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1. Introduction. In this note we shall study tatonnement processes
with time-dependent almost periodic coefficients. The model process is
given by a system of ordinary differential equations

(0) M- = XMP, t) , i = l,2, - ,n
at

where p = (p<) is a price-vector, Et(p, t) is the excess demand function
for the ith good and λέ is a positive constant. These equations form a
mathematical model for the classical law of supply and demand. We
shall assume below that the system (0) is a gross-substitute system that
satisfies Walras' law and that E(p, t) is almost periodic in t. An ex-
ample of the system we consider is given by λ4 = 1 for all i and

\α = l 3=1

where α?y is almost periodic in t, a% ^ 0 when i Φ j and Σ?=i α?i(<0 Ξ °
for all i and a.

Autonomous tatonnement processes have been studied extensively in
the econometrica literature, cf. [8, 10] for example. The stability and
limiting behavior of these systems is well understood, cf. [1-3, 6, 8, 10, 12],
However if one wishes to build a theory of such economic models which
reflects changes due to seasonal adjustments, then it is important to
study time-dependent or nonautonomous systems. The theory we describe
here is adequate to describe the limiting behavior of systems with almost
periodic seasonal adjustments. In the example above such systems would
occur if the coefficients α?/ί) are periodic with incommensurable periods,
cf. [5, 13].

This paper is a generalization of the periodic theory presented in
Nakajima [7]. In particular we will show that any "positively compact"
solution of (0) is asymptotically almost periodic, cf. [13]. As we shall
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see, the positive compactness of solutions will guarantee stability. In
order to show that the limiting behavior is almost periodic we will use
the lifting theory of skew-product flows in Sacker and Sell [9], In par-
ticular we use the result which asserts that the omega-limit set of a posi-
tively compact uniformly stable solution of an almost periodic differential
equation is a distal minimal set. As a technical point we note that the
given positively compact solution need not be asymptotically stable. But
nevertheless, because of the strong structure of gross-substitute systems,
this solution is asymptotically almost periodic, cf. [5, 9, 13].

2. Gross-substitute systems. Let Rn denote the real ^-dimensional
Euclidean space with norm \x\ = Σ?=i \χt\t where x = (xl9 , xn) eRn.
Define

P = {x 6 Rn : xt > 0, 1 ^ i ^ n} .

Let F = (Fl9 , Fn)\P x R-> Rn be a continuous function. The differ-
ential system

(1) x' = F(x, t)

on P x R is called a gross-substitute system if the following three
hypotheses are satisfied:
(H 1) For every compact set K Q P there is a constant L = L{K) > 0
s u c h t h a t IF(x, t) - F(y, t)\ ^ L\x - y\ f o r al l x , y e K a n d t eR.
( H 2 ) F o r a n y i = 1 , , n o n e h a s F i x , t) ^ F t ( y , t) f o r a n y x , y e P
with x{ = yt and xi ^ yό (1 £ j ^ n).

(H 3) One has Σ?=i FJfr, 0 = 0 for all x e P and t e R.
In this paper we shall be interested in almost periodic gross-substitute
systems, which means that in addition to the above, F satisfies:
(H 4) F(x, t) is uniformly almost periodic in t.

REMARK 1. The inequality (H 2) is the standard defining relationship
for a gross-substitute system [7]. The equality (H3) is basically Walras'
law. (In terms of Equation (0), Walras' law is sometimes stated as
Σ?=i Pi&i(Py t) = 0. However the change of variables xt = pj/λ< shows
that the latter is equivalent to (H3).) In economic theory Walras' law is
an assertion of the equality of supply and demand. Since we shall con-
sider only equations that satisfy all four of the above conditions, we
have lumped these sins together under the single title of an almost
periodic gross-substitute system.

A solution x(t) for a gross-substitute system is said to be positively
compact if there are positive constants 0 < a ^ β such that a <; xt(t) <Ξ
βf 1 ^ i ^ n for all t ^ t0.



