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1. Introduction. In [2], H. Cartan generalized the defect relation
for meromorphic functions obtained by R. Nevanlinna to the case of
holomorphic curves in the n-dimensional complex projective space P*(C),
where by a holomorphic curve in P*(C) we mean a holomorphic map of
C into P*(C). Subsequently, Ahlfors and H. and J. Weyl gave the defect
relations for the derived curves ([1] and [11]). Recently, some new
proofs of them and certain generalizations of them to the case of several
complex variables have been given ([3], [7], [8], [9] etc.). They mainly
follow either Cartan’s method or Ahlfors-Weyl’s method. The former
is more elementary than the latter and, moreover, Cartan’s result is
better in the sense that he defines the defect by counting functions
which count each zero of order =7 only n times. However, he did not
give defect relations for the derived curves.

In this paper, following Cartan’s method we shall give a new proof
of the defect relations for the derived curves. Also, we improve the
defect relation of Ahlfors and Weyl for the derived curves as follows.

Let f be a non-degenerate holomorphic curve in P*(C) and f, the
k-th derived curve (cf., Definition 2.12) for 0 < k < n. For a non-zero
decomposable (k& + 1)-vector A, we denote the intersection multiplicity
of £,(C) with A at z by v,(A)(z) (cf., Definition 3.1) and set

(1.1) U,(A) = min (v,(4), (k + 1)(n — k)) .
We define the modified counting function of f, for A to be

M = ( 5 5% +5.0)logr

and the modified defect to be
5y(A) = lim inf (1 — Ny(A)(r)/Tu(r))
where T(r) is the order function of f, (cf., Definition 2.12).
We can prove the following:

THEOREM. Let A° A', ---, A" be decomposable (k -+ 1)-vectors in
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general position. Then,

LI n+1
Sars (1)

The paper is organized as follows. In §2 we shall recall some
definitions and known results for later use. Next, in §3 we shall
formulate precisely the defect relations mentioned above and give an
example which shows that the number (¥ + 1)(n — k) in (1.1) is sharp.
To prove the above theorem, we shall give a basic lemma on the
Wronskian of meromorphic functions in §4 and an inequality for divisors
in §5. After these preparations, we shall complete the proof of the
above theorem in §6. In [3], Cowen and Griffiths gave a new proof of
the defect relations by using the method of negative curvature. In the
last section, we shall give another proof of the above theorem by making
use of their method.

2. Preliminaries. Let v be a divisor on C, by which we mean an
integer-valued function on C such that the support |v|:= {z; v(z) # 0} has
no accumulation points in C.

DEFINITION 2.1. The counting function of v is defined as

Ner, v) = S( 5 u(z)>% +(0)logr (> 0).

0 \o<|z| =t
For a non-zero meromorphic function ¢ on C, we define the divisors

R 0 if 2 is not a pole of @,
V(P)(2) 1= e .
m if z is a pole of @ of order m ,
V(@)= v2(1fp),  »(P):=(P) — v(P) .
(2.2) (Jensen’s formula, cf., [6, p. 4]). If @ is a non-2ero meromor-
phic function on C, then
= | log |p(re”) 1 d8 = N(r, (@) + lim log |7 ") (> 0).
T Jo z—0

Let f be a holomorphic curve in P"(C). For an arbitrarily fixed
homogeneous coordinates (w,: w,: ---: w,), f has a representation
f2) = (fu(@): fi): -1 fu(2)  (2€C)
with entire functions f, fi, ---, f. such that

{5 /) =filg) = - =f,(a) =0} = O .
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Such a representation of f is referred to as a reduced representation in
the following.
Taking a reduced representation f = (f,: ---: f.), we set

w(@) i = max log | fi(2)] .

DEFINITION 2.3. The order function (in the sense of H. Cartan [2])
of f is defined to be

T(r, f):= _2_1; S w(re®)ds — u(0) .

As is easily seen by (2.2), T(r, f) is uniquely determined independently
of a choice of reduced representations of f, and we have only to add a
bounded term to T(r, f) if homogeneous coordinates on P"(C) are changed.

We now consider a hyperplane H:a'w, + a'w, + --- + a"w, =0 in
P*(C) with f(C) ¢ H. Taking a reduced representation f = (f;: fi: - -: f.),
we set

F:=adfi, +afi+ - +af,.

The divisor v(F') is uniquely determined independently of choices of
homogeneous coordinates as well as reduced representations of f.

DEFINITION 2.4. We set v(H) = v(F') and define the counting func-
tion of f for H to be N(r, H) = N(r, v(H)).

