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SMOOTHING FRACTIONAL GROWTH

JOHN CANT WELL* AND LAWRENCE CONLON*

(Received April 22, 1980)

Introduction. Let s > 2 be a real number and let T be a closed,
orientable surface of genus at least 2. In [C-C2, Section 7] we produced
C^-diffeomorphisms h, I of the compact interval / = [ — 1, 1] so that the
foliation ^~(h, I) of Txl, produced by "suspension", contains a continuum
of leaves, each having growth type exactly that of the function xs (growth
exactly of degree s). This foliation is (^-trivial at the boundary, hence,
as in the proof of [C-Cl, (3.5)] it can be imbedded as a component in
exfoliations of suitable 3-manifolds. This gives the following.

THEOREM. If M is a closed, orientable 3-manifold with Hι(M\ R) Φ 0,
then M admits a ^-foliation having a leaf with growth exactly of
degree s.

Many growth types properly between polynomials have also been
obtained by Tsuchiya [Ts], who does not claim any smoothness for the
construction. In addition, Hector knows a C1 construction of foliations
with similar growth properties (unpublished). Further smoothing of
these foliations has seemed difficult. Here we show how to carry out
the construction in [C-C2] so that the foliation ^"{h, I) is of class C°°
and is C°°-trivial at the boundary.

THEOREM (*). Let s> 2 be a real number and let Mbe a closed, orien-
table S-manifold such that H\M\ R) Φ 0. Then there is a C°°-foliation
of M having a leaf with growth exactly of degree s.

REMARKS. (1) If s > 3, then, as in [C-C2, (5.2)], the condition that
H\M; R)Φ0 can be dropped.

(2) By the theory of [C-C3], one can show that growth exactly of
degree s Φ 1, 0 < s < 2, is impossible in C2-foliations (cf. [Ts, Theorem A]).

(3) If n + 1 < s < n + 2, it is relatively easy to obtain differ-
entiability of class Cn (3.3), but we will see (3.5) that the most natural
choices of the contraction h will make it impossible for the differen-
tiability to be of class Cn+1. In Section 4, an appropriately "unnatural"
construction of h will complete the proof of (*).

Authors partially supported by N.S.F. contracts.
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(4) Smooth examples of fractional growth in higher codimensions
and/or higher dimensions are obtained via Cartesian products Mz x
Mm x Mq.

1. The basic construction. Let f(x)(d/dx) be a C°° vector field on
I = [ — 1, 1] such that f(x) < 0, — 1 < x < 1, and such that / is C°°-tangent
to 0 at x = ± 1 . Let hu(x) denote the associated flow, — 1 <£ x <ί 1, u eR.
For each positive value of u, hu is a C°° contraction of [ — 1, 1) to —1
and it is C°°-tangent to the identity at x = ± 1 . Let h = hx.

Fix s > 2 and write s = 2 + r~\ Let p > 0 be an integer such that
2rp > p and [2r{k+1)] > [2r&] for k^p, where [•] denotes the greatest integer
function. Set

([2-] , k > p ,

a strictly increasing sequence of non-negative integers. Also, set c(k) = 21~k

9

k^l.
Let φ(x)(d/dx) be a C°° vector field on /, identically 0 outside of

J = [h(0)9 0], but nonsingular on int(J). Let Φt(x) denote the associated
flow on [ — 1,1]. For each integer k ̂  1, define a "bump on the identity"
by

supported on hN{k)(J), and note t h a t the infinite composition I — ••• oί f c O

lk-i°'"°li makes sense and defines a homeomorphism ϊ : / - > 7 . In fact,

ϊ | ( — 1 , 1] is a C°°-diffeomorphism, C°°-tangent to t h e identi ty a t x = 1,

and in [C-C2, (7.2)] we proved

LEMMA (1.1). I is a C1-diffeomorphίsm, Cotangent to the identity
at x — —1.

Finally, in [C-C2, (7.6)], we proved

THEOREM (1.2). The Cι-foliation J^{h9 I) of T x I has a continuum
of dense leaves without holonomy, each having growth exactly of degree
s.

Here we will show that a careful choice of the vector field f(x)(d/dx)
will guarantee that I is a C°°-diffeomorphism and is C°°-tangent to the
identity at x = — 1. This will complete the proof of (*).

2. Preliminary lemmas. Let u > 0 be fixed, but arbitrary. Define
gu:[-l,l]-+R by

= K(x)φ(x) .
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Thus, gu is supported on hu(J) and an elementary computation gives the
following.

