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Introduction. Let M be the moduli space of a class of smooth
varieties. Then, the best compactification of M will be the moduli space
of an extended class of “degenerate” varieties which may have some
singularities. The main purpose of this paper is to study what kind of
singularities are reasonable for these degenerate varieties without
specifying any particular class of the smooth varieties. We would like
the singularities to be sufficiently simple so that invariants defined for
smooth varieties are generalizable, and that we can study the generically
smooth deformation of them. In the case of curves, the theory of the
stable curves by Deligne and Mumford [DM] shows that it is reasonable
to take only ordinary double points as the singularities. In the higher
dimensional cases, however, the degenerate Jacobian varieties of Oda,
Seshadri and Ishida [OS], [I1] or more generally, the stable quasiabelian
varieties of Namikawa and Nakamura [N1], [N2] show normal crossing
singularities to be too restrictive for the degenerate abelian varieties.
Looking at many examples of degenerate varieties, we came to take, as
the local models of singularities, subschemes, invariant under the torus
action, of torus embeddings. Thus they are generalizations of toroidal
embeddings by Mumford et al. [TE]. But these are too general, and we
must find out good conditions on them. It is meaningful to give the
condition for the local models to be Cohen-Macaulay or Gorenstein. In the
classification of smooth varieties, the canonical invertible sheaves play an
important role. The Serre duality theorem is generalized for Cohen-
Macaulay varieties with the canonical invertible sheaves replaced by the
dualizing sheaves. They are invertible if the varieties are Gorenstein.
The sphericity, which we define later, will be a good condition for the
local model to be Gorenstein.

We now explain the content of this paper in more detail.

Let N be a free Z-module of rank » =0, and let M be the dual
Hom, (N, Z). Then for a fixed field %, an affine torus embedding of
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dimension 7 is written as X, = Spec (k[M N 7V]) for a cone 7 = Ry, + - - - +
Ra, (@, -+, 0, Npn = N®X,R) of N, where R, = {ceR;¢c =0} and 7" =
{x € Mp; {x,a) =0 Yaen}. The torus Ty = Spec (k[M]) acts on X, natural-
ly. Set I'(m) = {the faces of m#}. Then there exists the following relation
between elements of I'(x) and closed subschemes of X..

M-homogeneous quotient Ty-invariant irre-
I'() ~ {integral domains of } ~ {ducible reduced closed
the ring kK[M N 7V] subschemes of X,
) (O}

(V) ()]
o +— S(@) =kMnz¥Nno'] — V(o) = Spec (S(0)) ,

where o' = {x € My; {x,a) =0 Yaco}. Furthermore, we know that
dim ¢ + dim S(¢) = r for every o€ I'(x).

DEFINITION. A subset X of I'(w) is said to be star closed if 330,
I'(r)s7 and 7 > o imply 357, and it is said to be locally star closed if
Y2p, 0, '(r)ys7 and p > 7 >0 imply Y>57.

Then we can determine the T,-invariant closed subschemes of X. as
follows.

star closed1 jreduced M-homoge- Ty-invariant
subsets of ~ {neous quotient } ~ {reduced closed
() J [rings of k[M N =] subschemes of X,
(O] (O] (O]

Y— Sy = k‘:L{Mn EVHGL]F——» Y. = Spec (Sy)

The main purpose of this article is to characterize the properties of
the ring S; in terms of combinatorial conditions on the set Xc/I'(z). In
the case m is non-singular and dim 7 = 7, i.e., when E[M N 7V] is a poly-
nomial ring, Reisner [R1] and Hochster [H2] gave conditions for S; to be
Cohen-Macaulay and Gorenstein, respectively. We will generalize their
results to an arbitrary = using a completely different method, that of
dualizing complexes.

For a face del'(x) of dimension d, we set M = MNo*-. Then
M@ is a free Z-module of rank » — d. We define a free Z-module Z, of
rank one by Z,= A" M. For faces o, t e () with >0 and dim7—
dim ¢ = 1, there exists a natural isomorphism q.,,: Z, =5 Z.. For a locally
star closed subset @, we define the complex C'(®, Z) as follows. We set
C{®, Z)=@®,c0, Z,, Wwhere @,={0 € ®;dim 6=}, and the coboundary maps
are defined naturally by g¢.,’s. Thus we can consider the cohomology
groups HY(®, k) of the complex C'(?, k) = C' (9, Z)R: k.
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Reisner’s result is generalized as follows, where (o) = {o€23; 0 > 0},
and % = min {z; 3, # O}, the “height” of 2.

COROLLARY 3.5. The ring S; is Cohen-Macaulay if and only if
H(2(0), k) = 0 for every ¢ # h and for every peX.

DEFINITION. A star closed subset Y of I'(x) is said to be spherical
if
B, 1= |0 T
0 if ©1#h
for every p in 2.
The result of Hochster is generalized as follows.
THEOREM 5.10. The ring Sy is Gorenstein if 3 is spherical.

This theorem is a consequence of Theorem 5.9 which is a generaliza-
tion of Stanley’s characterization of Gorenstein normal semigroup rings
[S1].

In §3, we construct the dualizing complex K' of the ring S; which
consists of M-graded S;-modules and coboundary homomorphisms of degree
0. The above theorems are obtained by considering the m-component
for each me M. In a special case the complex K appeared in [N2].

In §7 and §8, we study special cases in more detail. In §7, we give
a natural one-to-one correspondence between the set of Gorenstein normal
semigroup rings of dimension » and the set of convex polytopes of
dimension » — 1. In §8, we show that every normal semigroup ring of
dimension 3 which is a complete intersection is of the form k[z, v, z, w, u]/
(xz — wbu’, yw — u*) for a triple (a, b, ¢) of non-negative integers.

The generalization of our theory to general torus embeddings or
toroidal embeddings and its relation to that of global duality will be
treated in a forthcoming paper.

‘Acknowledgment. The author would like to express his thanks to
Professor T. Oda who pointed out to him the complex in [N2] which
turns out to be the dualizing complex and gave him kind advice in the
preparation of this paper. The author also expresses his hearty thanks
to Professor K. Watanabe of Tokyo Metropolitan University who in-
formed him of the results of Hochster and Reisner and pointed out to
him the simplified proof of Lemma 4.5.

Notation.

Z : the ring of rational integers



114 M.-N. ISHIDA

Z,={ceZ;c =0}

R : the field of real numbers

R, ={teR;t =0}

A\B = {x;x€ A, x ¢ B}

If A and B are subsets of an additive group,
A+ B={+bacA beB},
A—B={a—b;acA,beB}.

1. Cones and their faces. Throughout this paper, we fix a free
Z-module N of rank » = 0. By = we denote a strongly convex rational
polyhedral cone in N (=N . R), i.e., there exist a,, ---, a, in N with
7 =R, + -+ + Ra,and 7 N (—x) = {0}. Let M be the dual Hom, (N, Z)
of N. Then the dual cone ¥ = {x € Mg; {x,a) =0 Yaecn} is a convex

rational polyhedral cone of dimension 7 in M;. The following proposition
is fundamental. For the proof we refer the reader to [MO].

PROPOSITION 1.1. The map o+ d* = ¥ N o* gives rise to a bijection
{the faces of w}— {the faces of w"},

where ot = {x € Myg; {x, a) = 0 Ya €a}. Moreover, ¢* > t* if and only if
T > 0, and dim ¢ + dim ¢* = » for every pair of faces o, T of T.

DEFINITION 1.2. We denote by I'(w) the set of the faces of «.

For a face o of w, we use the following notations.

M©® = MQnOot
M, = M/M*°
N,=NnN(o + (—0))
N = N|N, .

Clearly N (resp. N,) is the dual Z-module of M‘'® (resp. M,) of rank
r — dim o (resp. dimo). For a face p of # with p > o, we denote by
0 the image of p in the quotient NP = N ®,R. We see easily that
0 is a face of the cone n'” in Ng'.

PROPOSITION 1.3. Let o be a face of ®. Then o* = x¥No*C My s
the dual cone of w9 C N, and 0* = (0'°)* for every p € I'(x) with p > o,
where (0°)* = (x)V N (0')* in Mg. In particular, the map

{oe'(m); p > o} — I'(z'”)
w (O]
p — p(o)

18 bijective.
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Proor. Let x be an element of M. Then, zezVN " =
(,a) =0 Yaecn? and z€(0”)' =<{x,a) =0 Yaerwr and zecp'=zxec
7V N p*. Hence we have (0'”)* = p*. In particular, we have (7”)V =
n¥ No* if we set p = 0. By Proposition 1.1, there are one-to-one corre-
spondences

{peI'@); p > o} XL {the faces of o*(=(x)¥)} L1 Pz .
Hence the bijectivity is clear. q.e.d.

For every face o of = of dimension d, we denote Z, = A"¢ M which
is non-canonically isomorphic to Z. Let o be a one-codimensional face
of z. Then 7' is a one-dimensional cone, and N N z‘? is isomorphic to
the semigroup Z,. Let a be the generator of the semigroup N N (2.
We get an exact sequence

0 M — MK 70

of Z-modules. By this exact sequence, we have a natural isomorphism
q‘r/a: Zo —’:’) Zz- ’

i.e., if dim ¢ = p, then for any m, e M** and m,, - --, m,€ M, the element

m, A\ m, A\ --+ A\ m, is sent to (m, a)m, A\ -+ A\ m,.

LEMMA 1.4. Let 0 and p be faces of ® with dimp — dimo = 2 and
© > 0. Then there are exactly two faces t,, 7, of * with dimp —dim 7, =1
and p > 7, > 0,1 =1,2. Furthermore, we have Qo ° Q-5 + Qo/cy°qzpre = 0.

ProOF. In view of Proposition 1.3, we may assume ¢ = {0} and
dim p = 2 by replacing = by #‘”. Then this lemma is obvious. q.e.d.