GROSS-SUBSTITUTE DYNAMICAL SYSTEMS 257

The object of this note is to prove the following result:

THEOREM 1. Let (1) be an almost periodic gross-substitute system. If
there exists a positively compact solution x{t), then there exists an almost
periodic solution φ(t) that satisfies

x(t) - φ(t) I -• 0 , as t -• + <*> ,

i.e., x(t) is positively almost periodic [13].

3. Skew-product flows. Let (1) be an almost periodic gross-substitute
system. Define the translate Fτ by FT(x, t) = F(x, τ + t), where τ e R.
Next define the hull

&~ = G\ {Fτ: τ e R) ,

where the closure is taken in the topology of uniform convergence on
compact sets. It is known that ^ is an almost periodic minimal set
[11, 13]. It is easily seen that every G e ^ is an almost periodic gross-
substitute system. For each xeP and G e ^ we let <p(x, G, t) denote
the maximally defined solution of x' — G(x, t) that satisfies φ(x, G, 0) = x.
It is known that

( 2 ) π(x, G, τ) = {<p{x, G, τ\ Gr)

describes a (local) skew-product flow on P x J^ cf. [9].
A solution <p(x9 F, t) of (1) is said to be uniformly stable if it is

defined for all t ^ 0 and there exists a strictly increasing function β(r),
defined for 0 ^ r < r0 with β(0) = 0, that satisfies \<p(x,F,τ + t) —
φ(y, FT, t)I ̂  β(\φ(x, F,τ)-y\) for all ί, τ ^ 0 and all y with |φ(x, F, τ) -
y\ < r0. Notice that one has φ(x, F, τ + t) = φ{φ{x, F, τ\ Fτ, t) thus both
φ{x, Fyz + t) and φ(y, Fτ, t) are solutions of the translated equation
x' = FT(x, t).

We shall use the following lemma, which is easily verified:

LEMMA 1. Let φ(x, F, T) be a positively compact solution. Assume
that for all x, y e P and G e ^ one has D+1 φ(xf G, t) — φ(y, G, t) \ ̂  0,
where D+ denotes the right-hand derivative. Then φ(x, F, t) is uniformly
stable.

The following theorem is an immediate consequence of [9, Theorems
2,5]:

THEOREM A. Let π be the skew-product flow (2) on P x ^ generated
by the almost periodic gross-substitute system (1). Let φ(x, F, t) be a
positively compact uniformly stable solution of (1) and let Ω denote the
ω-limit set of the motion π{x, F, t). Then Ω is a nonempty compact
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connected distal minimal set. Furthermore if for some G e άf the section

Ω(G) = {xe P: (x, G) e Ω)

has only finitely many points, then Ω is an almost periodic minimal set,
and for each (x, G) e Ω the solution <p(x, G, t) is almost periodic in t.

Recall that a compact invariant set M is minimal if and only if every
trajectory is dense in M. The fact that &~ is compact and φ(x, F, t) is
positively compact insures that Ω (and therefore every section Ω(G)9

G 6 ̂ ~) is compact. Since &~ is minimal, every section Ω(G) is nonempty.
The distal property insures that the cardinality of Ω(G) is constant over
^\ As we shall see below, the section Ω(F) contains a single point.
Consequently Ω and ά^ are homeomorphic and the homeomorphism
preserves the respective flows on Ω and JF*9 cf. [9].

The fact that Ω is minimal implies that if x, y e Ω{F) then there is
a sequence tn -> + °° such that φ(x, F, tn) -» y and φ(y, F, tn)->z, where
z e Ω(F).

4. Preliminaries. Let x{t) — φ(x, G, t) and y(t) = φ(y, G9 t) be two
solutions of a gross-substitute system x' = G(x91). Assume that both
these solutions are defined on a common interval 7. (At this point we
do not require that G(xf t) be uniformly almost periodic in t.) For tel
we define the following five subsets of {i: 1 ^ i ^ n}.