We can easily show by (2.2)
(2.5) N, H) < T(r, )+ 0Q) .
Let @ be a meromorphic function on C.
DEFINITION 2.6. The proximity function of @ is defined to be

2r
m(r, @)= | "log" p(re|ds  (r>0),

where log?t |x| = max (log | x|, 0).

(2.7 (cf., [2, p. 9]). Regarding ® as a holomorphic map of C into
the Riemann sphere PYC), we have

T(r, ) = N(r, v2(9)) + m(r, ) + O(1) .
We consider two hyperplanes
H:a'w, + a'w, + -+ + a™w, =0, H': bw, + b'w, + --+ + b"w, =0
such that f(C) ¢ H' for a holomorphic curve f in P*(C).
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(2.8) (cf., [2, p.10]) Taking a reduced representation f=
(for fir =+ +t f), we see

T(r, S\ 0¥, / 3 b%) < T(r, ) + O) .

Let @, @, - -+, #, be meromorphic functions on C and R(u,, ---, u,)
a rational function such that the composite R(®, ---, ®,) is well-defined.
Then,
(2.9) T(r, R(@, -+, 2)) = O(3, T(r, ) + O(1) .

For the proof, see [6, p. 15].
For real-valued functions #(7), s(r) on [0, + <), by the notation

s(r) £ tr) l
we mean that s(») < ¢(+) on [0, + ) except on a set EC[0, + ) with
S dtjt < +oco.
E

PropoSITION 2.10 ([6, pp. 62-63 and p. 115]). Let @ be a mon-zero
meromorphic function on C and | a non-negative integer. Then,

(i) m(r, (@'/9)") = O(log r) + O(log T(r, )) -
If ¢ is rational, then m(r, (P'/®)?V) = O().

(ii) T(r, ") = O(T(r, #)) -

Now, we consider a holomorphic curve in P"(C) which is non-
degenerate, namely, whose image is not contained in any hyperplane in
P~C). Setting

V=~ F, V= f, ey VO =(fP, e FO) ...
for a reduced representation f = (f;: fi: -+ -: f,.), we define the holomorphic
map

k+1
@.11) Bo= VAV'A - AVE:Co A CH = OV

where 0 <k <mn and N = (Zi 11> — 1. Take a holomorphic function ¢
on C such that
v(g) = min {v(W(fi, -+, fi)); 054, < -+ <4, =},

where W(f,, - -+, fi,) denotes the Wronskian of the functions f;, - -, f,,.
Then, the map 4 := (1/9)4, is holomorphic and its image is contained
in C™** — {0}.

DEFINITION 2.12. We define the k-th derived curve of f to be the
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map
foi=mo A} :C— P¥(C),

where 7 denotes the canonical projection of C*** — {0} onto P¥(C). By
T.(r) we denote the order function of the holomorphic curve f, in P¥(C)
in the sense of Definition 2.3. Particularly, f, means the original curve
f and Ty(r) = T(r, f).

In [3], [11] and [12], the order function of the k-th derived curve
f, is defined to be
Te(r) i= |

r

0

<Slzl<ﬂ dd” log HAkIP)d—pf)— '

where d° = (V' —1/4r)@ — 8) and || 4,]|| denotes the standard norm of the
vector A4,€C"*,

As is easily seen by the basic integral formula in [3, p. 97], we have
T¥(ry = Ti(r) + OQ1).

Later, we need the following:

PRrOPOSITION 2.13. For all k, 1 (0 £k, 1 < m),

Ti(r) = O(Ty(r)) + 0Q1) Il -

For the proof, see [11, p. 160], [12, p. 132] or [3, p. 121].

3. Defect relations for the derived curves. Let f be a non-
degenerate holomorphic curve in P*(C) and 0 < k < m. Take arbitrarily
a non-zero vector A in A**'C"*' which is decomposable, namely, written
as A=A NA AN---N A, with k + 1l-vectors 4, 4, ---, A, in C**"'. We
consider the hyperplane

k _
H:=n(ZeAC™; Z+0,(Z A = 0)
in P¥(C), where {, ) denotes the canonical hermitian product on
/\k-HCn-H.

DEFINITION 3.1. We define the intersection multiplicity v.(A)(z) of
f(C) with A at z to be the integer v(H)(z) given in Definition 2.4 for
the k-th derived curve f, in P¥(C). We also define the counting function
of f, for A to be N,(A)(r):= N(r, v,(A)) and the defect of f, for A to
be

0,(4) :=1 — lim sup N, (A)(r)/T(r) .