Let 3 be a subset of I'(w). Then we set, for each 1€ Z,
C'QE,2)= @ Z,

0el;
where 3, = {c€X;dimo = 1}. We define a homomorphism
3 Ci(Z, Z) — C\(3, Z) ,
for each ¢, as follows: For oce€l, and v€J3,,,, its (g, v)-component is
the isomorphism gq.,, if ¢ > ¢ and the zero map otherwise.
DEFINITION 1.5. Let @ be a subset of I'(z). Then for a subset X
of &, we say
star closed in @ if ¥s0,®s7and 7 > o imply o7
Y is{star open in@ if 20, ®s57and ¢ >z imply o7
locally star closed in @ if ¥5p, 0, P57 and p > 7> o imply Yo7 .



116 M.-N. ISHIDA

PROPOSITION 1.6. If X is a locally star closed subset of I'(r). Then
0.0t CW(X, Z) — C*¥(Z, Z) s the zero map for every 1, i.e., the sequence
c,zZ)y=(G--—0-CC,2Z)—->C3,Z)—> - —>C 3, Z)y—>0—>--) 1is
a finite complex of free Z-modules.

Proor. It is sufficient to show that the (g, p)-component of §'**od*
is zero for every pair (g, o) with o€ X, and pe 3, It is clearly the
case, if o is not a face of p. Hence we may assume p > o¢. Then 7, 7,
in Lemma 1.4 is in X since X is locally star closed. Hence the (g, p)-
component of 0'*'04* is equal to g, °q.,, + Qo/,°4.,,, Which is the zero
map by Lemma 1.4. q.e.d.

Hence we can define the cohomology group H' (3, Z) (i€ Z) for every
locally star closed subset 3 of I'(x). Let @ be a locally star closed sub-
set of I'(wr) and let 3 be a star closed subset (resp. star open subset) of
@. Then there exists a natural homomorphism C'(2, Z) — C'(@, Z) (resp.
C(@,Z)—C(2, Z)) of complexes.

DEFINITION 1.7. A locally star closed subset @ of I'(x) is said to be
homologically trivial if H (@, Z) = 0 for every i€ Z.

PROPOSITION 1.8. Let 3 be a locally star closed subset of I'(m). If
a subset X' of X is star closed im X or equivalently X" = 3\3' is star
open in X, then there exists a cohomology exact sequence
0->H'(Y,Z)>H'Y, Z)—>H'3", Z)>H'Z,Z)— ---
-—>H*"2' Z)—>H"3,Z)— H*"(Y", Z) > H**'(3', Z)— --- .
In particular, if any two of ¥, X', 3" are homologically trivial, so s
the other.
PROOF. Since there is a short exact sequence
0-C2,2Z2)—~CZ,Z)—~C2" Z)—0
of complexes, the assertion is well known. q.e.d.
Let 3" and 3" be locally star closed subsets of I'(x) such that they
are star closed in the union X’ U Y” and the intersection 3’ N 3" is star
closed in both of them. Then clearly 3" U 2Y” and 3’ N X" are locally
star closed in I'(x), and we have a short exact sequence
0-C2NnN2"2Z)—-C2,Z)PC",2Z)—->C(XUXY',Z)—0.
Hence we have the following.

ProOPOSITION 1.9 (Mayer-Vietoris). In the above situation, we have
an exact sequence
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- —H*Q'N3",Z)—->H"Z, Z)P H* (X", Z)—> H*(X'" U X' Z)
- H""3' N2 Z)—->H"3, Z)P H* 2", Z)— --- .

2. Homologically trivial subsets of /I'(7). In this section we aim
to prove the homological triviality of certain subsets of I'(x) which will
reappear in §4 in connection with the dualizing complex.

DEFINITION 2.1. For an element x of My, we define the star open
subset I'(z), of I'(m) by I(w),={cel(xn);{x, 6) R} and I'(x), =
{reI'(x),; dim v = 1}.

Since a polyhedral cone is generated by its 1-dimensional faces, it
is easy to see that I'(n), = {0 € I'(x); every l-dimensional face of ¢ is in
I'(m),}. Hence I'(r), is uniquely determined by I'.(7),.

LEMMA 2.2 If the cardinality *I'(w), 18 not less than 2, them there
exist veI'(w), and ¥y, 2 € N such that vyCy*, I'(n), = I'(n), and I'(7), =
Fl(n')z\{’)’}-

Proor. Let {v, ---, 7.} be the set of 1-dimensional faces of # and
let I'(n), = {vy, --+,7,} for some 2<p <s. Wetakea,e Nforl<:<s
such that v, = Ra,. Then <(x,a,>)=0 for i =1, ---,p and {z,a,) <0
for ¢i=p+1,---,s. Furthermore, by adding to z an element of
sufficiently small norm in the interior intz¥ of 7V, we may assume
{x, a;) >0 for every 1 =1, ---, p. Let w be an element of int 7V, then
since <{w, a,) > 0 for every ¢, there exists a positive number ¢, with
(o —t;w,a,y =0 for each 1 <1< p. If ¢, =1¢; for some 1 <7 < j =< p,
then <(z, a;> — {t;w, a;> =0, (x, a;y — {tw, a;) =0 and w satisfies the
linear equation <z, a,){w, a;,) — {z, a;){w, a;») = 0, which is non-trivial
since a;, and a; are linearly independent. Hence if we take w which

satisfies this equation for no 1 <7 < j < p, then ¢, ---, t, are mutually
distinet. Since intzv is an open subset of My, this is possible. By
renumbering v, ---,7,, if necessary, we may assume ¢, > ¢, > --- > {,.

Set y = ¢ — t,w and z = x — t,w for some ¢, <, <t,,. Then {y, a,) and
{z, a,y are positive (resp. negative) for 1 <¢<p — 1l (resp.p +1 =17 =< 3),
and {y, a,) = 0, {3, a,»<0. Hence I'(n),={7,, -+, 7,}, Y, €¥" and I'|(x),=
{71; Tty 7p—1}~ q.e.d.

For the subset {a, ---, a,} in the proof of the above proposition and
for an element x in Mg, we have I',(n), = {v,; {x, a,) = 0}. Since intz" =
{yeMg; (y,a;) >0, i=1,---, s}, the set I'(n), is empty if and only if
2 is in —int V.
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ProPOSITION 2.3. ['(w), s homologically trivial if x 1s outside
—int V.

ProOF. We prove this proposition by double induction on *I'(%), and
dimz. If I'(n), = {7}, then

C'(I'(n),, Z) = (0 Z, %z, —0)

and I'y(z) is homologically trivial. If dimz=1, then *I"(x),=1 and I'(%),
is homologically trivial. We assume *I',(7), = 2 and dim 7 = 2. Then by
Lemma 2.2, there exist veI'(7), and ¥, ze€ M, such that I'(n), = I'(n),
and I'(n), = I'(w),\{v}. Since I'(w), is star open in I'(x),, and I'(%), is
homologically trivial by the induction assumption, it is sufficient to prove
that I'(w),\['(z), is homologically trivial in view of Proposition 1.8.
Ir'm)\[(n), = {oe'(n); <y, 0) C R,and ¢ > v} = I'(x*"),. Since *I'|(x), = 2,
there exists an a e z”\{0} with (y, a) =0. Hence y ¢ —int (z")V and we
are done again by the induction assumption. q.e.d.

If we take x in &, I'(w), is equal to I'(x). Hence the above proposi-
tion implies, in particular, that I'(z) itself is homologically trivial if
dim 7 > 0.

DEFINITION 2.4. For a star closed subset Y of I'(z) and for an
element m in M, we define the locally star closed subset 3™ of ¥ by

3™ ={oel;me—pY and m* Npel}.

REMARK 2.5. For me M N =Y, it is easy to see that X™ = X(n),
where » =z Nm*el'(x) and 2F(n) = {oc3;n > p}.

PropoOSITION 2.6. If me M N =wY, then X™ s homologically trivial
for any star closed subset X of I'(w).

- Proor. If ¥ = I'(w), then ¥™ is equal to I'(w)_,, since m*Np is in
I'(p)c I'(w) for every me —pY. Hence X™ is homologically trivial by
Proposition 2.3. We prove this proposition by induction on the cardinality
of I'(w)\X¥. Let n be a face of the highest dimension in I'(z)\Y, and let
Y ={nU2X. Then 3’ is a star closed subset of I'(x) and 3'™ is homo-
logically trivial by the induction assumption. It is clear that I™ is a
star closed subset of 3™, and hence it is sufficient to prove the homo-
logical triviality of X'™\¥™_  If m* does not contain 7, then 3"™ = Y™
and there is nothing to prove. Assume m'>%. Then, X'™\I™ =
{oe2'; me—pY and m*Np =9 ={p?el(x?);me —(0")" and m" N
o = {0)} = {0 e I (x™); (—m, p7\(0})) € (R\MOD} = I'(@")_,_,, where @
is an element of int (7”)Y of sufficiently small norm. Since m € M7\(z?)V,
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the point —m — 2z is not in —(#?)V = —(z¥N»n*) and I'(@x7)_,_, is
homologically trivial by Proposition 2.3. Thus X’™\Y™ is homologically
trivial. q.e.d.