Pt = {i: xlt) ^ ylt)}

Qt = {i: Xi(t) ^ »,(«)}

At = {%: Ihi > 0 with x^s) > yls) for t < s < t + hx)

Bt = {i: ϋh, > 0 with x^s) < yls) for t < s < t + hτ)

Ct = {l, -- 9n}-(At\jBt).

Next define the (n x n) matrix A(t) = (aik(t)), 1 ^ if k ^ n, by

a>ik(t) = Gifait), , Xk-lt), xk{t\ Vk+i(t), , 2/Λ(ί), t)

Notice that these five sets and the terms aik(t) depend on t and the

ordered pair (x(-)9 #(•))•

LEMMA 2. The following statements are valid:

(A) keCt=> xk{t) = yk(t\ xk{t) = i/ί(ί) απώ α<fc(ί) = 0 for all i .

(B) k e A t = > α i f c ( ί ) ^ 0 f o r a l l i Φ k .

( C ) k e B t = > a i k ( t ) ^ 0 for a l l i Φ k .
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(D)

(E)

(F)

(G)

(H)

(I)

Σ«α(ί)

fceA.-

keBt =

x'lt) - y'lt) =g

Σ MO^o
i,keAt

Σ α«(«) ̂

= 0 /or αii fc .

- Σ αrt(ϊ

α«(ί) +

0 and

5 ) £ O .

Σ «<*(*) /or αϋ

Σ α«(ί)^O.

Σ α«(«) ̂
ie Bt,ke At

0 .

PROOF. (A) follows immediately from the definition of Ct. (B) and
(C) are direct consequences of (H 2). (D) follows from (H 3). If k e At

then (B) implies that Σ i e ^ aik(t) + Σteσ, <&«(*) ̂  0. Statement (E) then
follows from (D). Statement (F) is proved similarly. It is easily seen
that Xi(t) - y'lt) = Σ2U αiib(ί) for all i. Statement (G) then follows from
(A). Statement (H) follows immediately from (E) and (F). Finally since
At and Bt are disjoint, statement (I) follows from (B) and (C). q.e.d.

LEMMA 3. One has D+\x(t) — y(t)\ <; 0 on I.

PROOF. We use Lemma 2 (A, G, H, I).

D+1 xit) - y(t) \ = ΣD+\ x,{t)

Σ [χ'MΣ [
ieAt

= Σ Γ Σ aik(t) + Σ o14(t)l - Σ Γ Σ ajjt) + Σ α«(ί)Ί ̂  0 .
ie^l^&e^ί fceiίί J ie£t[_keAt ke£t J

LEMMA 4. Assume that one has D+\x(t) — j/(ί)| = 0 on /.
following statements are valid:

(A) Σ aik(t) = 0 and Σ α«(ί) - 0 .
i,keAt i,keBt

(B) Σ α«(ί) = 0 «Λd Σ α«(ί) = 0 .
ieAt,keBt ieBt,keAt

(C) ieAt,keBt~ aik{t) = oκ(<) = 0 .

(D) i e Λ, => a Kt) - wί(ί) = Σ αΛ(ί) ̂  o«(t) .

(E) • i 6 5, => x'lt)

(F) Σ [ * ) ) ]
ieAt

PROOF. We will use (2A), (2B), etc. to refer to the corresponding
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statements of Lemma 2. In the proof of Lemma 3 it was shown that
D+1 x(t) — y{t) I can be written as the sum of four nonpositive terms, viz

Σ α e i i &ife(£)> —Σi . fce^ (Likit)* ^ieAt,keBt^ik(i) &H& — Σ*ei^,feeΛt &**(£)• SfrlCe

D+\x(t) — y{t)\ — 0 each of these terms must be zero, which proves (A)
and (B). Statement (C) follows from (B), (2B) and (2C). Statement (D)
follows from (2 G), (C) and (2 B). Likewise statement (E) follows from
(2G), (C) and (2C). Finally statement (F) follows from (A), (D) and (E).

q.e.d.