LEMMA (2.1). The conjugated flow huoφtoh_u has velocity field
gu(x)(d/dx).

Set Q0(x) = g>(x)lf(x), h(0) ̂ x^O, and define Qn(x) = f{x)Q^{x),
n^l, xeJ.

LEMMA (2.2). For each integer n :> 0,

lim g{:\h

C°°-uniformly on J (i.e., the convergence is uniform in each derivative
taken individually).

PROOF. Since the flow hu preserves its own velocity field f(d/dx),
and since f(x) Φ 0 on ( — 1,0], a simple computation yields K(x) =
f(K(x))/f(x), - K a j ^ O , Vu. In particular, gu(hu(x))/f(hu(x)) = Q0(x)9

xeJ, and the lemma follows for n — 0. For the inductive step, write
g{rx\hJίx))(f{KJίxW^
(/(ft.(s)))'-1=/(&)( W ^
f\hu(x)). By the inductive hypothesis and the (easily checked) fact that
\\mu^oof\hu(x)) = 0, C°°-uniformly on J, the lemma follows. q.e.d.

LEMMA (2.3). Qn is not identically 0, "in Ξ> 0.

PROOF. This is evident for Qo. Also, note that Qo is C°°-tangent
to 0 at x = 0 and an easy induction shows the same for every Qn.
Suppose the lemma has been established for some n ̂  0. If 0 = Q»+1(fl5) =
f(x)Q«(x)f it follows that Qn is constant, hence Qn = QΛ(0) = 0. q.e.d.

LEMMA (2.4). For each n^>0, there are positive constants Kn and
Un such that, for all u^ Un and xeJ,

Indeed, (2.4) is an immediate corollary to (2.2). For the following,
choose xneJ such that Qn(xn) Φθ (2.3) and again apply (2.2).

LEMMA (2.5). For each n ̂  0, there are positive constants K* and
U* and a point xneJ such that, for all u ̂  U*9

3. Initial attempts at smoothing I. We imbed ί | ( - l , 1] in a C°°
flow λt. Let lktt = hN{k)oφcίk)toh~N{k), a C°° flow on [-1, 1] supported on
Jk = hN{k)(J). Evidently, lktl = lk. The intervals Jk have disjoint interiors
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and cluster only at x = — 1, so xt = olk,t°lk-i,to * °̂ i,t defines the
desired flow on (—1, 1]. By (2.1), the velocity field g(d/dx) of this flow
is given by g = ΣϊUβ(A0ί7tf(fc> We set 0(0) = 0. The following is clear.

LEMMA (3.1). If Umk^ooC(k)gψ{k)(hNUc)(x)) = 0, uniformly on J, O^j^n,
then limy^_1+gU)(y) = 0 and I is a Cn-dίffeomorphίsmt Cn-tangent to the
identity at x = — 1.

LEMMA (3.2). The condition in (3.1) is fulfilled for n = 1.

PROOF. c(k)gN{k)(hN{k)(x)) = c(k)h'N{k)(x)φ(x) = c(k)f(hNW(x))φ(x)/f(x), so
the assertion is clear for j = 0. By (2.2), \ιmk^ooc(k)g'N{k)(hN{k)(x)) = O Qi(x)
uniformly on /, giving the case j = 1. q.e.d.

In order to improve the smoothness, we specify the vector field
f(d/dx) and the associated flow hu. On [ — 1, 0], these will be

{-(x + l)2β-1/(*+1) , - K c c ^ O

ί - 1 + (log (w + β1^*^))-1 , - K x ^ 0

1 , x= - 1 .

In standard fashion, extend / t o [ — 1,1] so that / < 0 on ( — 1,1) and so
that / is C°°-tangent to 0 at x = 1. It is elementary that these choices
satisfy the smoothness conditions at x = — 1 . Also

f(hu(x)) = -fa + e^ +^

for - 1 < x ^ 0, so, by (2.4),

\gl!\K(x))\ ^ if/u + e^'+vy

for u ^ £7y and a G/. Thus,

\c(k)g$\k)(hN{k)(x))\ S2Kβ-\Vk + e

for large enough values of k and all x e J . For possibly larger values
of k, 2rk + e1 / u + 1 ) ^ 2r(fc+1), V^6 J, so

I cφWA) (hN[k)(x)) I ̂  Kd(k + l^-^*^^"-"-"

for a suitable positive constant Kά and all large values of k.