3. Homogeneous quotients of semigroup rings. We fix a field & of
an arbitrary characteristic from this section on. Let N, M and « be as
in §1. We denote k, = k Q, Z, for every oecI'(r), and we use the same
symbol g¢., for the isomorphism 1,& q.,:k, =5 k.. We denote by k[M]
the k-vector space with the basis {e(m)},.., Which has the k-algebra
structure defined by e(m)e(m’) = e(m + m') for every pair (m, m') of
elements in M. For a subsemigroup & of M with 0€.%, we denote by
k[&”] the k-subalgebra @,... ke(m) of k[M]. If a subset ¥ C.& is an
ideal of & ie.,, me * and m'e.S imply m + m’'e % then k[-F] =
D...- ke(m) is an ideal of k[.%”]. In order to simplify the notation, we
denote by k[.S”\_”] the quotient ring of k[.5”] with respect to the ideal
k[-7], identify it with the k-vector subspace @.,.. o - ke(m) of k[M]. Note
that, in this ring, the multiplication e(m)e(m’) for m and m' in S\~
is equal to e(m + m') if m + m'¢ . and 0 if m + m' €% These rings
and ideals have the structure of M-graded objects. We take M N zV as
such a semigroup & of M, and study the semigroup ring S = k[M N =V].
Then X, = Spec (S) is a torus embedding, i.e., the torus T, = Spec (k[M])
is an open subset of X, and acts on X,. According to the remark of
[MO, (5, 3)], the map

I'(7) — {TN-invariant irreducible reduced }
closed subschemes of X,

w w
0 —— V(o) = Spec (k[M N ¥ N a*])

is bijective. Note that k[M N 7V N o*] is thought of as the quotient of
S by the M-homogeneous prime ideal P(o) = k[M N (zV\o*)]. For a star
closed subset ¥ of I'(w), define the ideal J(X) = N,.r P(¢). Then J(X)
is an M-homogeneous semiprime ideal of S. Conversely, it is clear that
every M-homogeneous semiprime ideal of S is equal to J(J) for a star
closed subset 3 of I'(z). Thus we have a bijection

{star closed subsets} . {TN-invariant reduced closed}
of I'(w) subschemes of X,

w w
pX — Ys = Spec (S/J(X)) .

For a non-empty star closed subset 3, we call min {dim ¢; 0 € 3} the
height of ¥ and denote it by ht Y. Since ht P(¢) = dim g, the height of
Y is equal to that of the ideal J(J) or the codimension of Y in X..
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We now fix a non-empty star closed subset 3 of I'(x). Our main
purpose is to find the condition for the ring S; = S/J(2) to be Gorenstein
or Cohen-Macaulay.

Since J(X) < P(o) for every ¢ in X, the ring S/P(o) is an Sy-module.
If 0 is a face of 7z, then P(s) is contained in P(r). When dimz —
dim ¢ = 1, we denote by Q.,, the homomorphism S/P(¢) ), k, — S/P(t) Q; k-
defined by the tensor product of the quotient map and ¢.,. Define the
Sz-module K° to be the direct sum @,.:, S/P(0) .k, for every i =
0, ---, »r = rank N, and define the coboundary map é: K — K*** by

ai((fo)oES,,;) = (Zaefi,-r)a Qz‘/a(fa))tefi_u .

Note that all our rings and modules are naturally M-graded. Moreover,
for every ¢ with 0 <: <7 — 1, & is a homomorphism of M-graded S;-
modules of degree 0. Hence we can cionsidexr' 1the m-component K, of
the sequence K" = (--- —+O—>K°E>Kli —5—>K’—>O—+ -..) for every
m in M. Recall that, for peI'(x), we denote X(o) ={oecZ;p>0}. It
is clear that 3(p) is a locally star closed subset of I'(w) and is empty if
¢l

PROPOSITION 3.1. The m-component K, of K  is the 0-complex if
meMn=nY. If meMN=xV, then there exists a natural isomorphism
K, =5 C(2(0), k) where p = w\m*. In particular, K, is the 0-complex
if p¢3. Let m' be an element of M N =" and let n = N (m + m')*.
Then the diagram

K, —C'(3(p), k)

le(m’) X l

K — C'(2(0), k)

commutes, where e(m') X : K,, — K pim 18 the multiplication by the homo-
geneous element e(m’)e S, and C'(2(0), k) — C'(Z(n), k) is the natural
homomorphism corresponding to the star open inclusion (1) = 3(0).

ProorF. If meg M N =Y, then E[M N =¥ Not], =0 for every ocl'(n),
and the first assertion is obvious. For m in M N xVY, the m-component
of kK[M N z¥ No'] is equal to ke(m) if m* Do and zero otherwise. Since
e =mNm" is a face of w, we have the natural isomorphism

K.= @ kem)@®Fk, 5C(2(0),k)= @ k,.
gel(0); k ge2(p);
(O] O]
(e(m) ® 0)gesio; > (@o)sesim, -

Hence the sequences K, and C'(X(p), k) are isomorphic since the coboundary
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maps are defined by ¢.,’s. If p¢X, then 3(p) is empty and K, is
the 0O-complex. Clearly » =7znN(m + m')* is a face of p, and hence
Y(n) is a star open subset of X(p). Since e(m')e(m) is e(m + m') in
kEIMNzm¥No'] if 0€X(n) and is zero otherwise, we get a commutative
diagram

@ kem)®@k, —— @ &,

aeX(p); ageX(0);
le(M’)X s

e ke(m + m,) ® ka — $ ka ’
geX(n); k aed(N);

for every ¢, where p,(@,),cx(p,) = (@,)sezm,, for every (a,),es, Hence
we are done. q.e.d.

COROLLARY 3.2. The sequence K’ is a complezx.

Proor. By Propositions 1.6 and 3.1, K' for each m in M is a com-
plex. Hence K’ is also a complex.

The following is our main theorem.
THEOREM 3.38. K’ 18 the dualizing complex of the ring Ss.

Recall that, for a noetherian ring A with Spec (A4) connected, the
dualizing complex R of A is determined uniquely up to quasi-isomorphism,
dimension shift and the tensor product of projective modules of rank
one, where a homomorphism R; — R, is a quasi-isomorphism if the induced
homomorphism H(R;) — H'(R,) is an isomorphism for every i€ Z. For
the detail, see [RD, Ch. V]. The important fact is that if the dualizing
complex R" exists, then

A : Cohen-Macaulay <= 3d, H'(R) =0 Vi = d ,

A : Gorenstein =3d, H(R) =0 V4 = d and HYR’) is a projective

A-module of rank one.
When A is Cohen-Macaulay, H%R’) is usually called a dualizing module
or a canonical module of A.

When dimzm is equal to » = rank N, then =¥ = {0} and P(x) =

D..c wni=vio) ke(m) is a maximal ideal of S. We denote the maximal ideal

P(@)/J(X) of Sy by m. Theorem 3.3 is a rather easy consequence of the
following proposition, which we prove in the next section.

PROPOSITION 3.4. If dim 7w = », then the hyperextension groups are
Sym if i =7

Exp§ (S K) ~
X05, (S, K= 1000 e e
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REMARK. Note that K  corresponds to the sequence
=0 @D OV(“)Q;?IC"H,@@ OV(mQI?kﬁ"’ HOV(x)@kx”*o"* Tty

aely

if we consider them as a sheaf and complex of sheaves on Y. = Spec (S;).
For a face p of 7w in %, the restriction of K  to the affine open set X, =
Spec(k[M N p']) coincides with the complex defined similarly for p and
3(p) ={oeX; p> o} as we defined K' for = and 3.

PrROOF OF THEOREM 3.3. We prove this theorem by induction on ~.
If » =0, then S; and K are both equal to k. Hence the assertion is
obvious. If dimz is less than », then X, is the product of a torus 71"
of dimension » — dim = and the torus embedding X! of dimension dim 7
defined by the pair (z, N,). Hence Y, is also a product 7"x Y:. We are
done by the induction assumption, since K’ is isomorphic to the pull-back
of that of Y% for the projection Yy — Y% and we can apply [RD, Ch. 5,
Theorem 8.3]. Thus we may assume dimz = . For a proper face p of
7 the restriction K| x, 18 the dualizing complex of Y;N X, in view of
the above remark and what we have seen above. Since U, ) ,orer Xo =
X\V(n), it is sufficient to prove that K  is a dualizing complex at the
unique Ty-invariant point V(z) of X,. Since m = P(x)/I(Y) is the ideal
of V(z) in Yy, we are done by [RD, Ch. 5, Proposition 3.4] and our
Proposition 3.4. q.e.d.

COROLLARY 3.5. Sy is Cohen-Macaulay if and only if H'(X(p), k) =0
for every 1 = h and for every peX, where h = ht X.

Proor. If S; is Cohen-Macaulay, there exists an integer d and
Hi(K) =0 for every ¢ # d. By Proposition 3.1, this is equivalent to
Hi(X(p), k) = 0 for every pc 2 and every ¢ # d. For an element peJl,,
we have 3(o) = {0} and H"(Z(p), k) ~ k. Hence we have d = h. The
converse is obvious. q.e.d.

DEFINITION 3.6. We call a star closed subset Y of I'(w) Cohen-
Macaulay if X satisfies the condition of Corollary 3.5.

- This definition depends on the fixed field k. Since C'(Z, k)=
C (2, Z)R,k, it actually depends on its characteristic (ef. Reisner [R1,
§1, Remark 3]).

COROLLARY 8.7. If X is Cohen-Macaulay, then Ker [K* 5> K™ is a
dualizing module of the ring S-.

ProoOr. Since 23, , = ¢J, we have K" '=0 and the assertion is
obvious. q.e.d.
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PROPOSITION 3.8. The ring Sy is Gorenstein if and only if 3 1is
Cohen-Macaulay and there exists an M-graded isomorphism Sz~ H*(K")
with h = ht 3, where the degree of the isomorphism may mnot be zero.

PROOF. The “if” part is obvious since K  is the dualizing complex
of the ring S;. Assume S; is Gorenstein. Then 3 is Cohen-Macaulay
and H¥K’) is a free S;-module generated by a homogeneous element by
Proposition 8 of Appendix. Thus the assertion is proved. g.e.d.

We will give a more precise condition for the Gorensteinness of the
ring S; in §5, which is a generalization of the results of Hochster [H2]
and Stanley [S1].

4. Proof of Proposition 3.4. We need some elementary facts on
M-graded rings and modules. We list them here without proof, since
they can be proved as in the Z-graded case or in the non-graded case.
Some of them were proved by Goto and Watanabe [GW1], [GW2].

Let A be an M-graded noetherian ring with 4, ~ k.

DEFINITION 4.1. For M-graded A-modules E, F, and for an element
m of M, we denote by Hom?7 (E, F') the set of A-homomorphisms of
degree m from E to F. We denote Hom, (&, F') = @,..» Hom" (E, F).

LEMMA 4.2. The natural homomorphism
_I—Io_m;1 (Ey F) - HomA (E, F)
18 an isomorphism if E is an A-module of finite type.