LEMMA 5. Assume that D+\x(t) — y(t)\ = 0 on I. If ieAtQ then
#Ϊ(£) — Vi(t) > 0 and ie At for all t > t0. Likewise if ie BtQ, then Xi(t) —
yt(t) < 0 and ie Bt for all t > ί0.

PROOF. We shall prove the statement concerning At. The argument
for Bt is similar.

If i e AtQ, then there is an h > 0 such that x^t) > yt(t) for t0 < t <
tQ + h. Now define

t± = sup{£ e /: xt(s) > yt{s) for all s , ί0 < s < i) .

It will suffice to show that tλ $ I. If ίx 6 /, then one has x^Q = y^Q and
%i(s) — yt{8) > 0 for tQ < s < ίx. However from Lemma (4 D) and Hypothesis
(H 1) one has Xi(t) — y'iif) ^ α«(ί) ^ — L{ic<(i) — i/^i)} for tQ < t < tγ. The
Gronwall inequality then implies that [xt(t) — yt(t)\ ^ e~L{t~a)[xt(s) — 2/*(s)]
for all ί0 ^ s < ί. If s is chosen so that t0 < s < t0 + fe, then [^(s) —
2/t(β)] > 0. Hence [xt(t) — y^t)] > 0 for all t > t09 which contradicts the
fact that Xiffj) = y^t,). q.e.d.

LEMMA 6. Assume that D+\x(t) — y(t)\ = 0 on I. Pick s,tel with
s ^ t. Then one has

A.QAt, BsQBt, AtQPs, BtQQs.

PROOF. The inequalities As £ At and Bs Q Bt follow from Lemma 5.
If i ί Ps, then xt(s) < y^s) and i e Bs. Consequently, one has i e Bt by
Lemma 5. Hence i&At since At and Bt are disjoint. In other words,
one has At Q Ps. The proof that Bt £ Qs is similar. q.e.d.

REMARKS 2. One can prove some otherr elationships under the as-
sumption that D+1 x(t) — y(t) | = 0 on /. Specifically the following state-
ments are valid:

(A) k e At =* Σ atk(t) = 0 .
ieAt

(B) k e Bt =» Σ αα(t) = 0 .

(C) i e Ct and & 6 At UBt=> aik(t) = 0 .
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3. It is also possible to show that D+\x(t) — y(t)\ = 0 on / if and
only if statement (C) of Lemma 4 is valid on I.

δ. Proof of main theorem. We now turn to the proof of Theorem
1. Let φ(x, F, T) be a positively compact solution of (1). It follows
from Lemmas 1 and 3 that φ(x, F, t) is uniformly stable. Let Ω denote
the α)-limit set of the corresponding motion π(x, F, t) in P x ^ Then
by Theorem A, Ω is a nonempty compact minimal set. Therefore every
section Ω(G) = {xeP: (x, G) e Ω} is a nonempty compact set in P. We
will now show that the section Ω(F) contains a single point, x. (It will
then follow from Theorem A that the solution φ(x, F, t) is almost periodic
in t.)

Pick x e Ω(F). Define U: Ω(F) -> R and V: Ω(F) -> R by

U(y) = Σ maxfo - yif 0)
i=l

V(y) = Σ min(a;( - yit 0) .

?7 and V are continuous functions defined on Ω(F). Furthermore one has
V(y) ^ 0 ^ U(y) for all y e ^(i7). We shall use the following fact:

LEMMA 7. T%e se£ ^(ί7) contains the single point x if and only if
one has U(y) = V(y) = 0 for all y e Ω{F).

