Rr = NR generated by {(1, aλ)9 ,
(1, aq)}. Then k[M Π τrv] is a Gorenstein semigroup ring. Conversely,
every Gorenstein semigroup ring is isomorphic to such a semigroup
ring for a polytope P in Sf0. Let k[M Π ττiv] and k[M Π π^] be the
Gorenstein semigroup rings associated to polytopes P1 and P2 in $f0,
respectively. Then they are isomorphic if and only if Px and P2 are
equivalent, i.e., there exists a Z-rational affine transformation f: Rr~ι —•
Rr " with f(Pd = P2.

EXAMPLE 7.8. When r = 2, then 2 0̂ is the set of intervals [α, 6]
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with a, b eZ and a < b. By the above theorem, two intervals [a19 6J
and [α2, δ2] define isomorphic semigroup rings if and only if their lengths
b1 — ax and 62 — α2 are equal. For the interval [0, n] with a positive
integer n, the associated cone π in R2 is generated by (1, 0) and (1, n).
Hence the dual cone πv is {(xlf x2) eRV2; xt ^ 0, xx + nx2 ^ 0}. (See Figure
1.) It is easy to see that the semigroup M Π ττv = (Z2)v Π πv is generated

o

FIGURE 1. The region of πv when n = 3

by three elements (0, 1), (w, —1) and (1, 0) if n ^ 2, and it is generated
by two elements (0,1) and (1,-1) if n = 1. Set α? = e((0, 1)), 2/ =
e((w, -1)) and z = e((l, 0)), with the notation in §3. Then k[M Π πv] is
equal to Jc[x, y] if n = 1. It is equal to &[#, 2/, «]/(«!/ — zn) if ^ ^ 2. Thus
every 2-dimensional Gorenstein semigroup ring is isomorphic to one of
these. In particular, it is a complete intersection. However, in dimen-
sion 3, most of Gorenstein semigroup rings are not complete intersections,
as we see in the next section.

8. Complete intersections of dimension 3. According to Theorem
7.7, 3-dimensional Gorenstein semigroup rings are classified by convex
polygons in R2 with vertices in Z2 modulo Z-rational affine transforma-
tions. In this section, we prove a theorem (Theorem 8.1) which de-
termines 3-dimensional semigroup rings which are complete intersections.

Recall that a noetherian local ring R is a complete intersection if
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there exists a regular local ring R' such that R ~ R'/(fu , fq) for a set
of elements {fl9 , / J c i 2 ' with q = dimi?' — dimR. A noetherian ring
A is said to be a local complete intersection if, for every prime ideal p
of A, the localization Ap is a complete intersection. We say a ring A
of finite type over a field & is a global complete intersection if A ~
k[xlf - , a?J/(/i, , fq) for a positive integer n and for some elements
/if * φ> Λ 6 M̂ i> , #J with q — n — dim A.

It is well-known that if a noetherian ring A is a local complete
intersection, then A is Gorenstein.

THEOREM 8.1. Let Pbe a convex polygon in R2 with vertices in Z2.
Then the associated 3-dimensional semigroup ring S is a local complete
intersection if and only if P is equivalent to the polygon Pa,b,e for some
a,b,ceZ with (1) a > 0 and b, c ^ 0, (2) b Φ 0 or c Φ 0 and (3) c ^ a
ifb = O, where Pa,b,c is the convex hull of the set {(0, 0), (a, 0), (0, c + bά),
{a, c)}. Furthermore, if P is equivalent to Pa,b,c, then S is isomorphic
to k[x, y, z, w, u]/(xz — wbu% yw — ua). In particular, S is a global com-
plete intersection. (See Figure 2.)

FIGURE 2. The polygon Pa,b,c

REMARK 8.2. In the above theorem, P β f 6 l β is a triangle if c = 0 and
a quadrangle if c > 0. By conditions (1), (2) and (3), Pa,btC is not
equivalent to Pa>,b',C' if (α, &, c) Φ (α', b\ cf).
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The rest of this section is devoted to the proof of Theorem 8.1.

PROPOSITION 8.3. Let (22, m) be a noetherian local ring, and let
d = dimΛ/m(m/m2). If R is a complete intersection, then the inequality

Id + 1\
d — dim R >̂ I — dimΛ/w(m2/m3)

\ 2 /

holds.