LEMMA (3.3). // s > n + 1, £fcew, wift the above choices, I is a Cn-
dίffeomorphism and is Cn-tangent to the identity at x = — 1.

PROOF. Since 2 + r" 1 = s > n + 1, we see that r(j - 1) - 1 < 0 for
0 ^ j ^ w, so limfc_coc(fc)flrj/|fc)( (̂fc)(ic)) = 0. q.e.d.

For a large class of reasonable choices of f(d/dx), including the
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above, the differentiability in (3.3) cannot be improved. We make this
precise.

PROPOSITION (3.4). If, for some ε > - 1 , f'(x)^0 on [-1, ε], and
if s < n + 1, then I is not Cn at x = — 1.

PROOF. Set Hu(x) = 1 + K(x) - uf(hu(x)), xeJ. Then (d/du)Hu(x) =
-u>f'(K(x))f(hu(x)) ^ 0, for u large and xeJ. But l i m ^ ^ l + hu(x)) = 0
uniformly on J and Hu(x) > 0, so uf(hu(x)) is uniformly bounded on J
as it -> oo. Thus, for k large and A a suitable positive constant,
l/GW,(aO)| <A/N(k). Let a?n, J£* be as in (2,5) and conclude that

\g{n)(Ka)(xn))\ ^ K:A'-^

For k large, N(k) ̂  2r{k~1\ hence

for a suitable positive constant K. But τ(n — 1) — 1 > 0, so

f u ) ( ^ ( f c ) ( x j ) | = oo . q.e.d.

The condition / ' ^ 0 on [ — 1, ε] implies hf ^ 1 on [ — 1, ε], but not
conversely. But this weaker condition also implies the conclusion of (3.4).

PROPOSITION (3.5). //, for some ε > — 1, h'{x) ^ 1 on [ — 1, ε], and if
s < n + 1, then I is not Cn at x = — 1.

PROOF. AS in the proof of (3.4), it will be enough to produce a
constant A > 0 such that | uf(hu(x)) \ ̂  A, for all large u and xeJ. For
this, we will find u* so large that, for u^u*,

(a)

(b)

uniformly for xeJ. It is easy to guarantee (a). Having prove (b), we
will take A = 2 + u*.

First, we find u* so that | f{hu{x)) | /2 < | f(hv(x))\, u^u*, u-l^v^u,
xeJ. We can do this for an arbitrary but fixed xeJ, since the same
u* works on a neighborhood of x and J is compact. If this cannot be
done, there are arbitrarily large values of n and v e [u — 1, u] such that
I f(K(x)) | / 2 ^ | f(K(x)) I. Let w0 6 [>, u] maximize (f{hw{x)) \ on that
interval. Then f(hWQ(x)) < f(K0(x))/2 ^ f(hυ(x)) < 0, so

W) - f(hv(x)))l(w0 - *)|

,,., v-.,-,,.-« =\f'(h((x))f(hί(x))\,
at
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some ζ e (v, wQ). That is, there are arbitrarily large values of ξ for
which I f'(hξ(x)) | ^ (1/2) | f(Ko(x))/f(hξ(x)) | ^ 1/2, contradicting the fact that
/ is C°°-flat at - 1 .

Choosing u* as above, also make it large enough that (a) is satisfied
and that hυ(x) e [ — 1, ε], v ;> u*, xeJ. Then, if v e [u*, u], choose pe Z+

such that v + pe[u — l,u]. Then, uniformly for xeJ, \f(hυ+p(x))/f(hv(x))\ =
h'Mx)) = h\hUK(x))) h\K(x)) ^ 1. That is, | f(hv(x)) \ ^ | f(hv+p(x)) I >
(1/2)If(K(x))I, so (l/2)\f{h%(x))\(u-uj<^ \f(hυ(x))\dv = -^f(hv(x))dv^
— \f(hv(x))dv = -hu(x) + x <̂  -hu(x) < l/*This establishes (b). q.e.d.

Jo

REMARKS. (1) Thus, for greater smoothness, we will need a very
"bumpy" contraction h (Figure 1).