For an M-graded A-module FE, we denote E* = Hom, (E, k), where
k (=A4,) is considered as an M-graded ring concentrated at 0¢ M.

LEmMMA 4.3. Hom, (-, k) is an exact functor for the category of M-
graded k-modules.

For M-graded A-module £ and F', the tensor product E ®, F' has the
structure of an M-graded A-module such that for homogeneous elements
x€FE and ye F, we have deg (x ® ¥) = deg x + deg .

LEMMA 4.4. There exists a natural isomorphism
Hom, (¥, Hom, (F, G)) — Hom,(E ® F, @)
A

for every pair of M-graded A-modules E, F, and for every M-graded
k-module G.

Recall that, for a ring A and for complexes E°, F' of A-modules
bounded above and below, respectively, the hyperextension group
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Ext: (E°, F") depends only on the quasi-isomorphism classes of E" and F".
Furthermore, if either E° is a complex of projective A-modules or F'" is
a complex of injective A-modules, Exti (E’, F'') is equal to the 1-th
cohomology group of the complex Hom (E°, F'). (Cf.[RD, Ch.1§6].) In
order to calculate Ext}, (S;/m, K'), we replace K' by a complex I' which
is quasi-isomorphic to K" and plays the role of an injective object as far
as M-graded modules are concerned.

For a o in %, let B, be the set of homogeneous elements of
S:\P(0)/I(3). Then the localization B~'Sy is an M-graded ring which can
be written as k[U,cs, M N oY No*].

LEMMA 4.5. Homg, (-, (B,'S:)*) is an exact functor for the category
of M-graded Ss-modules, where (B;'Ss)* = Hom, (B;'S;, k).

PrOOF. For an M-graded S;-module F, the S;-module
Homy, (F, (B;'Sx5)*)

is equal to Hom, (F s, B,'Ss, k) by Lemma 4.4. Since the functor
®sy B,'S; is exact, this lemma follows from Lemma 4.3. g.e.d.

(B;'Sy)* is an Sy-module of the form A[—U,exy M N p¥ Not]. Since
we see easily that 7¥ N (—U,esw M N Y No*) is equal to M NzYN e,
there exists a natural inclusion S/P(p) = k[M N =¥ N p*] — (B;'Ss)*. Now
we set I' = @,.rx, (B;'Ss)* @ik, and define a coboundary map ot I' — I+
by

gi((ga)aEZ'i) = (Za(—:Z’i,r>a Qz‘/a(go))rESﬁ,l ’

where Q.,: (B;'Sy)* ®yk, — (B7'Ss)* Q. k. is the S;-homomorphism defined
by the tensor product of the dual of the natural S;-homomorphism
B:'S; — B;'S; and ¢.,,. Then there is a natural inclusion K¢ <> I* which
makes the diagram

K o Ki+
I 0" Ji+t
commutative for every <.

PROPOSITION 4.6. The sequence I 1s a complex and the homomor-
vhism K — I of complexes is a quasi-isomorphism.

ProoF. Since I' (1 =0, ---, 7) are M-graded and ¢*’s are homomor-
phisms of degree 0, it is enough to check the assertion for m-components
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I, and K, — I, for every me M. For an m in M, the m-component of
El—U,ezo MNpY No'] is isomorphic to % if and only if p is in I™ (see
Definition 2.4). Hence the m-component of I is isomorphic to C'(Z™, k).
Thus clearly I, is isomorphic to C'(Z™, k), and I’ is a complex. If m is
in MN =Y, the induced homomorphism K, — I, is an isomorphism by
Remark 2.5 and Proposition 3.1. If m is not in M N =Y, K, is the 0-
complex by Proposition 3.1. On the other hand, all the cohomology
groups of I, vanish since X™ is homologically trivial by Proposition 2.6.
Hence K,, — I, is a quasi-isomorphism. Thus the homomorphism K' — I’
is a quasi-isomorphism. g.e.d.

Let -+ - F*>F ' F'—>S;/m—0 be an S;-free resolution of
Sy/m. We can choose this resolution in such a way that F's are M-
graded free S;-modules of finite type, and the homomorphisms F'¢ — Fé+t
are of degree 0. Then Ext}, (S;/m, K') is equal to the i-th cohomology
group of the complex Homj, (F", I') since I' is quasi-isomorphic to K  and
F" is projective. In the double complex

1 T T

Homg, (F7% I°) — Homg, (F'7*, I') — Homg, (F' 7%, I*) —

I I I

Homg, (F, I°) — Homg, (F', I') — Homg, (F , I*) —
Homg, (F°, I°) — Homy, (F"°, I') —— Homy, (F°, I*) —

every column is exact in view of Lemma 4.5. Hence in one of the as-

sociated spectral sequences for the double complex, we have
"Byt = {Homs_v (Sejm, I if p=0
0 if p=0.

By Lemmas 4.2 and 4.4, we have

Homyg, (Sy/m, (B;'S5)*) =~ Hom, (Sy/m g;) B;'Ss, k) .

Since m N B, is non-empty for p = 7, we have S;y/m s, B,;'Sy = 0 for
such p. By our assumption dim 7 = », we have Homg, (Sy/m, 1) = 0 for
q < r. Thus we have

S;m if p=0 and ¢g=17r

” Elp,q ~ .
0 otherwise .

Hence we conclude that
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Sz/m if /l: =7

H(Hom3, (F", I')) = !
(Hom, (F7, 1)) = 1 T

Since Exti, (S:/m, K') = H'(Homj, (F", I')), we are done. g.e.d.

5. The condition for the ring S; to be Gorenstein. Recall that
for a non-empty star closed subset 3 of I'(zr), we denote htX =
min {dim ¢; 6 € 3} and it is equal to the codimension of Y; in the torus
embedding X, or the height of the ideal J(J) of k[M N 7V].

LEMMA 5.1. Let ' be the dimension of @ and let X be a mon-empty
star closed subset of I'(m). Then if ht Y < ', the cohomology group
H"(3, k) 1s equal to zero.

ProoOF. 3, is non-empty for every ¢ with ht ¥ <7 <+'. Hence
Y,._, is non-empty and the homomorphism C” Y3, k) — C"(Z, k) = k. is
surjective. q.e.d.

LEMMA 5.2. Let ', 3" be non-empty star closed subsets of I'(w).
If ht3' and th2” are less than ' and if 3'NZ" = {x} then H"'(2'U 2",
k) # 0.

ProoF. In the Mayer-Vietoris exact sequence
H' Y J2X, k)y— H'({n}, k) > H'(Z', k) H'(Z", k)

we have H'({z}, k) = k. and H”'(2', k) = H”'(2",k) =0 by Lemma 5.1.
Hence we have H” (X' U X", k) = 0. q.e.d.

Let X be a Cohen-Macaulay subset of I'(z) with h = ht Y. Then %,
is the set of the minimal faces of X, i.e., 3 is the star closure of J,.
Indeed, for peX with dimp > h, we have H*™?(2(p), k) = 0. Hence
(o) # {o} and p is not minimal in 3.

PROPOSITION 5.3. Let X be Cohen-Macaulay with h = ht ¥. If non-
empty subsets X' and X" of X are the star closures of their subsets X
and X with 3, =2,U2%) and 2, N3 = @, then 3., and 3., in-
tersect.

ProOF. Let p be an element of the minimal dimension in 3" N 2X".
Then X’'(p) N 2"'(p) is equal to {o} and X(o) = 3'(p) U 2"(p) is a Cohen-
Macaulay subset of I'(0). Hence by Lemma 5.2, we have H dim"‘%Z’(p),
k) # 0. Since ht 3(p) = h, the dimension of p is equal to » + 1. q.e.d.

PROPOSITION 5.4. Let 3 be a Cohen-Macaulay subset of I'(m) with
ht Y = h < dimz. Assume H"(X(p), k) ~ k for every p€2,.,. Then for
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any non-zero cocycle a = (a,),es, tn C*2, k), the component a,ck, is not
zero for every o im X,.

PrROOF. Set X, ={0€eZ,;a, =0} and X} = {0 € 3,;a, # 0}, and let 3’
and 3" be their star closures, respectively. If the proposition were
false, then 3’ and X" would clearly satisfy the condition of Proposition
5.3. Hence there exist pe X4, 0'€ 2} and ¢” € 2} with p > ¢/, ¢"”. Our
assumption H"(2(p), k) =~ k implies X(p) = {po, 0/, 6”"}. Hence the p-com-
ponent of 9*(a) = (Xyerjro @e/o(@))ces,,y, 18 equal to g,,(a,) # 0. This
is impossible since a is a cocycle. q.e.d.

COROLLARY 5.5. Under the same condition as in Proposition 5.4,
H"(2, k) 18 at most 1-dimensional.

PrROOF. Let a and b be two non-zero cocycles of C*(Y, k). Then the
above proposition implies b — ta = 0 for some ¢ in k. Thus @ and b are
linearly dependent. q.e.d.

COROLLARY 5.6. In addition to the condition of Proposition 5.4,
assume H“(X, k) ~k. Then, for every 7 in 2, the induced homo-
morphism

H"(3, k) — H"2(7), k)
18 an 1somorphism.

Proor. Since C* (2, k) = 0 (resp. C*(3(z), k) = 0), the cohomology
group H"Z, k) (resp. H"X(z), k)) is a submodule of C*2, k) (resp.
C*(X(z), k)). Hence by Proposition 5.4, the kernel of this homomorphism
is 0. Since H"(X(z), k) is at most one-dimensional, we are done. q.e.d.

DEFINITION 5.7. A non-empty star closed subset Y of I'(w) with
ht ¥ = h is said to be spherical if

; [k i i=h
HED B =00 56 s
for every pe 2. We say X is semispherical if there exists pe X such
that X(p) contains all the minimal elements of ¥ and if 3(p) is spherical
in I'(p).
In view of Corollaries 5.5 and 5.6, X is spherical if and only if X is
Cohen-Macaulay, H"(2(p), k) =~ k for every pe€Z,;,, and if H*X, k) # 0.