PROOF. Let (22', n) be a regular local ring with R ~ R'/(fl9 , fq)
and q = dim R' — dim 22. If /< is not in n2 for an i, then R'/(ft) is a
regular local ring, and we can replace R' by R'/(fi). Hence we may-
assume fi en 2 for every ΐ = 1, , q. Then it/n2 ~ m/m2 and m2/m3 ~
n2/(n3 + (flf -,/,)). Thus we have

d i m ^ (m2/m3) ^ d i m ^ (π2/n3) — q

- (d - dim 22) .

q.e.d.

COROLLARY 8.4. Le£ (22, m) be a noetherian local ring, and let
{xlf , xd} be a minimal set of generators of the maximal ideal m. If
R is a complete intersection, then the number of pairs (i, j) with
1 ^ i ^ 3 ^ d and xtXj = 0 is at most d — dim 22.

PROOF. Since {xlt •••,&*} is a minimal set of generators of m, we
have dim /̂,,, (tπ/nt2) = d and m2 is generated by the set {XiXs; XiXj Φ 0,
1 ^ i ^ j ίί d). The assertion follows from the inequality of Proposi-
tion 8.3.

DEFINITION 8.5. For a strongly convex rational polyhedral cone π
and for a face σ of π, a subset A of M Π π v Π tf1 is said to be a set of
generators of the semigroup M Π π v Π σ1 if Λf n ττv Π oL = Σ^e^ ^ ,
where we understand ^ΣJX&AZQX = {0} if A = 0 .

When dim π = r = rank JV, we denote by Aπ,σ the set of irreducible
elements in Mf] πv Π σ 1, where we say an element x in Λf Π ττv Π cr1 is
reducible if either a? = 0 or there exist non-zero elements xlf x2 e M (Ί
τrv Π σ 1 with x = α?i + ίc2 I t ί s e a s y to s e e that Aff,r = Aff,σ Π τ1 for any
faces σ, r of 7Γ with τ > σ.

LEMMA 8.6. If dim π — r, then Aπ>σ is a set of generators of
Mf)πv ΓiG^t and every set of generators of Λ f Π ^ Π ^ 1 includes AKt0,
i.e., Aπyσ is the smallest set of generators of M fΊ π v Π 01.
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PROOF. Since dimπ = r, we can take an element a in N f] (intπ).
Then (x, a) is a positive integer for every x in ikf(Ίπv\{0}. Hence if
x Φ 0 in M Π πv Π oL is reducible, then x = a?' + &" with a?', a?" e Λf Π
π v Π 0"1 and <a?', α>, (x", a) < <cc, α>. By induction on the number (x, α>,
we know that x is a finite sum of irreducible elements. Hence Aπy0 is
a set of generators. The rest of the assertion is clear since every
irreducible element is contained in any set of generators. q.e.d.

Let P be a convex n-gon (n ^ 3) with vertices vl9 , vn in Z2 in

clockwise order and sides sί = vxv29 , s%-! = vΛ_!i;Λ and sw = t ; ^ . (See

Figure 3.)

Then the associated cone π in NR = JS3 is generated by n elements
(1, Vj)f •••, (1, vn) in Z\ Let 7ί and σέ be the faces of π generated by
(1, Vi) and {1} x s^ci? 3, respectively, for every i — 1, •••, w. Then
{7i> » 7»} a n ( i {̂ i, , »̂} are the set of 1- and 2-dimensional faces of
7Γ, respectively. Let xteM= (2Γ3)V be the generator of the semigroup
M η af — M Π πv Π eτ< which is isomorphic to Zo. The two dimensional
cone y* = πv Π 7iL has 1-dimensional faces σf_λ and σf for every i = 1, , n
with the convention σ* = cr*. Hence the smallest set of generators Azj.
of the semigroup M Π 7t* contains α?^! and xt with the convention x0 = xn.

Let iiff,r< = ί»<-i, a* 2/i,i> *' •» 2/i.ffJ for every i = 1, , n.