- l 1 - 1

y=h(x) y=h(x)

Bad choice Good choice

FIGURE 1

(2) The construction in [C-C2, Section 7] allowed a certain latitude
in the choices of c(&), N(k). Given integers s(k) ^ 2 for all k ^ 2, we
defined l/c(k) = s(2)s(3) s(fc) (and c(l) = 1) and required that N(k) ^
β(2) + 8(3) + + s(k) for all large values of k. In our present con-
struction, all s(k) = 2, but many other choices of s(fc), N(k), related as
above, yield growth types properly between polynomials of consecutive
degrees n and n + 1. In all cases, we can show that (3.5) will hold.

LEMMA (3.6). //, for each ε > 0, N(k)εf(hN{k)(x)) is bounded away
from 0, uniformly on J, as k—> oo, then I will be of class C°°, C™-tangent
to the identity at x = —1.

PROOF. Let Bε > 0 be such that

N(k)ε I f(hmk)(x)) \^Bε

Then, by (2.4), for k large and xeJ,

\g{n)(hN{k)(x))\ ^ Kε2

Vλ; and Vx e J
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for a suitable constant Kε > 0. Given n, we choose ε so that rε(n — 1) —
1 < 0. Thus, lim^co|f/(n)(Λtf(jfc>(a0)| = 0 uniformly on J. q.e.d.

This lemma will guide our construction of /.

4. Achieving infinite smoothness. We outline the basic program.
Having fixed s = 2 + r-1, hence having fixed the sequence {N(k)}, we
will construct a C°° function F:[0, ^)—>R such that

( 1 ) F(u)>0, 0<>u < co;

(2) j>=l;
( 3) F(u) = ck is constant, N(k) ^u^l + N(k);
( 4 ) for each ε > 0, \imk^oo(N(k))εck = oo.

F. Evidently, this is a C°° function
0

of u, ho(O) = 0, Λu(0) is strictly decreasing, 0 <£ u < oo, and limw_»ooλw(0)= — 1.
This defines the (positive) fe%-trajectory of 0 on (— 1, 0] with velocity
field f(K(0)) = (d/du)hu(0) = -F(u). Of course, we will define /( - 1) = 0
and, in constructing F, we will have to make sure that

( 5 ) lim^oo/^/αO)) - 0, Vn ^ 1.
CLAIM. Successfully carrying out the above program will complete

the proof of (*).

PROOF. By (5), f(d/dx) will be a C°° vector field on [-1,0], Co-
tangent to 0 at x = - 1 , and f(x) < 0, - 1 < x ^ 0. Since N(ΐ) = 0, (3)
guarantees that / is constant on [fei(0), 0], hence f(d/dx) readily extends
to a C°° vector field on [ - 1 , 1] as required. By (3), (4), and (3.6), the
diffeomorphism I will be of class C°° and C°°-tangent to the identity at
x = — 1 . q.e.d.

We begin. Choose a sequence of integers 1 < k(ΐ) < < k{q) < •
such that

N(k) ^ 2"fe-1 , k ^ fc(l) ,

Σ 2~rk/q2 ^ 2~q , g ^ 1 .
k = k{q)

LEMMA (4.1).

Σ N(k)-1/q ^ Σ i V ( f c ) - 1 / ? 2 ^ 2 Σ 2 ~ r k / q 2 < 2 1 " 9 , 9 ^ 1 .
k=k{q) k=k{q) k=k(q)

LEMMA (4.2). For a suitable choice of {k(q)} as above, there is a
sequence {dik)}^ such that δ(k) = 1 for 1 ^ k < k(l) and

(a) {δ(k)} decreases weakly monotonically to 0;
(b) δ(k) ^ 1/g, fc(ϊ) ^ fc < fc(« + 1);

(c) δ(fc) ^ &-1/4, & ^ 1;

(d) d(k + 1) ^ (fc/(& + l))δ(*0, fc ^ 1.



256 J . CANT WELL AND L. CONLON

PROOF. The choice δ(k) = 1/q, k(q) Sk <k(q + 1), will guarantee (a)
and (b). By rechoosing all k(q) sufficiently large, this definition of δ(k)
is also made to satisfy (c). In order to obtain (d), modify this sequence

inductively by

δ(k + 1) = max{S(& + 1),

We must show that (a) still holds for {δ(k)}. Evidently, δ(k) ̂  δ(k) ^
δ(k + 1), so δ(k + 1) ^ δ(k) for all fc. If δ(k) - δ(k) infinitely often, we
obtain (a). Otherwise, the sequence is ultimately of the form δ(k + 1) =
(k/(k + l))δ(k), and again we obtain (a). q.e.d.