PROPOSITION 5.8. If a star closed subset 3 C I'(w) is semispherical
with respect to pel, then H'(XE(), k) =0 for every i and for every
ne2\Z(p). In particular, ¥ is Cohen-Macaulay and p is unique for X.
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PROOF. Since Y is semispherical with respect to p, the intersection
pNxn is in %, and I'(n) D 3(n) is semispherical with respect to p N 7.
Hence it is sufficient to prove the proposition in the case » = 7 and
p # m. Consider the double complex A~ defined by

Ab = elezi.ae}f(m,‘,l>a kl C? ka ’

where the coboundary maps are defined naturally by ¢.,’s in §1. Fix
an isomorphism k = H"(3(p), k) for h = ht¥. Then since A"/ = D, b ®
Ci(Z(o N'\), k), the composite homomorphism

k= H"2(0), k) =5 H"(Z(o N'N), k)
induces an exact sequence
0 Ci(Z, k) D avh s avr

for every i. Since, obviously, ¢,’s are commutative with the coboundary
maps, we get a homomorphism C'(Y, k) > A™ of complexes. Hence "E??
of the spectral sequence for the double complex A™ is as follows.

H*X, k) if gq=nh
0 if g#h.

On the other hand, A" is isomorphic to @,cr; C'({M€X; N > 0}, k). Since
Y is star closed, {\ € 2;\ > g} is in bijective correspondence with I'(z'?),
and hence by the remark before Definition 2.4, {x € X; M > ¢} is homologi-
cally trivial unless ¢ = 7. Thus we know "E?? = 0 for every pair (p, q).
Hence by the general theory of the spectral sequences, we have
H?*(3, k) = 0 for every p. g.e.d.

For a face o of =, we denote by rel.int (zV N o*) the relative in-
terior of the cone ©V N o*, i.e., its interior in M. Let x be a point
of 7V¥. Then z is contained in rel. int (z¥ N ¢*) if and only if ¢ = 7 N 2*.
Hence 7V is decomposed into the disjoint union T],r rel. int (z¥ N o*).

'Eg,q ~

THEOREM 5.9. Let X be a star closed subset of I'(x). Then Sy is
Gorenstein if and only if ¥ is semispherical with respect to an element
0 €S and if there exists m,e M with

Mn( I rel int (z¥ N ol)> —m, + M (U, (" N aL)> .

oeX(p) ge .

Proor. Assume S. is Gorenstein. Then by Proposition 3.8, H*(K")
is an M-graded free S;-module of rank one generated by a homogeneous
element u. Let m, be the degree of w. Clearly m, is in M N =Y. Let
U= (@)se, E@yes, KIM N7 N 0] Q1 k,. Assume a, =0 for an 7 in 3.
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Take an m in M Nrel.int (¥ N»*). Then m + m, is not in M Nz¥ No*
for every o€, except for 7. Hence e(m)u = (e(m)a,),es, = 0. This is
a contradiction, since u is a generator of the free module H*(K'). Hence
a, # 0 for every c€2,. In particular mye M N7V N o+ for every ceJ,
and o = @ N m¢ contains every ¢ in ¥,. Since ¥ is Cohen-Macaulay, %,
is the set of minimal faces of 3. We have to show that Y(p) is spheri-
cal in I'(0). It is Cohen-Macaulay by Corollary 3.5 and Proposition 3.8.
Let 7 be an element of X(p). Take an element m, in M N (rel. int (zV N 74)).
Then, since zV N 7' >D7zY N p*", the element m, = m, + m, is also in M N
(rel. int (¥ N 7*)). Then H"(K,,) = (Ss%)n, = ke(m)u = k. Since K, ~
C'(2(z), k) by Proposition 3.1, we have H"(X(z), k) = k. Hence X(p) is
spherical in I'(0), and Y is semispherical with respect to p. By Proposi-
tions 3.1 and 5.8, we have
{meM; HYK"), + 0} = Mn ( I rel. int (z¥ N oL)) :

aeZ(p)

Since H"(K') = Syu, the equality of the theorem holds. Conversely,
assume Y is semispherical with respect to p €2 and satisfies the equality
of the theorem for an m,c M. Since (m, a) = (m, a) for every a in =
and for every m in m, + M N (U,ex (x¥ N a*)), the cone 7 N mi is the
maximal element o of Y(p). Let w be a non-zero homogeneous element
of H*K") of degree m,. We have to show that H*(K') = Syu. Let m
be an element of U,.;(MN=z¥Na). Then by the equality in the
theorem, m, + m is in rel.int (z¥ N7*) for an element ze€3(p). By
Proposition 3.1, we get a commutative diagram

H"Z(0), k) — H"(2(), k)
l !

HYK;,) S5 HNEK )
[0)] ()
u —  e(m)u .

Since X(p) is spherical in I'(0), H"(3(p), k) and H"(2(7), k) are l-dimen-
sional and e(m)u is not zero by Corollaries 5.5 and 5.6. Hence H*(K, +n) =
ke(m)u. For me M N z¥ which is not in m, + M N U,z (x¥ N o)), the
face =7 Nm* is not in 3(o) by the equality in the theorem. Hence
HYK,) =~ H*Y(z), k) is equal to zero by Proposition 5.8. Thus we have
HYK") = kbU,ex M N7V Notlu = Ssu, and S; is Gorenstein by Proposi-
tion 3.8. q.e.d.

The following theorem implies that S; is Gorenstein if ¥ is
spherical.
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THEOREM 5.10. A star closed subset 3 C I'(w) is spherical if and
only if Sy 18 Gorenstein and w is the unique element of I'(m) which
contains all the minimal faces of 3.

ProOOF. If S; is Gorenstein, then by Theorem 5.9, Y is semispheri-
cal with respect to an element pcX. Since p must contain all the
minimal faces of 3, we necessary have p = 7 and we are done. Assume
Y is spherical. Since we always have

]_Isrel. int(zVNynt)=U ( I rel.int (zV N ai)> = U @ nyH,
ne nel

7€X \age2(7)

the equality of Theorem 5.9 holds for m, = 0. Hence S; is Gorenstein.

If Y(p) contains 3, (h=ht3) for an element peX, then ¥ is semi-

spherical with respect to p. Hence we have p = 7 by Proposition 5.8.
q.e.d.

COROLLARY 5.11 (Stanley [S1]). The ring k[M N ©V] is Gorenstein if
and only +f M N (intzV) = m, + M N =V for an element m,c M.

Proor. This corollary is an easy consequence of Theorem 5.9, since
EMnN#zY] =S8y for ¥ = I'(r) and I'(r) is semispherical with respect to
o = {0}. g.e.d.

Now, consider the case z is non-singular, i.e., for a Z-basis {a,, -- -, a,}
of N and for an integer 0 < d < », we havew = Ry, + --- + Ra,. Let
{m, ---, m,} C M be the basis of M dual to {a, ---, a,}.

LEMMA 5.12. In the above situation, let X be a star closed subsetl
of I'(w). If an element o = Ry, + --- + Ry, of X, for a p with 0 <
p < d, contains all the minimal faces of 3. Then we have

Mn( I] rel. int (z" mﬁ)) = iz,Zdilmi + Mn (U (¥ m7l>> .

e (p) 7eX
PrROOF. Let o be a minimal face of Y. Then we have
oo rel.int (z¥ N pt) = {xex¥ No'; 2" Nwe(o)}.
Then we see easily that

d
resor,n-0 M N (rel. int (z¥ N p*)) = -—2;‘1 m;, + M0 (@' No).

The lemma is proved by taking the union of these equalities for all the
minimal faces o of ¥, since for every €2 there exists a minimal face
oc’3 with >0 and 7¥ Np*Cxw¥ Not. q.e.d.

The following proposition is a consequence of Theorem 5.9 and
Lemma 5.12.
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PROPOSITION 5.13. If w is non-singular, then Ss 18 Gorenstein if
and only if X is semispherical.

The assertion of this proposition is stated in [H2, Added in proof].

6. Applications. In this section we give some applications of the
results in §3.

For a star closed subset 3 of I'(x), we denote by Ks; the dualizing
complex K' which we constructed for 3 in §3.

Let ¥ be a star closed subset of I'(z), and let ¢ be an integer with
htY<g¢=<1+ =dimz. We denote ¥, = {o€2; dimo = q}. Clearly 3,
is a star closed subset of I'(rw).

PRrROPOSITION 6.1. If X is Cohen-Macaulay, then X, is also a Cohen-
Macaulay subset of I'(t) of height q.
PrOOF. By the definition of Kj, it is clear that
K =(—>0>Ki—>Ki— i 5 KE—>0— 1),
Hence we have HY(Ky ) = 0 for every i # q. g.e.d.

Recall that = is an arbitrary strongly convex rational polyhedral cone.
Henece kK[M N V] is a normal semigroup ring.

PROPOSITION 6.2. (1) The mnormal semigroup ring k[MN7Y] s
Cohen-Macaulay. (2) The ideal E[MN(intzV)] 18 a dualizing module of
the ring k(M N xwV].

ProoF. (1) We apply Corollary 8.5 to ¥ = I'(w). Then, for any
pel'(n), the star open subset X(p) is equal to I'(p), and this is homologi-
cally trivial by the remark after Proposition 2.3 if o # {0}. It is clear
that Y satisfies the condition of Corollary 8.5 with ~ = 0. Thus S; =
k[M N =V] is Cohen-Macaulay. (2) Since ht¥ =0 and K% = k[MN7Y] Qs

ks, this ideal is isomorphic to Ker [K? S K3 = H'(K3). q.e.d.

(1) of this proposition was first proved by Hochster [H1], and (2) is
stated in [TE, Ch. 1, Theorems 9 and 14].

COROLLARY 6.3. For every integer q with 0 < q < dimw, the star
closed subset ¥ = I'(7);, is Cohen-Macaulay.

PrOOF. This follows from Propositions 6.1 and 6.2.

This corollary means that the union of orbits of codimension =q of
an affine torus embedding X, is Cohen-Macaulay for every q with 0 < ¢ <
dimz. For ¢ =1, we have the following better result.
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PrOPOSITION 6.4. If Y = I'(z), (=L@\{{0}}), then X is spherical.
In particular, the ring Sy is Gorenstein.