PROPOSITION 8.7. The set G = {(1, 0, 0), xl9 , a?., i/<fi; 1 ^ i ^ w,
ί ^ j ^ Qz) is a set of generators of Mnπv, and the smallest set of
generators of Mf\πy is of the form AπAQ] — G or G\{(1, 0, 0)}.

PROOF. By Propositions 7.1 and 7.4, we have M Π (int πw) = (1, 0, 0) +
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MΠπv. Hence any x Φ (1, 0, 0) in M Π (int πv) is reducible. On the
other hand, any x in M Π (πv\int πv) is in M Π πv Π 7*- for an ΐ, and we
know AπA0) Π Ti1 = Λrfr,. Hence AXt{0) = G if (1, 0, 0) is irreducible and
4,,ϊ0> - <?\{(1, 0, 0)} if not. q.e.d.

The ideal m of k[Mp\πv] generated by {e(m)}meG is a maximal ideal
of k[M Πτr v].

LEMMA 8.8. // ίAe localization k[M f] πv]m is a complete intersection,
then the following inequality holds.

( * ) n(n - 3)/2 + (n - 2 ) ( Σ ?<) + Σ ftft' ^ " + Σ ft ~ 2 .
\< = 1 / ί<i' i=l

PROOF. The left hand side of this inequality is the number of pairs
{m, m'} c G\{(1, 0, 0)} with m + mf e M Π (int τrv). Let i? be the quotient
of k[M Π π v ] m by the ideal generated by e((l, 0, 0)). Then clearly R is
also a complete intersection, and the maximal ideal m of i2 has a minimal
set of generators {e(m)}meG\{{liOiQ)}9 where e(m) is the image of e{m) 6
k[Mf]πv] in i2. Since Jlίfl ( intπ v ) = (1, 0, 0) + ΛfΠ ττv, the condition
m + m' e M Π (int ττv) implies e{m)e(mf) = 0. Hence by Corollary 8.4, we
have n(n - 3)/2 + (w - 2)(Σ?=i ft) + Σ « i ' ftft' ^ #(^\{(1, 0, 0)}) - dim R =
^ + ΣΓ=ift - 2 q.e.d.

PROPOSITION 8.9. // k[M Π π v ] m is α complete intersection, then by
renumbering vl9 •••, vn, i / necessary, the possibilities are reduced to the
following three cases.

( 1 ) n = 4 ami gt = 0, i = 1, , 4.
( 2) n = 3, #! = q2 = 0 a^d g3 ^ 0.
( 3) % = 3, gx = 0 awd q2 = q3 = 1.

PROOF. If w ^ 5, then w(w - 3)/2 > n - 2 and (w - 2)(Σ?=i ft) ^
Σ?=i ft- Hence the inequality (*) does not hold. If n = 4, then (*)
becomes 2 + 2(Σί=ift) + Σi<i' ftft' ^ 2 + Σί=ift Clearly, this inequality
holds if and only if qt = 0 for every i = 1, , 4. If n = 3, then
Σi=i ft + Σi<t' ftQ'i' ^ Σϊ=i ft + l Hence we have Σi<i' ?ift' ^ 1, and only
the cases (2) and (3) are possible. q.e.d.

For an %-gon P with vertices vl9 , vn9 say clockwise, in this order
in Z2, we denote by ut the element in Z2 with R0(vί+1 — vt) Γ\ Z2 = ZQui

for every i = 1, , w with the convention t;w+1 = v1# (See Figure 4.)
For a vertex vt of an ^-gon P, we denote by CP,Vi the cone in R2

generated by P — vt. Obviously, CPyV. is the cone generated by two
elements ut and — Ui_x with the convention u0 = un. Hence this is a
strongly convex rational polyhedral cone in R2.
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' "'-1

Vi ^ Vi-l

FIGURE 4

PROPOSITION 8.10. The semigroups (Z2)v ϊλCy

PtV. and Mf}jΐ are
isomorphic.

PROOF. Recall that yt is a 1-dimensional face of π generated by
(1, Vi). Hence if we define a homomorphism φ: N->Z2 by φ(au α2, α8) =
(α2 — axv

{i\ α3 — aM2))f where vt = (t;|1}, vi2)), then ^ induces an isomorphism
N™ ~>Z2 and π™ 2^ CP>H. (For the definitions of Nl7i) and π™, see §1.)
Hence ilί ( r i ) and (Z 2 ) v are naturally isomorphic. Since it Mln) Π (ττ(r ί ))v =

•v Π Ίi by Proposition 1.3, we are done. q.e.d.