The constants ck in step (3) of the basic program will be cγ = c2 =
= ck0-i — 1, ck = N(kyδ{k), k ^ kOf where k0 is so large that N(k) >
N(k - 1) + 1, k ^ fco

LEMMA (4.3). For each ε > 0, limk^oo(N(k)Yck = ©o.

PROOF. lim&_oo<?(fc) = 0. q.e.d.

LEMMA (4.4). Σ?=1c fc < oo.

PROOF. By (4.1) and (b) in (4.2), Σΐ^ck < Σ Γ = i Σ ? ^ ) T O - 1 / 9 ̂
Σ ^ 1 - * . q.e.d.

Remark that (4.4) is a necessary condition that I F < .oo. The choice

S oo Jo

F = η>l, but ulimately we will normalize by replacing
0

F with F/η, giving step (2) of the basic program.
A similar application of (4.1) and (4.2) gives

bκ — > | * - τk -

FIGURE 2
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LEMMA (4.5). Σ>ΐ=iN(k)-δik)2 < «,.

For k0 sufficiently large and for each k ^ k0, we will construct the
graph of F(u) on [1 + N(k), N(k + 1)] as indicated in Figure 2. There
will be a major drop from ck to a value ak and a major rise from a value
ak to ck = ck+1. Although we have pictured ak <; ak, this is not necessary.

We will have to guarantee that the areas Bk, Bk, and Bk in Figure
2 satisfy Σΐ=ko(Bk + Bk + Bk)< oo. Together with (4.4), this will

guarantee that I F < <*>.
Jo

For the three segments of this graph we will construct "model"
functions λ0, λ0, λ0 as in Figure 3 (where the numbers dkf dk remain to

ajck-

bjdh

FIGURE 3

be specified). These functions will be C°°-flat at the endpoints of their
domains. In each case, the respective segments of F(u) will be given
(after a suitable translation in u) by

F(u) = ckX0(u/dk) = cfcλ0(^*)

F(u) = akXQ(u/bk) = ah\(u)

F(u) = ckXQ(u/dk) =

These functions will depend on k, but certain of their essential features
will not (e.g., there will be uniform upper bounds on their integrals).

In order to handle step (5) in the general program, we define induc-
tively

Xn = n ^ 1 ,
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and similarly Xn and λΛ. The usefulness of these functions comes from
the following.

LEMMA (4.6). After a suitable translation in u, the derivatives
f{n)(hu(0)), n^O, will be given in the three respective domains by

(a) (-l)*+Vr»drX(tt*)
(b) (-ir+1aϊ-nb^Xn(u)
(c) ( - l ^ c i - d Γ λ . W .

PROOF. Consider only (a), the other cases being entirely similar.
The case n = 0 is trivial. For the inductive step, remark that
(d/du)hM=-F(u)= -ckxo(u*), so -cJ<*+1\hmUu*) = (d/du)Γ*\hM) =
(~l)n+1 c\~ndk

nx'n(u*)(du*/du). Since du*/du = dk\ the assertion follows.
q.e.d.

In the next lemma, a monomial x[mι) λΓ2) λίΛ«} of derivatives of
λj. of orders mi ^ 0 is said to have total degree q + ΣLi^V

LEMMA (4.7). For each n^l, and independently of k, there exist
polynomials Pn such that

and each monomial in Pn{x[n'1\ •• ,λ1) has total degree n. These same
relationships hold with Xn replaced by λΛ (respectively λΛ), λj replaced
by λx (respectively λ j , α^d λ0 replaced by λ0 (respectively λ0).

P R O O F . Take Px(cc) = cc and, inductively λw + 1 = X'jxo = λo~
1(λ;-?iPn(λΓ""1),

• ••, λ ^ y = v ( P ( λ { - i } , ••-, λO) ' + V H I - w) v λ ί P . ί λ ί - " , •••, λ x) =
V K P . W Λ , λx))' + (1 - n ^ P . W - " , • , λj) - λo-P +xίλί̂ , , λx).

q.e.d.

Because of (4.7), we will be able to employ (4.6) effectively in
verifying step (5) of the general program.

We begin the construction. The only delicate step will be the defini-
tion of λ0. Indeed, λ0 will be obtained from λ0 by an orientation
reversing change of parameter and the construction of λ0 will be easy.

(A) The construction of λ0. The domain [0, bk/dk] will be subdivided
into several segments. The initial segment will be [0, lk] where lk =
1 + log(2rσ(fc)), σ(k) = [r-Mog2(fc)] eZ. In particular, lk <: 1 + log(fc) and
k — σ(k) —> oo.