Proor. For a p in 3, the subset X(o) is equal to I'(0)\{{0}}. Since
I'(0) is homologically trivial by the remark after Proposition 2.3, we
have

E if 1=1

HE@, B =1 ¢ ;.1

Hence Y is spherical, and S; is Gorenstein by Theorem 5.10. q.e.d.

REMARK 6.5. This proposition means that for any torus embedding
X with the torus T, the reduced subscheme X\T is Gorenstein. Further-
more, since a noetherian local ring R is Gorenstein if and only if its
completion R is, it follows that the boundary of any toroidal embedding
is Gorenstein. For the definition of toroidal embeddings, see [TE, Ch.
2, §1].

7. Gorenstein semigroup rings. In this section, we aim at classify-
ing Gorenstein semigroup rings. In §7 and §8, by a semigroup ring,
we always mean the ring k[M N zV] for a strongly convex rational poly-
hedral cone 7w C Ny of dimension » = rank N. Hence this is equivalent
to classifying Gorenstein affine Ty-embeddings with a T,-invariant point,
where T is the torus Spec (k[M]). For the Gorensteinness of semigroup
rings, Stanley obtained the fundamental result which we generalized in
§5. The translation of Stanley’s characterization in terms of #V into
the dual condition in terms of 7= enables us to classify Gorenstein semi-
group rings.

PROPOSITION 7.1 (Stanley [S1]). The semigroup ring k[MN7x'] is
Gorenstein if and only if there exists an element m. in M with m. +
MnznV=Mn (intzv). Furthermore, such an m. is unique for .

Proor. In view of Corollary 5.11, it is sufficient to prove the uni-
queness of m. under the condition dim 7 = ». If two elements m. and
m! in M have the property m.+ MNz¥ =m. + M N =V, then we have
m. —m.eMnN @ N(—xnY)). Since dimz =~», the intersection zvV N
(—nV) = m* is equal to {0}. Hence we have m, = m/.

DEFINITION 7.2. An element m in M is said to be primitive if m = 0
and Zm = M N Rm. An affine hyperplane E of Ny is primitive if K =
{a € Ng; {m, a) = 1} for a primitive element m in M.
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Let & be the set of the pairs {F, P} of a primitive hyperplane E
in N; and a polytope P (=the convex hull of a finite set of points) of
dimension » — 1 in K with vertices in NN E.

If the semigroup ring k[M N zV] is Gorenstein, then obviously the
element m,. in Proposition 7.1 is primitive. We set K. ={m.=1} =
{a € Ng; (m.,ay) =1}. Then P, = E.Nxw is an (r — 1)-dimensional poly-
tope, since m. is in the interior of =V.

PROPOSITION 7.3. In the above situation, every wvertex of the poly-
tope P, is in NN K., 1.e., {E., P.} is an element of <.

ProoF. Let a be a vertex of P.. Then a is the intersection point
of a 1-dimensional face v of = and E.. Let b be the element of N with
Zb = Nnn~. Itissufficient to show that 6 = a. The number ¢ = {(m., b)
is a positive integer because m, is in M N (int #V). Consider the hyper-
plane {b = 1} = {x € My; {x, b) = 1} in M. Then the intersection {b = 1} N
(int V) contains m./¢g + 7V N v*. Sinece z¥V N ~v* is an (» — 1)-dimensional
convex cone in {b = 0}, its parallel translation m./q + ¥ Ny c{b = 1}
contains an element of M N {b=1}. Hence there exists an meM in
{b=1}Nn@{ntxzv). Since meMN@intzV)=m.+ MN~rY, we have 1=
{m, by = {m,, b) = q> 0. Hence the integer ¢ is equal to 1, and b is
the intersection point of v and E.. q.e.d.

By the definition of P,, it is clear that = = R,P.. Hence this pro-
position shows that if A[M N zV] is a Gorenstein semigroup ring, then
w = R,P for an element {F, P} in . The following proposition shows
that the converse is true.

PROPOSITION 7.4. Let {E, P} be an arbitrary element of <. If we
set T = R,P, then K[M N nV] is Gorenstein and {E, P} = {H., P,}.

Proor. Let {a, ---, a,} be the set of the vertices of the polytope
P, and let m, be the primitive element of M with £ = {m, = 1}. Then
v ={xeMp<x,ay=01i=1 ---,8, and (m,a;) =1 for every 1=
1, ---,s. Hence m, is in int zV, and we have m, + M N z¥ C M N (int V).
Let m be an element of M N (int #V). Then {(m, a,> is a positive integer
for every 4, hence we have m — mye M N=wY. Thusm,+ MNza¥ =MnN
(int V), and kK[M N V] is Gorenstein by Proposition 7.1. By the uni-
queness of m,, we have m, = m,, F = E, and P = P,. q.e.d.

By Propositions 7.3 and 7.4, we have the following.

THEOREM 7.5. The semigroup ring kK[M N 7nV] is Gorenstein if and
only if = is equal to R,P for an {E, P} in ©. Furthermore, such an
element {E, P} in ¥ 1s unique for =.
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Let GL,(N) be the automorphism group of the free Z-module N.
Then each element g in GL,(N) induces an automorphism g*: M ~ M of
the dual Z-module M of N.

If there exists an isomorphism a: M Nzxy =~ M N =y of semigroups,
then a is extended to an automorphism & of M. Hence there exists
g€ GL,(N) with g* = &. Clearly we have g(n,) = =,. Hence there exists
a natural one-to-one correspondence between the set of isomorphism
classes of Gorenstein semigroup rings and the quotient of & by the
following equivalence relation: {E, P} ~ {E’, P’} if and only if there exists
9 €GL,(N) with g(F) = E’ and g(P) = P’. Note that, by isomorphisms
of semigroup rings, we always mean those induced by isomorphisms of
semigroups.

We identify N with Z© by a fixed isomorphism. We also identify
M with (Z7)¥ by the dual isomorphism. Let m,= (1,0, ---,0)e(Z")".
Then E,={m, =1} ={{1, ¢y - -+, ¢,); € +++, ¢, € R} is a primitive hyper-
plane. We identify E, with R"* by the bijection defined by (1, ¢, ---, ¢,) —
(Cy =+, c)ERT

DEFINITION 7.6. An affine transformation f: R"* — R"' is Z-rational
if it sends Z'* onto itself. Two polytopes P, P’ in R"™* with vertices
in Z7 are equivalent if there exists a Z-rational affine transformation
fi R — R with f(P) = P'.

It is clear that, for every primitive hyperplane E, there exists ¢ in
GL,N) with g(&) = E,, and that for every Z-rational affine transforma-
tion f: R — R™, there exists h € GL,(N) with h(E) = E, and k|, = f.
Hence the quotient of & by GL,(N) is in natural one-to-one cor-
respondence with the set of equivalence classes of (» — 1)-dimensional
polytopes in R™™ with vertices in Z"*. Thus we get the following by
Theorem 7.5.

THEOREM 7.7. Let &, be the set of (r — 1)-dimensional polytopes in
R with wertices im Z"'. For a polytope P in &, with wvertices
{a, -+, a,}, let T be the convex cone in R™ = Ny generated by {(1, a,), - -,
1, a,)}. Then k[M N 7] is a Gorenstein semigroup ring. Conversely,
every Gorenstein semigroupd ring s isomorphic to such a semigroup
ring for a polytope P in <&, Let kK[MN=w'] and k[MN7y] be the
Gorenstein semigroup rings associated to polytopes P, and P, in <,
respectively. Then they are isomorphic if and only if P, and P, are
equivalent, i.e., there exists a Z-rational affine transformation f: R"* —
R with f(P) = P,

ExAMPLE 7.8. When » = 2, then %, is the set of intervals [a, b]



TORUS EMBEDDINGS AND DUALIZING COMPLEXES 135

with a,b€Z and a <b. By the above theorem, two intervals [a,, b]
and [a,, b,] define isomorphic semigroup rings if and only if their lengths
b, —a, and b, — a, are equal. For the interval [0, n] with a positive
integer n, the associated cone 7 in R? is generated by (1,0) and (1, n).
Hence the dual cone 7V is {(x, «,) € RVz; x, = 0, x, + nx, = 0}. (See Figure
1.) It is easy to see that the semigroup M NV = (Z?¥ NV is generated

M)

/

N
X1

FiGURE 1. The region of vV when n =3

by three elements (0, 1), (n, —1) and (1, 0) if » = 2, and it is generated
by two elements (0,1) and (1, —1) if n=1. Set z =1¢(0,1), y=
e((n, —1)) and z = ¢((1, 0)), with the notation in §3. Then K[M N 7V] is
equal to kfz, y] if n = 1. It is equal to k[x, v, 2]/(xy — 2*) if » = 2. Thus
every 2-dimensional Gorenstein semigroup ring is isomorphic to one of
these. In particular, it is a complete intersection. However, in dimen-
sion 3, most of Gorenstein semigroup rings are not complete intersections,
as we see in the next section.

8. Complete intersections of dimension 3. According to Theorem
7.7, 3-dimensional Gorenstein semigroup rings are classified by convex
polygons in R? with vertices in Z* modulo Z-rational affine transforma-
tions. In this section, we prove a theorem (Theorem 8.1) which de-
termines 3-dimensional semigroup rings which are complete intersections.

Recall that a noetherian local ring R is a complete intersection if
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there exists a regular local ring R’ such that R=R'/(f, ---, f,) for a set
of elements {f, ---, f,}JCR' with ¢ = dim R’ — dim R. A noetherian ring
A is said to be a local complete intersection if, for every prime ideal p
of A, the localization A, is a complete intersection. We say a ring A
of finite type over a field & is a global complete intersection if A =
klx, ---, 2,)/(f, -+, f,) for a positive integer »n and for some elements
S oy fe €k, -+, 2,] With ¢ = » — dim A.

It is well-known that if a noetherian ring A is a local complete
intersection, then A is Gorenstein.