Since the semigroup ring k[M Π Ύ*] is generated over k by qi + 2
elements, ^ = 0 implies &[(Z2)V Γl Cp,w<] = &[x, y] and ?< = 1 implies
&[(Z2)V Π CP v.] — yfc[a?, y, z]/(xy — £w) for an integer n ^ 2 as we saw in
Example 7.8.

LEMMA 8.11. // qt — 0, then the area of the parallelogram with
sides 0{ — ut^ and Out is equal to 1. If qt — 1, then the area of the
parallelogram is an integer n ^ 2, and the point (w^ + u^/n is in Z2.

PROOF. Since k[{Z2Y n Cp n] is Gorenstein as above, there exists,
by Theorem 7.7, a linear transformation /; ϋί2 -> R2 with f(Z2) = Z 2 which
sends the cone CP)V. onto the cone generated by {(1, 0), (1, n)} for a posi-
tive integer n. As we saw in Example 7.8, we have qt = 0 if n = 1
and î = 1 if n ^ 2. Since the assertions are invariant under linear
transformations which send Z2 onto itself, we may assume — u^ = (1, 0)
and ^i = (1, n). Then the assertion is obvious. q.e.d.

PROOF OF THEOREM 8.1. Assume P satisfies the condition (1) of
Proposition 8.9. Then by Lemma 8.11, there exists a Z-rational afiine
transformation which sends vlf —u^ and ut to (0, 0), (1, 0) and (0, 1),
respectively. Thus we may assume vx = (0, 0), v2 — (0, ίx) and v4 — (sL, 0)
for positive integers t19 sλ. Let v3 = (s2, t2) for positive integers s2 and
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VΆ = (52, /JS)

FIGURE 5

t2. (See Figure 5.) Then since u4 = ( — 1, 0) and ^ = (0, 1), we know
that u2 = (1, d j and w3 = (cZ2, —1) for integers dlf d2 by Lemma 8.11 for
i = 2 and 4. If i = 3 in Lemma 8.11, we have 1 — djd2 = 1. Thus we
have dx = 0 or d2 = 0, and ί2 = tx if d1 = 0 and s2 = βx if d2 = 0. In both
cases P is equivalent to Pa,b,c for integers α, 6, c with α, c > 0 and 6 ^ 0 .
Assume P satisfies the condition (2) or (3) of Proposition 8.9. Similarly
as in (1), we may assume v1 = (0, 0), v2 = (0, s) and vs = (α, 0) for posi-

FIGURE 6
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tive integers s, a. (See Figure 6.) Then we have uz = (—1, 0), uλ — (0, 1)
and u2 = (α', — s') = (a/d, —s/d), where d is the greatest common divisor
of s and a. Now assume P satisfies (2). Then, by Lemma 8.11 for i = 2,
we have α' = 1. Thus P is equivalent to Payb}0 for 6 — s '>0. If P satisfies
the condition (3), then by Lemma 8.11, we have α', s' ^ 2, (ux + u2)/a' =
(1, - ( β ' - l)/α') 6 Z 2 and (u2 + u3)/s' = ((α' - l)/s', - 1 ) e Z 2 . Hence (β' - l)/α'
and (α'—l)/s' are integers. This is impossible since 0<(s ' — l)(α'—l)/αV<l.
Hence the case (3) does not occur. Thus we know that P is equivalent to
Pa,b,c for integers α, δ, c with α > 0, 6, c Ξ> 0 and δ ^ 0 or c Φ 0 if the
associated semigroup ring fc[MΠπv] is a local complete intersection. Hence
it remains to show k[M Π π v ] — k[x9 y, z, w, u]/(xz — wbu% yw — ua) if

For the polygon Pβ,δ f β, the associated cone π is generated by
{(1, 0, 0), (1, 0, c + δα), (1, α, c), (1, α, 0)}. Hence the dual cone τrv is equal
to

{(*i, «», *8) 6 (Rψ; tx ^ 0, ίx + (c + δα)£3 ^ 0, ίx + αί2 + cί3 ^ 0, tx + αί2 ^ 0} .