On this initial segment, it will be convenient first to define λx and

then obtain XQ(u) = expί \ xA. The definition is indicated in Figure 4

(where k^k0 and k0 is large enough that everything fits in). Here Xι
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- l

FIGURE 4

is C°°-tangent to 0 at u = 0 and at u = ifc, λi < 0 on (0, lk), and λx = — 1
on [1, lk — 1]. Furthermore, λJ[0, 1] = α is chosen independently of k
and λi I [lk — 1, ifc] is obtained from α by the orientation reversing change

of parameter u* = lk — u. Finally, choose a so that I a = —1/2.
Jo

Remark that, for each n ^ 0, λf° is uniformly bounded independently
of k. The function λ0 is C^-flat at u = 0 and at u = ifc, λo(O) = 1, λo(ϊfc) =

ei-ιk = 2~rσ(k) ^ jy^ a n ( j λ j ^ j < 0, 0 < u < ift. An easy computation gives

LEMMA (4.8).

LEMMA (4.9). f o r eαcfe n ^ 1, ίfeere exists a constant Kn, independent
of k, such that, on [0, lk], | λ j ^ kn~λKn.

PROOF. Since \[j) is uniformly bounded, independently of k, 0 ^ j ^
^ — 1, and since λ0 ^ 1/fc, the assertion follows from (4.7). q.e.d.

FIGURE 5
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These two lemmas give the essential features of λ01 [0, lk] that are
independent of k.

In order to extend λ0 to [0, bk/dk], fix a strictly increasing function
p0: [0, 1]—>[0, 21~r], concave down and C°°-tangent at u = 0 and u = 1 to
straight lines of respective slopes m = 1 and m = 2~r (Figure 5).

Define ^(j) = δ(j — <τ(i)) ̂  <?(:?) and remark that, for j sufficiently
large, this sequence becomes weakly monotonic decreasing to 0. Set

pό{u) = 2-ri*li)pQ(2-ri{1-i{i))u) , 0 ^ u

Remark that the total rise of p5 is

Γ o - 2 1 - ' , j = 0,

hence, by (4.1) and (4.2), T = Σi?=oTs < oo. Set

Ẑ  = li'-1 + 2r

Jo — [h, h\ t

Js = [iί-\iί],

and define p: [0, ^ ] ^ [ 0 , oo) by

Jo

j , 0 ^ i ^ fc .

Thus, |0 is C°° and we can define the smooth extension of λ0 to [0, It] by
χo(u) = p\n) > 0, a function that is C°°-flat at u = 0 and at u = It. We
define bjdk = It and A = 2 + e~m + Γ. Then (4.8) gives the following.

S bk/dk

XQ^ A, a bound that is independent of k.
0

By an elementary application of (4.7) to these definitions, we also
obtain

LEMMA (4.11). For each n^l, there is a constant Cn, not depending
on k, such that, for σ(k) <£ i ^ σ(k) + k and all ueJi_σ{k),

In particular, this bound becomes arbitrarily small as k —> <>o.

In checking (4.11), the assertion in (4.7) about total degree is
essential.

Since λ0 is monotonic decreasing, its minimum value is λo(ϊ*)' =
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p'a{k)+k(H) = 2-r^k)+1\ Thus, ak = ck2-r*+°*)+1). We specify bk = l\dk by
defining dk = N(k)δ{k)-δ.{k)\ In order to know that, for k0 sufficiently
large and all k ^ kOf the interval [1 + N(k), N(k + 1)] will be big enough
for our construction, we need the following.

LEMMA (4.12). limk^bk/(N(k + 1) - N(k) - 1) = 0.

PROOF. First remark that η(k + σ(k)) = δ(k + σ(k) - σ(k + σ(k))) ^
δ(k). Thus, for k sufficiently large and K* a suitable positive constant,
ll£h+ Σ*io ( W (2 r ( 1" δ ( f c ) )) i ^ 1 + log(fc) + 2r{1-δ{k))(2r/2 - i)-^2r{1~^k)){k+σ{k)) ^

κ*2roik)2rku-nk)) ^ κ*kZrk{1-i{k)). Also, N(k + 1) - iSΓ(Λ) - 1 ^ 2 r ( f c + 1 ) - 2rfe -
2 ^ ir**2rfc, for k sufficiently large and K** a suitable positive constant.
Thus, setting K=K*/K**, we obtain bk/(N(k + l)-N(k)-l) ^ Kk2~rkHk)2 ^
Kk2-rVk, where the second inquality is by (4.2), part (c). q.e.d.