THEOREM 8.1. Let P be a convexr polygon in R® with vertices in Z°.
Then the associated 3-dimensional semigroup ring S is a local complete
intersection if and only if P is equivalent to the polygon P, for some
a,b,ceZ with 1) a >0 and b,c =0, 2) b#x0o0rc+0and 8)c=a
if b = 0, where P, . is the convex hull of the set {(0, 0), (a, 0), (0, ¢ + ba),
(a, ¢)}. Furthermore, if P is equivalent to P,, ., then S is isomorphic
to klz, v, z, w, w]/(xz — w*u’, yw — u*). In particular, S is a global com-
plete intersection. (See Figure 2.)

A

0, ¢+ ba)

(a,¢)

v

0 (,0)

FIGURE 2. The polygon P..s,.

REMARK 8.2. In the above theorem, P,, . is a triangle if ¢ = 0 and
a quadrangle if ¢ > 0. By conditions (1), (2) and (8), P,,. is not
equivalent to P,., . if (a, b, ¢) = (2, V', ¢').
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The rest of this section is devoted to the proof of Theorem 8.1.

ProPOSITION 8.3. Let (R, m) be a mnoetherian local ring, and let
d = dimg,(m/m?). If R is a complete intersection, then the inequality

d+1
d—dimR = < —2f- ) — dimg,,(m?/n®)

holds.

ProoF. Let (R',n) be a regular local ring with R = R'/(f,, ---, f,)
and ¢ =dim R’ — dim R. If f; is not in n* for an ¢, then R'/(f)) is a
regular local ring, and we can replace R’ by R'/(f,). Hence we may
assume f;en®* for every ¢=1,---,q. Then n/n®=~m/m®* and m*u’ ~
w4+ (fy, +++, fo))- Thus we have

dimp, (m*/m?®) = dimg., (W*/n®) — ¢
d+1
=< N )——(d—dimR).
2
g.e.d.

COROLLARY 8.4. Let (R, m) be a mnoetherian local ring, and let
{x, -, s} be a minimal set of generators of the maximal ideal m. If
R is a complete intersection, them the number of pairs (i,J) with
1<i<j=Zd and 22, =0 is at most d — dim R.

ProoF. Since {x, :--, x,} is a minimal set of generators of ni, we
have dimg, (m/m?) =d and m* is generated by the set {xx;; z;x; # 0,
1<:¢=<j=<d}). The assertion follows from the inequality of Proposi-
tion 8.3.

DEFINITION 8.5. For a strongly convex rational polyhedral cone =
and for a face o of 7, a subset A of M N7V No'is said to be a set of
generators of the semigroup MNzVNot if MNa¥Not =D, Zux,
where we understand >,.., Zx = {0} if A = .

When dim 7 = » = rank N, we denote by 4., the set of irreducible
elements in M N7V No', where we say an element x in MN=zVNot is
reducible if either x = 0 or there exist non-zero elements =z, x,€ M N
z¥ No* with ¢ =, + x,. It is easy to see that A.. = 4., N 7' for any
faces o, 7 of © with 7 > 0.

LEMMA 8.6. If dimw =17, then A., is a set of generators of
Mnzv¥Not, and every set of gemerators of M Nz¥Not includes A,
i.e., A., 18 the smallest set of generators of M Nzw' Nat.
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ProoF. Since dim 7 = », we can take an element a¢ in NN (int 7).
Then {x, a) is a positive integer for every x in M N 7w'\{0}. Hence if
x#0 in MNz7'No' is reducible, then x = ' + 2” with 2, 2" eMn
v Nnot and (&, ay, {&”, a) < {x, a). By induction on the number {z, a),
we know that = is a finite sum of irreducible elements. Hence 4., is
a set of generators. The rest of the assertion is clear since every

irreducible element is contained in any set of generators. q.e.d.

Let P be a convex m-gon (n = 3) with vertices v, ---, v, in Z* in
clockwise order and sides s, = vv,, --*, 8, = v,_,v, and s, = v,v,. (See
Figure 3.)

V4

FIGURE 3

Then the associated cone mw in Nr = R’ is generated by = elements
), -+, 1,v,) in Z°. Let v, and o, be the faces of = generated by
(1, »,) and {1} X s,C R’, respectively, for every 7=1, ---, n. Then
{Yy, +++, 7.} and {0, ---, 0,} are the set of 1- and 2-dimensional faces of
7w, respectively. Let x,e M = (Z%)" be the generator of the semigroup
Mnof=Mnnz'¥No- which is isomorphic to Z,, The two dimensional
cone v = 7wV N v has 1-dimensional faces o}, and o} for everyt=1, ---, n
with the convention o) = o;. Hence the smallest set of generators 4.,
of the semigroup M N vf contains «,_, and «, with the convention 2, = z,.
Let A.;, = {®i_y, %y Yi1y -, Yi,,} for every i =1, -+, n.

PropoSITION 8.7. The set G ={1,0,0), 2, -+, % Ys,;; 1 £ 1= m,
1<7=5q) 18 a set of generators of M N =Y, and the smallest set of
generators of M Nz is of the form A. ., = G or G\{{, 0, 0)}.

ProOOF. By Propositions 7.1 and 7.4, we have M N (intzV) = (1, 0, 0) +
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Mnzv¥. Hence any =+ (1,0,0) in M N (intxV) is reducible. On the
other hand, any « in M N (zV\intz¥) is in M N =¥ N v+ for an ¢, and we
know A. . Nvi = A.y. Hence A., =G if (1,0,0) is irreducible and
A, = G\{d, 0, 0)} if not. g.e.d.

The ideal m of k[M N 7V] generated by {e(m)}..¢ is 2 maximal ideal
of k[M n =].

LEMMA 8.8. If the localization k[M N V], is a complete intersection,
then the following inequality holds.

() me—32+m-2(5e)+ SeaSa+ a2

ProOF. The left hand side of this inequality is the number of pairs
{m, m'y c G\{(, 0, 0)} with m + m"e M N (int V). Let R be the quotient
of kK[M N V], by the ideal generated by e((1, 0, 0)). Then clearly R is
also a complete intersection, and the maximal ideal m of R has a minimal
set of generators {€(m)}mcoviwom, Where é&(m) is the image of e(m)e
kKMNnz'] in R. Since MN(@{intzV)=(1,0,0) + MN=rY, the condition
m + m'e M N (int 7V) implies e(m)e(m’) = 0. Hence by Corollary 8.4, we
have n(n — 8)/2 + (n — 2)(Xi1 q) + e 090 = HG\{(1, 0, 0)}) — dim R =

n+ i — 2. q.e.d.
PROPOSITION 8.9. If k[M N =], is a complete intersection, them by
renumbering v, - -+, v,, 1f necessary, the possibilities are reduced to the

following three cases.
(1) n=4and ¢;=0,1=1, ---, 4.
(2) n=38,¢=¢=0and ¢ =0.
(8) n=38,q,=0and q,=¢q, = 1.

Proor. If » =5, then n(n —8)/2>n—2 and (n — 2)C 7. q;) =

»  q,. Hence the inequality (*) does not hold. If n =4, then (»)
becomes 2 + 2(3¢-1 @) + Sici €0y = 2 + Vi, q;. Clearly, this inequality
holds if and omnly if ¢, =0 for every « =1, ..--,4. If » =3, then
=10+ i< 49y = 24i=1¢; + 1. Hence we have >, ¢,¢» = 1, and only
the cases (2) and (3) are possible. g.e.d.

For an n-gon P with vertices v, ---, v,, say clockwise, in this order
in Z? we denote by u, the element in Z* with Ry(v,1, — v,) N Z° = Zu,
for every ¢ =1, ---, n with the convention v,,, = v,. (See Figure 4.)

For a vertex v, of an n-gon P, we denote by C,, the cone in R®
generated by P — v,. Obviously, Cp,, is the cone generated by two
elements u; and —u,_, with the convention u, = u,. Hence this is a
strongly convex rational polyhedral cone in R*.
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u;

Ui
et

v; Vi-1

FI1GURE 4

PROPOSITION 8.10. The semigroups (Z°)" NC%, and MO are
1somorphic.

ProoF. Recall that v, is a 1-dimensional face of = generated by
(1, v;). Hence if we define a homomorphism ¢: N — Z* by ¢(a,, a,, a;) =
(a, — v, a; — a,0f), where v, = (v{", v{?), then ¢ induces an isomorphism
Nvo ~ Z* and n'% = Cp,,,. (For the definitions of N“# and z'"?, see §1.)
Hence M'# and (Z?*)" are naturally isomorphic. Since it M N (z"?)Y =
MnzvNvt+ by Proposition 1.8, we are done. q.e.d.

Since the semigroup ring k[M N ~v}] is generated over & by g, + 2
elements, ¢, =0 implies k[(Z*)" NCy,]=klx,y] and ¢, =1 implies
kEl(Z*)Y N CY.,] = klz, y, 2]/(xy — z*) for an integer n = 2 as we saw in
Example 7.8.

LemmA 8.11. If q, =0, then the area of the parallelogram with
sides O(—u,_,) and Ou, is equal to 1. If q, =1, then the area of the
parallelogram is an tnteger n = 2, and the point (w;,_, + w;)/n is in Z°.

ProoF. Since k[(Z%)" N Cy,] is Gorenstein as above, there exists,
by Theorem 7.7, a linear transformation f; R* — R* with f(Z? = Z*® which
sends the cone C,,, onto the cone generated by {(1, 0), (1, n)} for a posi-
tive integer m. As we saw in Example 7.8, we have ¢, =0if n =1
and ¢, =1 if n = 2. Since the assertions are invariant under linear
transformations which send Z*® onto itself, we may assume —u,_, = (1, 0)
and u; = (1, »). Then the assertion is obvious. q.e.d.