We define m0, , m4 e (Z3)v(=ikf) by

m0 - (1, 0, 0) , mA = (0, 0, 1) , m2 = (0, 1, 0) ,

ra3 = (c + δα, —δ, —1) , ?w4 = (α, — 1, 0) .

It is easy to check that m* e Jkf Π ^ v for every i = 0, , 4. We need
the following.

LEMMA 8.12. Every element m in Mf]πy is expressed uniquely in
the form,

m = como + + c4m4

for non-negative integers c0, , c4 with CiC3 — 0 and c2c4 = 0.

PROOF. Let Clf , C4 be cones in ikΓΛ defined by

cλ = π v n {ί3 ^ 0} n {ί2 ^ 0}, c 2 - τrv n {ί3 ^ 0} n {t2 - δί3 ^ 0},

c 3 = τrv n {t5 ^ 0} n fe - δί3 ^ 0}, c 4 - τrv n {t3 ^ 0} n {t2 ^ 0}.

Then, clearly, πv is the union of these four cones. Since πv is defined
by four linear inequalities, each cone Ct is defined by six inequalities.
However it is easy to see that three of them are implied by the others.
Namely we have C, = {tx ^ 0} Π {t2 ^ 0} Π {t3 ^ 0}, C2 = {tx + (c + δα)ί3 ^ 0} n
{ί2 ~ δί3 ^ 0} n {t3 ^ o}, c 3 = {t, + at2 + ct3 ^ 0} n {ί2 - δί3 ^ 0} n {t3 ^ oj,
C4 = {t, + αί2 ^ 0} Π {t2 ^ 0} Π {ί3 ^ 0 } . We see easily that the cones Clf

C2, G3 and C4 are generated by {m0, mx, m j , {m0, m2, m j , {m0, m3, m4} and
{m0, m4, m j , respectively. Since, as we see easily, each of these genera-
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tors forms a basis of Λf( = (Z s) v), we have M Π Ct = ZQm0 + Zomt + ZQmi+1

for every i — 1, , 4 with the convention m5 = m^ Since any m in
If Π τrv is in M Π C* for an i, we know that m is equal to comQ + +
c4m4 for some non-negative integers c0, , c4 with c ^ = c2c4 — 0. This
5-ple of integers is unique for m since Clf , C4 form a subdivision of
τrv. q.e.d.

We define a homomorphism of Λ-algebras ψ: k[x, y, z, w, u] -> k[M Π π v ]
by ψ(x) = e(m^, ψ(y) = e(m2), φ(z) = e(m8), φ(w) = β(m4) and α/r(̂ ) = e(m0).
By Lemma 8.12, ψ> is surjective. The proof of Theorem 8.1 is complete
if we show

( #) Ker ψ = (xz — wbu% yw — ua) .

It is easy to check that I — (xz — whu% yw — ua) is contained in Ker ψ.
We define a homomorphism s: k[Mf)πw] -+k[x, y, z, w, u] of k-vector spaces
by s(e(m)) = xCιyc*zc*wHuc\ where {c0, •• ,c4} is a 5-ple of non-negative
integers with cλcz = c2c4 = 0 and m = como + + c4m4 uniquely determin-
ed by m by Lemma 8.12. Clearly, s is a section of ψ. Hence in order
to prove (#) it is sufficient to show that k[x, y, z, w, u\ = s(k[M Π πv]) + /.
Let / = xPίyP2zP3wPiuP0 be an arbitrary monomial in k[x, y, z, w, u]. We
have to show that

(##) / is in s(k[MΠπ^]) + I.

We first show (##) to be the case provided fp1 or ̂ 3 is equal to 0. Indeed
suppose / is not in s(k[M Γ) ̂ v ]) + / with p2p4 minimal. If pφ^ > 0, then

XriyP2ZP3WP*uPo _ χVιψ^zp*Wp±~'1Up*Ara = X ^ ^ Z ^ W ^ ^ U ^ y W — Ua) β I .

