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Abstract. Let .7 be a von Neumann algebra with a cyclic and separat-
ing veector & and Z7* (resp. Z*) be the closure of 7.5, (resp. -7Z[&). It
is shown that the map: € %> w: € % is a homeomorphism with respect
to the norm topologies. It is also shown that &% can be replaced by &°°
if . is finite.

0. Introduction. In [9], Takesaki introduced a #-cone Z°* and a b-
cone .7 associated with a o-finite von Neumann algebra _# Generalizing
Sakai’s Radon-Nikodym theorem, he showed that the map: &€ .ZP*—
w: € 7% is bijective. Recently, Skau [7] showed that the map: £ € &’ —
w: € _# % is bijective if and only if _~ is finite.

These two mappings are clearly continuous with respect to the norm
topologies in the Hilbert space and the predual _,. In the paper, we
show that their inverses are also continuous. Thus, these two mappings
are actually homeomorphisms.

1. Notations and main results. Fixing our notations, we state our
main results. Throughout the paper, _# is a von Neumann algebra on
a Hilbert space &7 with a unit cyclic and separating vector & with the
vector state @, = w,. We denote the modular operator and modular
conjugation associated with the pair (_#Z ®,) by A and J respectively.

DeFINITION 1.1 ([1], [9]). Let Z°* (resp. &% <°*) be the closure of
the positive cone . Z.&, (resp. AY*_Z.&, AV:_Z.& = /&) in the Hilbert
space S~

It is known ([9]) that
Gt = JF = (Z”), the dual cone.

The “natural cone” ¢ is neutral in many aspects. For example, F*
is selfdual and fixed pointwise under J. More importantly, the map:
fe P w; € #% is a homeomorphism, [1], due to the Powers-Stormer
inequality.

Our first main result is:
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THEOREM 1.2. The map: € FP*—w.e€ . #Z% 18 a homeomorphism
with respect to the norm topologies. Here, w.€ _#Z}§ is given by w.(x) =

COROLLARY 1.3 (Continuity of Sakai’s Radon-Nikodym derivatives).
Let {p,} be a sequence in _# % such that @, < lp, with some | > 0, and
h, n=12, .-+, be a unique operator in _, satisfying @, = h,Ph, =
Wy, (Sakai’s Radon-Nikodym derivative). If {p,} tends to ®, whose
Radon-Nikodym derivative with respect to @, is h, in morm, then {h,}
tends to h im the strong operator topology.

Proor. It is known that h,& (resp. h&,) is a unique implementing
vector for @, (resp. @) in %, [9]. It follows from the theorem that
{h,&} converges to h& in the norm of 5% Since ||h,|| < 1¥* (due to
@, < lp,), the result follows from the eyclicity of &, for _Z'. q.e.d.

As stated in the introduction, the map: e F'—w.e #Z% is a
bijection provided that _# is finite. As the second main result, we

shall prove:

THEOREM 1.4. For a finite von Neumann algebra _, the map:
EeF—w; € A% 18 a homeomorphism with respect to the nmorm to-
pologies.

2. Proof of Theorem 1.2. We begin with some lemmas. Through-
out the section, for each +r€._#f, we denote a unique implementing
vector in F%* (resp. %) by {y (resp. &y).

LEMMA 2.1. To prove Theorem 1.2, it suffices to show that {C,} con-
verges to C, in the weak topology of 57  whenever {®,} tends to @ in
NOPM.

PrROOF. Since ||, || = (@, (1))"* tends to [|{,| = (1), we may and
do assume that [|o,| = ||o|l =&, || =&l =1. To show the norm

convergence of {{, } to {,, it suffices to show that |[(1/2)({,, + ()| tends
to 1 due to the parallelogram law. However, the weak convergence

implies:
A 2)H1A/2) &, + C)ll = [(@/2)E, + E) )| — &lE) =1.  q.e.d.

LEMMA 2.2. For e Z%, let Xye _#Z, be a functional determined
by Xy(x) = (®&y | &), x € _#, with the polar decomposition Xy = uy|Xy|. A
unique implementing vector Ly for « in F* is Jujéy.

ProOF. We compute, for each x €. 7
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(@Juyéy | Jufsy) = (uhsy | JrJuiéy)
= (uyudly|Jadey)  (uype 4 JaJe 2')
= (&p|Jaty) = @&y [JEp) = @&y |&y) = P(@) ,
so that Ju¥é&y is certainly an implementing vector for .
By the known bijectivity of the map: £e FP*— w. e _~§, it suffices

to check Julsy €. T, or equivalently, u¥éy, € F°. For each xe 7, we
simply compute

(U | 2&) = (@uPép|&) = (Uiky)(@) = [Xyp|(x) =2 0,
so that u%&y belongs to the dual cone .F%" of . qg.e.d.