(B) The construction of λ0. Here we take 6̂  = bk, dk = dkf ck = ck+1,
and define ak by ajck = α̂ /Cfc. We set λo(%) = X0((bk/dk) — u) and obtain

λ0 , I λn(%) I = I Xn((bk/dk) — u) I ,

so (4.9), (4.10), and (4.11) hold for λ0 and, of course, (4.12) holds for bk.

(C) The construction of λ0.

LEMMA (4.13). \\mk^ooakjak = \imk^coCk+1/ck = 1.

PROOF. We have ak/ak = ck+1/ck = N(k)δ(k)/N(k + l) ί ( f c + 1 ). By (4.2),
part (d), ak/ak <, N(k + l)δ{k)IN(k + iγw*'^ 1 ) = (N(k + i)̂ (*+«)«(*) ^ (2r)δ{k).
Also, since {δ(&)} is weakly monotonically decreasing, ak/ak ^ (N(k)/
Λ7/7/. i 1N\δ(fc) ^> //Orfc 1 \/Or(fe+l)\δ(fc) „ Λ J

J\l(fc + 1); ^ ((ώ — -LJ/̂  j q.e.d.

Fix a bump function 7 ^ 0 on [0, 1], identically 0 near the endpoints,

such that 7 = 1. For 0 <̂  u <; 1, set
Jo

\(u) = log(ak/ak)j(u) , XQ(u) =

Thus, λo(w) is identically 1 for u near 0 and identically ak/ak for ^ near 1.

LEMMA (4.14). For kQ sufficiently large and k^k0, \ \^ B, a bound
Jo

that is independent of k.
PROOF. This is a corollary of (4.13). q.e.d.
LEMMA (4.15). For k0 sufficiently large and k ^ kQf there are con-

stants Dn, depending only on n^l, such that |λw | <; Dn.
PROOF. Use (4.7) and (4.13). q.e.d.
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(D) Completion of the basic program. By (4.12), choose k0 so large
that, for k ^ k0, bk = bk£ (l/3)(JV(fc + 1) - N(k) - 1). This gives enough
room to carry out the construction of Figure 2.

Finitely often we have had to choose k0 sufficiently large, so we fix
the largest of these. Thus, F has been constructed on [N(k0), oo) and
on each interval [N(k), 1 + N(k)], 1 ^ k < k0. Fill in the finitely many
gaps in any convenient way.

PROPOSITION (4.16). [°F = η
Jo

< c>o.

PROOF. Referring to (4.4) and Figure 2, we see that we must prove
(a) Σ ? = * < A < - , (b) ΣS^Bh<oo9 and (c) E £ U < A < ° ° - B ? ( 4 14)>
Bk ^ akbkB. But ak = Ck2-r{k+σ{h)+1) and bk ^ N(k + 1) - JNΓ(fc) - 1 ^ 2r(fc+1).
Thus, akbk ^ cfc and (4.4) implies (a). By (4.10), Bk ^ ckdkA. But cfcdfc =
N(k)-δ{k)2, so (4.5) implies (b). Finally, Bk < ckdkA - ck+1dkA and, by (4.13),

fc-> 1, so Σβfc+idfc also converges. q.e.d.

PROPOSITION (4.17). For each n^l, \\mu^f[n\hnφ)) = 0.

PROOF. By (4.6), (4.9), (4.11) and (4.15), we are reduced to proving
(a) \\mk^cι

k-
ndk

nkn-1 = 0, (b) \\mh^c)r*d ς*kn-1 = 0, and (c)
By (4.13), (a) and (b) are equivalent. Furthermore, ck-

ndk

n

2-rmion ( f o r k l a r g e ) ^2-
rkVi/2 ((4.2), part (c)). This^gives (a) and (b).

Finally, for k large and a suitable constant JRΓ > 0, bk^K2rk by (4.12),
so ak~

nbk

n ^ j^-^2r(u-1)2ί'<7(fc)(w-1)2rfc((%-1)δ(ί:)-1) ^ ^-^2r(%-1)fcu-12-rfc/2 for k large.
This gives (c). q.e.d.

We have carried out our basic program, except that I F — η > 1.
Jo

As earlier remarked, we normalize by replacing F with F/η.
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