As is stated in §1, setting



146 H. FUJIMOTO

Ui(A) := min (v,(4), (k + D)(n — k)) ,

we define the modified counting function to be N,(A)(r):= N(r, ¥, (4))
and the modified defect to be

8(A) : =1 — lim sup N (A)(#)/T.(r) .
By (2.5) we see easily
(3.2) 0<4,(4) <5,4)=1.
The main result is stated as follows.

THEOREM 3.3. Let f be a non-degenerate holomorphic curve in P"(C)
and A% A, ... A? be decomposable vectors in A*C™ located in general
position. Then

SAA) S N+ 1= (““)

E+1

As an immediate consequence of this and (3.2), we have the follow-
ing defect relation of Ahlfors and Weyl.

COROLLARY 3.4. Under the same assumption as in Theorem 3.3,

n+l>
kE+1

To prove Theorem 3.3, we need the following:

S0a) 5 (

THEOREM 3.5. Under the same assumption as in Theorem 3.3,

(3.6) (¢ — N)Tulr) < 3 Ny(A)(r) + S,
where

S(r) = O(log T(1)) + O(log 7) [ .
When f is rational, we have S(r) = O(1).

The proof of Theorem 3.5 will be given in the following sections.
We prove here Theorem 3.3 under the assumption that Theorem 3.5 is
true. We may rewrite (3.6) as

31— N)OITy0) < N + 1+ S0/ Tlr) -

If f is not rational, then lim,_.log r/T,(r) = 0 and so

lin}_i?f S/ T(r) = limqinf (O(log Tw(7))/T\(r) + O((log 7)/TW())) = 0 .

When f is rational, we also have
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lim S(»)/T,(») = lim O(1/T,(r)) = 0 .
In either case, we can conclude Theorem 3.3. q.e.d.

Take a positive number M smaller than (k¥ + 1)(n — k). If we define
the modified counting functions and defects by using the divisor
min (v,(4), M) instead of J,(A), then Theorem 3.3 does not hold. We
shall give an example which illustrates this fact. We consider the holo-
morphic curve
3.7 flzy=(QQ:e*:---:e™):C— P™C) .

Obviously, f is non-degenerate. Let 0 < k < n and set

(3.8) S={y w04 < - <9 = m}.

For each I = (4, ---, 1,) €, we define the decomposable (k¥ + 1)-vector
A" =e, Ne, N\ -+ Ne,, where (e,e, -, e,) is the canonical basis of
C™"'. Take another (k + 1)-vector A = A, A A, A --- A A, defined by
the vectors

(m —1 n—1
A,:(( . >,...,<n_l>,0,--.,0> O<1<h).

It is easily shown that N + 2 (k + 1)-vectors A° and A’ (I€J) are in
general position. For each I = (4, ---, 1,) €Y, we have
(Ayy A"y = det (i7; 0 S I, m < F)etiot+iwz

where 4, is the map defined by (2.11). This shows that v,(47) =0 and
80 0,(AY) = §,(A") = 1. On the other hand, if we set

-l [m — ] .
Puz) = 2] em =1+ ),
m=0 m
then we have
(4, A% = det (P™;0 =1, m < k) .
By an elementary calculation, we obtain
</1k Ao> — (__1)k(k+1)/21! .. k! (1 + ez)(k+1)(n—k)ek(k+1)z/2 .
If we denote the number of zeros of e¢* + 1 in {z; |z] <t} by n(f), then
n(t) =t/ + O(1). Therefore, for an integer M with 0 < M= (k+ 1)(n — k),
we have

S, min (v,(4%, M)(z) = tM/m + OQ1)

lzlst

and have N(r, min (v, (4%, M)) = M|z + O(log 7).
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We shall next evaluate the order function T,(»). To this end, we
recall the following fact.

(8.9) (cf., [11, Chap. II, §5]). Let Ny, -+, N, be mutually distinct
complex numbers and econsider the holomorphic curve

(@) = (e e¥*: .. .1 M) : C— P™((C) .

If we denote by L, the length of the circumference of the convex polygon
spanned around the points

Neg F Xy oo Ny, (G o, i) ED)
wm C, then T,(r) = (L,/2x)r + OQ).

Apply this to the case »=0,\=1,:---,A,=n. Then L,=
2(k + 1)(n — 1). For the holomorphic curve (3.7), we obtain

Ty = (B + 1)(n — k)/m)r + 0Q) .
Consequently,
1 — lim sup N(7, min (v, (4%, M))/T.(r) =1 — M|k + 1)(n — k) .
Theorem 3.8 is valid only when M = (k + 1)(n — k).