PROOF OF THE THEOREM. We assume that a sequence {®,} tends to
® in norm. Since {{, } is bounded and _#Z"¢, is dense, it suffices to show

that (x'&,|Juy &,,) tends to (x'&|Julé,) for each fixed «'ec.#’ due to the
above two lemmas.

For each x'e._#', one computes
(@'& | Jugs,) = (@' J& | Jugs,) = (Je*Juis, | &) = (ugX)(Ja'™*J) = | X, | (Ja'™*J) ,

and (#'&,| Jug &) = | L, |(J2'*J).

Due to the Powers-Stermer inequality, {&, } in 7% tends to &, in norm
so that {X, } tends to X, in the norm of _#,. It is known that the
“absolute value part” map: € _#, — || € _#ZL is norm-continuous (See
Prop. III, 4, 10, [10]) so that {|X, [} tends to [X,| in norm. The above
computation thus shows that (2's,|Juf &, ) tends to (v’ |Jus,). q.e.d.

3. Proof of Theorem 1.4, We fix a tracial (normal) state = on a
finite von Neumann algebra _~. All (densely-defined) closed operators
affiliated with _# are r-measurable in the sense of Segal [4], [6], as . #Z
being finite. For such operators a, b, we denote their strong product
simply by ab, [6]. In other words, we omit a closure sign.

Let LA .#;7) (resp. LN.# ;7)) be a set of all closed operators
affiliated with _# satisfying z(Ja]?) < « (resp. 7(|a|) < =), which is
known to be a Hilbert space (resp. a Banach space) under the inner
product (a|b) =7z(b*a) (resp. the norm |ja||,=7(la])). (See[6].) For each
V€ A}, ky denotes the Radon-Nikodym derivative relative to 7, that is,
ky is a unique positive operator affiliated with _# satisfying = ¢(ky-).
The predual ., is isometrically isomorphic to L'(./;7) via p=u|@|+—
k).

It is easy to show that (# L. #;7), *, LX.#;7),) is a standard
form, [2]. Here, L*.#;7), is the positive part (as operators) of
L _#;7) and _# should be understood to act on L* #;7) by left
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multiplications. It is again easy to see that a unique implementing
“vector” &, for pe #Z'} in L*(_#'; 7). is exactly ki*. By the universality
(uniqueness) of a standard form, [1], [2], we may and do assume that
(A 57, J, %) = (A, L( A ;7), *, L(A#;7),). For simplicity, we shall
write the Radon-Nikodym derivative of @, for ¢ by k,, that is, ki’* = &,.

The next result was shown in [3]. However, for the sake of com-
pleteness we present a proof.

LEmMMA 3.1. For each e #%, a unique implementing wvector in
G is B Kk = kY kP kepks V2 € LN A ; T).
ProoF. For each xe€_#, we compute
(el | e | o™= ) = 2| Il ek Bl )
= (| Kk PR aky?) = (ki hyks kY aky?) = T(kyat) = () .

Thus, it suffices to show that ki?|kY*k;?| belongs . Clearly _#.¢& =
A, kY* is dense in %, the dual cone of .Z7", and we notice that

(e Tl | ahf™) = (R *akl | Iyl [) = 0 . q.e.d.

PROOF OF THE THEOREM. We assume that {®,} tends to # in norm
and prove that 7, =Jk* |kl |)=|ky2k:"? | ki* tends to 1,= |k k|
in the L:*-norm. (See the above lemma.) By the Powers-Stormer in-
equality, %, tends to k{* in the L’-norm, hence in measure, [8]. The
trace being finite, 7, tends to 7, in measure due to [5, Application 2,
p. 363], and [4, Theorem 1].

We now choose and fix a positive €. Ignoring first several terms,
we may and do assume that |@, — .|| < ¢/3 for all n. Then we pick
up a positive a € _#Z such that ||@, — 7a|| < ¢/3 and set 6 = ¢/3||a||. For
each projection p with z(p) < 6 (and any =), we have (0=) @,(p) < ¢,
hence @(p) < e. In fact, we estimate

P.(p) = (@, — P)(D)| + |P(p) — t(ap)| + |z(ap)| < &/8 + &/8 + |lal[d <e.

Since 7, tends to 7, in measure, for n large enough there always exists
a projection p in _# (depending upon %) such that || (%,, — 7,)1 — )|l < ¢
and 7(p) < 6. We then estimate

H77¢n — Nl = H(ﬁ% —N)1 — )| + H(ﬁ% — 7o)P |2
= ”(77%, — D)1 — )|l + ”779°an2 + 72|l (z(1) =1)
< e + t(pk,,0)"* + t(pk,p)"*
(70 F = Mep)*(Mep) = DYEND = DkyD)
=&+ P,(p)* + P(p)* < & + 26,

by what we proved above. q.e.d.
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