PrOOF OF THEOREM 8.1. Assume P satisfies the condition (1) of
Proposition 8.9. Then by Lemma 8.11, there exists a Z-rational affine
transformation which sends v, —w, and %, to (0,0), (1,0) and (0, 1),
respectively. Thus we may assume v, = (0, 0), v, = (0, t,) and v, = (s, 0)
for positive integers ¢, s,. Let v, = (s, t,) for positive integers s, and
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N

V3= (S, I2)

V2= (0, tl)

A\

u V4= (51,0)

FIGURE 5

t.. (See Figure 5.) Then since u, = (—1,0) and w, = (0, 1), we know
that u, = (1, d) and u, = (d,, —1) for integers d,, d, by Lemma 8.11 for
i=2and 4. If ¢ =38 in Lemma 8.11, we have 1 — d,d, = 1. Thus we
haved, =0ord,=0, and ¢t,=¢, if d, =0 and s, = s, if d, = 0. In both
cases P is equivalent to P, , . for integers a, b, ¢ with a, ¢>0 and b=0.
Assume P satisfies the condition (2) or (38) of Proposition 8.9. Similarly
as in (1), we may assume v, = (0, 0), v, = (0, s) and v, = (a, 0) for posi-

N

v2=(0,5)

Y

U v3=1(a,0)

FIGURE 6
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tive integers s, a. (See Figure 6.) Then we have u, = (—1,0), », = (0, 1)
and u, = (a’, —s') = (a/d, —s/d), where d is the greatest common divisor
of s and a. Now assume P satisfies (2). Then, by Lemma 8.11 for © = 2,
we have a’=1. Thus P is equivalent to P, ,, for b=3s'>0. If P satisfies
the condition (3), then by Lemma 8.11, we have o/, s’ = 2, (u, + u,)/a’ =
1, —(s'—1)/a’) € Z* and (u, + u,)/s’ = ((a' — 1)/s’, —1) € Z*. Hence (s’ —1)/a’
and (a’—1)/s’ are integers. This is impossible since 0<(s'—1)(a’'—1)/a’s’<1.
Hence the case (3) does not occur. Thus we know that P is equivalent to
P,,. for integers a, b, ¢ with ¢ >0, b,¢ =0 and b # 0 or ¢ = 0 if the
associated semigroup ring k[MN7z"] is a local complete intersection. Hence
it remains to show Ek[M N zV] = klz, v, 2z, w, u]/(xz — w'u’, yw — u®) if
P=P,,. ‘

For the polygon P,,. the associated cone = is generated by
{3,0,0),@1,0,c+ ba), (1, a,c), d,a, 0)}. Hence the dual cone 7V is equal
to

{(t, ty t) € (R)V: 6, = 0,8 + (¢ + ba)t, = 0, ¢, + at, + cty = 0, t, + at, = 0} .

We define m,, ---, m,e (Z*)V(=M) by
m0:<19 0, 0), mlz(oy 0, 1, m2=(0, 1: 0),
m; = (¢ + ba, _b’ -1, m=(a —10).

It is easy to check that m;e M Nz for every ¢ =20, ---,4. We need
the following.

LEMMA 8.12. Every element m in M N\ s expressed uniquely in
the form

m = cemy + + -+ + My
for nonm-negative integers ¢, - - -, ¢, With c¢,c; = 0 and c,c, = 0.
ProOOF. Let C, ---, C, be cones in My defined by
Ci=m"N{t=0N{t=0, C=xr"N{t=<0ni{t— b =0},
C=n"N{t, =0}N{t. — b, =0}, C,=n"N{t=0N{t.=0}.

Then, clearly, 7V is the union of these four cones. Since ¥ is defined
by four linear inequalities, each cone C, is defined by six inequalities.
However it is easy to see that three of them are implied by the others.
Namely we have C, = {£, =0} N {t, =0} N {t;, = 0}, C, = {t, + (¢ + ba)t, = O} N
{t,=bt, =20}N{t, =0}, Co={t, +at, +ct, =Z0}N{t,— b, =0} N {t;, =0},
C.={t,+at,=zZ0}N{t, =0} N{t; = 0}. We see easily that the cones C,,
C,, C, and C, are generated by {m, m, m,}, {m, m, my}, {m, m,; m} and
{m,, m,, m}, respectively. Since, as we see easily, each of these genera-
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tors forms a basis of M(=(Z*"), we have M N C, = Zm, + Z;m; + Zm,.,
for every 1 =1, ---,4 with the convention m, = m,. Since any m in
Mnzvisin MNC, for an 4, we know that m is equal to ¢;m, + --- +
¢ym, for some non-negative integers ¢, ---, ¢, with ¢,c; = ¢.c, = 0. This
5-ple of integers is unique for m since C,, ---, C, form a subdivision of
V. g.e.d.
We define a homomorphism of k-algebras : klx, ¥, 2, w, ] — k[M N V]
by y(x) = e(m,), ¥(¥) = e(m.), ¥(2) = e(ms), Y(w) = e(m,) and y(w) = e(m,).
By Lemma 8.12, + is surjective. The proof of Theorem 8.1 is complete
if we show
(%) Ker = (w2 — wu’, yw — u*) .
It is easy to check that I = (xz — wbu®, yw — u°) is contained in Ker 4.
We define a homomorphism s: K[M N7V] — klz, v, 2z, w, u] of k-vector spaces
by s(e(m)) = xy*zwu, where {c, ---, ¢} is a 5-ple of non-negative
integers with ¢,c; = ¢,¢, = 0 and m = ¢;m, + - -+ + ¢,m, uniquely determin-
ed by m by Lemma 8.12. Clearly, s is a section of . Hence in order
to prove () it is sufficient to show that k[x, v, z, w, u] = s(k[M N 7V]) + L.
Let f = amyr2z?wPwu? be an arbitrary monomial in K[z, v, 2z, w, u]. We
have to show that
(%) fisin sk[MN=V]) + I.

We first show (#%) to be the case provided p, or p, is equal to 0. Indeed
suppose f is not in s(k[M N =xV]) + I with p,p, minimal. If p,p, > 0, then
aPYPRPIWPAUT — EPYPIT PP T Iy = gPiyPe gt u P (yw — u) el .
Hence the monomial a?iy?2 2?3+ 'yro+* ig not in s(k[M N =V]) + I, a con-
tradiction to the minimality of »,p,. If p,p, =0, then since p,p, = 0, we
know f =s(e(m)) for an m in MN=7¥ by Lemma 8.12, again a contradic-
tion. Thus f is in s(k[M N=zV]) + I if p,p, = 0. Let us prove (##) in
the general case. Assume f has the minimal p,p, among the monomials

which are not in s(¥[M N zV]) + I. Then clearly »,p, > 0, and
XPYPRPIWPIUPO — EPLTIYPRPI T Py Pt = iy P TlyPayPo(g — wiu) € T .
Hence the monomial x?17'yP2zPstyPsttyrote ig not in s(k[M N nV]) + I. This
is impossible since we assume p,p, is minimal. Hence f is in
s(kf[M N =V]) + I. q.e.d.
Appendix. Let M be a free Z-module of finite rank.
DeFINITION 1. For an M-graded ring A = @,.cx 4., We call a homo-

geneous ideal p M-maximal if p is maximal in the set of proper homo-
geneous ideals.
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DEFINITION 2. We call an M-graded ring A an M-field if the ideal
{0} is M-maximal.

It is clear that an M-graded ring A is an M-field if and only if
every non-zero homogeneous element of A is invertible. The following
lemma can be proved as in the non-graded case.

LeMMA 3. Let A be an M-field and let E be an M-graded A-module.
Then E is a free A-module with a basis comsisting of homogeneous ele-
ments.

DEFINITION 4. We call an M-graded ring A M-local if A has only
one M-maximal ideal.

It is obvious that every homogeneous quotient ring of an M-local
ring is also an M-local ring.

ExaMPLE 5. If M=Z and A =@;-, A, is a Z-graded ring with
non-negative degrees such that A, is a field, then A+ = @3-, 4, is the
unique Z-maximal ideal of A. Hence A is a Z-local ring.

EXAMPLE 6. Let M be the dual of a free Z-module N and let 7 be
a strongly convex rational polyhedral cone of Ny (see §1). Then, for a
field %k, the semigroup ring k[M N z"] is an M-local ring with the maximal
ideal P(%) = @umenni=vizly ke(m). Hence every homogeneous quotient ring
of kE[M N nV] is M-local, too.

The following lemma is an analogue of Nakayama’s Lemma.

LEMMA 7. Let A be an M-local ring with the M-maximal ideal P.
Then for an M-graded A-module E of finite type, pE = E tmplies
E=0.

ProoF. Let {e, ---, e,} be a set of homogeneous generators for K
and let m, be the degree of ¢, for 1 =1, ---, n. Then pE = E implies
that e¢; = 37, a,; ;¢; for some homogeneous elements {a, ;}i<; j<» 0f P With
deg a;; = m; — m;. Then d =det(;,; —a,;;)€l+ p is a homogeneous
element of degree 0 and de, = 0 for every 4. Since A is M-local, d is
invertible and we have ¢, = 0 for every <. g.e.d.

We have the following proposition as in the non-graded case.

PROPOSITION 8. Let A be a mnoetherian M-local ring with the M-
maximal ideal  and let P be an M-graded projective A-module of finite
type. Then P is a free A-module with a basis comsisting of homogene-
ous elements.

ProOOF. The quotient P/pP is a free A/p-module by Lemma 3. Let
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r be its rank and let m,, ---, m, be the degrees of elements of a basis.
Then there exists a homomorphism f: @;-, Au, — P of degree 0 which
induces isomorphism @i, (A/p)u, — P/pP, where u,; is an indeterminate
of degree m; for every ¢ =1, ---, . Thus we have p Coker f = Coker f
and f is surjective by Lemma 7. Since P is a projective A-module,
Tor{ (A/p, P) = 0 and we have (Ker /) ®, A/p = 0. Again by Lemma 7,
Ker f = 0 and f is an isomorphism. q.e.d.

Let 3 be a star closed subset of I'(x). Then the ring S; defined
in §8 is a homogeneous quotient ring of k[M N 7¥]. Hence S;is M-local
and this proposition is applicable to A = S;. For the case dimzx =7 =
rank N and Y = ['(z), this proposition was proved by Kaneyama [K1,

Theorem 3.5].
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