Since U and V are continuous functions on a compact set, they assume
their maximum and minimum values on Ω(F). Thus there are values
y, ze Ω(F) such that

( i ) 0 ^ U(ξ) ̂  U(y), and
(ii) V(z)£V(ξ)£0,

for all ξ e Ω(F).
Let UQ = U(y). We will now show that Uo = 0, by contradiction. (A

similar argument shows that V(z) = 0. Then by Lemma 7 one has Ω{F) =
{x}.) Let x(t) = φ(aj, î 7, ί) and #(ί) = 9(2/, î 7, t) be the corresponding
solutions of (1). Since both x(t) and y(t) remain in a compact set in P
for all ί, they are defined for all 16 JS. Now define the corresponding
five sets Pt, Qty At, Bt and Ct as well as the terms aik(t), 1 <^ i, k <^ n.

Let us now assume the validity of the following

LEMMA 8. One has D+\x(t) — y(t)\ = 0 on R.

Since At is monotone in t (Lemma 6), it follows that there is a set A £
{i: 1 ^ i ^ n} and a Γ ^ 0 such that At = A for all ί ^ T. It also follows
from Lemma 6 that A £ Pt for all ί e R.
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Let w(t) = ΣieAt [Xi(t) - yt(t)]. Then w\t) = 0 by Lemma 4F. Hence
w{t) = w(0) for all t ^ 0. Since {i: xt > yt} £ Ao it follows from our choice
of y that w(P) = J70 Now choose a sequence tn -> + °o such that $(ί J —»2/
and y(ίn) -> £, where ξ e Ω(F). Since xltn) - yt(tn) > 0 for i e A (Lemma
5), it follows that yt — & ̂  0 for all ieA. Since AQ Po (Lemma 6) it
follows that Xi — yt ;> 0 for all ieA. Since w(tn) = w(0) = C/Q, it follows
that

( 3 )

Next since 4 , £ 4 C P , one has

(4) Σ (χt - Vt) = Uo.
ieA

By adding (3) and (4) together one has Σ i e ^ f e — £*) = 2Z70. However
%i - ξι ^ 0 for ie A. Therefore one has 2U0 = Σ ^ (α< - f<) ̂  *7(£) ^
£%) = #o, which is impossible if Uo > 0. Hence Uo = 0.

It then follows from Theorem A that φ(x, F, t) is almost periodic.
In order to show that |φ(x, F, t) - <p(x, F,t)\-±0 as ί -> + oo, we shall
use Lemma 3. Since one has D+\φ(x, F, t) - <p(x, F,t)\^,0 for all t ^ 0,
define β by

β = \im\φ(x, F, t) - φ(x, F, t)\ .

Now choose a sequence tn -> +oo so that π(φ(x, F, tn) —> (α, 2̂ ) and
φ(x, F, tn) -> ξ. Since i^ίw —> i^ it follows that ζ e Ω(F) and consequently
ζ = x. Consequently one has β = 0.

It only remains to verify Lemma 8. There are several ways to do
this. Perhaps the simplest argument is based on the fact that Ω is a distal
minimal set. It then follows from Ellis' Theorem [4] that the product flow
on Ω x Ω is the union of minimal sets. What this implies is that for every
pair of points x, y e Ω there is a sequence *»—> + °° such that the solutions
x(tn) -• x and y(tn) -> y. Now if Z)+1 x(t) - y(t) \ Φ 0 it follows from Lemma
1 that there is a τ e R (say τ > 0) such that | x(t) — y{t) \ ̂  | x(τ) — y(τ) \ <
1^(0) — 2/(0)|, ί ^ τ. Now choose £ w ->+oo so that x(tn)->x(0) and
3/(*»)-^ 1/(0). One then has the contradiction \x(0) — y($)\ = lim|α?(ίn) —
!/(<») I < l*(0) — 2/(0) I. If r ^ 0 one simply repeats the above argument
with a suitable translate of a (ί) and y(t). This then completes the
proof.

REMARK 4. Since Ω is a 1-fold covering of the base space ^ 7 it can
easily be shown that the frequency module of the almost periodic solution
φ(x, F, t) is contained in the frequency module of F9 cf. [5, 13]. We
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shall omit these details since they are based on standard arguments.
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