Hence the monomial α?Pl2/3>2"'121>3i*;p*-V0+β is not in s(fe[M Π 7ΓV]) + /, a con-
tradiction to the minimality of p2p4. If p2p4 = 0, then since ptps = 0, we
know f = s(e(m)) for an m in ikfΓ)πv by Lemma 8.12, again a contradic-
tion. Thus / is in s(k[M Π 7ΓV]) + / if PiP3 = 0. Let us prove (##) in
the general case. Assume / has the minimal pλp3 among the monomials
which are not in s(k[M Π πv]) + I. Then clearly p^3 > 0, and

XPiyP2ZP3WP4UPo _ xPi-^^-^Pi+b^o+c = xPi-^zPz-iwPtuPo^xz _ W

hU°) 6 J .

Hence the monomial x^y^z^w^u**** is not in s(k[M Π π v]) + /. This
is impossible since we assume pλpz is minimal. Hence / is in
s(k[M n π v]) + /. q.e.d.

Appendix. Let M be a free Z-module of finite rank.

DEFINITION 1. For an Λf-graded ring A = φ m e Λ f Am, we call a homo-
geneous ideal p M-maximal if t> is maximal in the set of proper homo-
geneous ideals.
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DEFINITION 2. We call an M-graded ring A an M-field if the ideal
{0} is M-maximal.

It is clear that an M-graded ring A is an M-field if and only if
every non-zero homogeneous element of A is invertible. The following
lemma can be proved as in the non-graded case.

LEMMA 3. Let A be an M-field and let E be an M-graded A-module.
Then E is a free A-module with a basis consisting of homogeneous ele-
ments.

DEFINITION 4. We call an M-graded ring A M-local if A has only
one M-maximal ideal.

It is obvious that every homogeneous quotient ring of an M-local
ring is also an M-local ring.

EXAMPLE 5. If M = Z and A = φ~=0 An is a Z-graded ring with
non-negative degrees such that Ao is a field, then A+ = φϊU An is the
unique Z-maximal ideal of A. Hence A is a Z-local ring.

EXAMPLE 6. Let M be the dual of a free Z-module N and let π be
a strongly convex rational polyhedral cone of NR (see §1). Then, for a
field k, the semigroup ring k[M Π π v] is an M-local ring with the maximal
ideal P(π) = φwejfnuv̂ -1-) ke{m). Hence every homogeneous quotient ring
of k[M Π πv] is M-local, too.

The following lemma is an analogue of Nakayama's Lemma.

LEMMA 7. Let A. be an M-local ring with the M-maximal ideal p.
Then for an M-graded A-module E of finite type, pE — E implies
E=0.

PROOF. Let {eu •• ,eΛ} be a set of homogeneous generators for E
and let ra{ be the degree of et for i = 1, , n. Then pE — E implies
that et — Σj=iai,je3 f° r some homogeneous elements {aitj}1Si>j^n of p with
deg aitj — mt — ms. Then d — det (δiti — aui) e 1 + p is a homogeneous
element of degree 0 and det = 0 for every i. Since A is M-local, d is
invertible and we have et = 0 for every i. q.e.d.

We have the following proposition as in the non-graded case.

PROPOSITION 8. Let A be a noetherian M-local ring with the M-
maximal ideal p and let P be an M-graded protective A-module of finite
type. Then P is a free A-module with a basis consisting of homogene-
ous elements.

PROOF. The quotient PjpP is a free A/p-module by Lemma 3. Let
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r be its rank and let mu , mr be the degrees of elements of a basis.
Then there exists a homomorphism /: φΓ=1 Aut —> P of degree 0 which
induces isomorphism φΓ=i (A/p)Ui —• P/pP, where ut is an indeterminate
of degree m* for every i = 1, , r. Thus we have ^Coker/ = Coker /
and / is surjective by Lemma 7. Since P is a protective A-module,
Tor/ (A/t>, P) = 0 and we have (Ker /) (g)̂  A/t> = 0. Again by Lemma 7,
Ker/ = 0 and / is an isomorphism. q.e.d.

Let Σ be a star closed subset of Γ(π). Then the ring SΣ defined
in §3 is a homogeneous quotient ring of k[Mf\πv]. Hence SΣ is ikf-local
and this proposition is applicable to A = SΣ. For the case dim π = r =
rank N and Σ = Γ(π), this proposition was proved by Kaneyama [Kl,
Theorem 3.5].
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