4. A basic lemma. Let f,, f, ---, fi (k> 0) be meromorphic func-
tions on a subdomain of C which are linearly independent over C. Take
I= (%, --+,1,) with 04, < --- <1, < and J=(4, -7, with
055, <+ <34, En, where 0 <r=<k. We set

W(I;J): W(":O’ "',":r;jm '“’jr):: det(f;:);()gl,mér)'

Particularly, W(0, ---, 7; 4o, - - -, 7,) means the Wronskian of the functions
Fiw =00 Jipe

DEFINITION 4.1. Foreach I = (¢, -+, %) With0 = 3, < - <9, < + 0,
we define the weight of I to be

wlI) = (% —0)+ (6, —1) + -+ + (4, — k) .

Now, we give the following lemma which is basic for the proof of
Theorem 3.5.

LEMMA 4.2. Forevery I = (1, +++, t) With 0=, <4, < -+ <3, < + o0,
the meromorphic function

W(io, + -+, 530, -+, k)W, -+, k0, -, k)
can be written as a polynomial of some of functions

(4'3) (W(O’ 1; e, T jor ) Jr)’/W(O, 1; e, Ty jo, ) jr))”_l)
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where Oéréky lzly O§j0<j1< tt <jr§k-
If we associate weight | with the function given by (4.8), such a
polynomial can be chosen so as to be isobaric of weight w(l).

PROOF. We shall give the proof of Lemma 4.2 by double induction
on k and w(I). We first consider the case k = 0. If w(I) =0, we have
nothing to prove. Assume that Lemma 4.2 is true for the case . =0
and w(I) £ w, and so there exists a polynomial P,(u,, ---, u,) such that

F321fs = Puo(folfoy (folFo)s ===, (Folf)™0)

and P, is isobaric of weight w if we associate weight [ with each

variable u,;, namely, Py(u, u* ---,u"”) is homogeneous of degree w as a
polynomial in %. Then

FE s = (F1f) + (Ll ) = ,2;1 @OP,[ou;)(fol )" + (folf) P -

Therefore, if we set

Pw+1(u1, Tty uw+1> = Z (an/au.'i)u’j+1 + uIPw(uly Y uw) )

=1

P, is isobaric of weight w + 1 and we have

80y = Pupi(Folfoy, (FolF) -y (FolF)™) -

This shows that Lemma 4.2 holds in the case £ =0 and w(I) = w + 1.
Lemma 4.2 is proved for the case &k = 0.

We shall next prove Lemma 4.2 under the assumption that it is
true for the case <k. If w(I) =0, the proof is trivial because we have
necessarily I = (0,1, ---, k). We assume that Lemma 4.2 is true for the
case w(I) < w and consider the case w(I) = w.

We first study the case I:= (%, ---, %4y, %) # (0, -+, bk — 1, k + w).
Set

fo ’ fl y Ty flc ’ 0 s T 0

............

fo(k_l)y fl(k_l), Tty flék_l)y 0 y "% 0
£, fE0 e, fE0, £,
ﬁ)(ik) ’ fl(ik) y " fk‘ik) ’ ﬁ)(ik) y %y fl«(:l—kl)

By the Laplace expansion theorem, we get

! :Zkl(_]‘)k+l||(0’."’k—ly'il;oy '..yk_l,k)
1=0
XW(’iO,---,’z,, cee 130, o B — 1),
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where 7, means that the index 1; 18 deleted. On the other hand, by
subtracting the I-th column from the (k¥ + [ + 1)-th column for each
=1, -,k we obtain
F=(-1"W(, -+, 150, ---, )W, -+, k—1;0, ---, k — 1) .

Therefore,

W(":O; "'97:k; 0’ )k’)

wQ, .-, k0, ---, k)

ey O bl i 0y bl ) Wiy, By, 030,00, B 1)

= W@, -+, k—1,k0, ---, k—1, )W, ---, k—1;0, ---, k—1)

Since w0, ---, k~1, ) <w (01 k), WO, ---,k—1,4;0, ---, k—1, k)/
w, ---, k; 0, ---, k) can be written as a polynomical of some of functions
given by (4.3) which is isobaric of weight w(, ---,k —1,%) =1, —k
according to the induction hypothesis on w(I). On the other hand, we
can apply the induction hypothesis on k to each function W(is,«-+,54 - -, %
0,---,k—1/WO, ---,k—1;0,---, 6k —1). It can be written as an
isobaric polynomial of some of functions given by (4.3) whose weight is
Wigy *+ oy gy oy W) =t o F Lt G — (O L e+ (- 1)=
w(I) — 1, + k. From these facts, we conclude that W(i, ---, 7;0, ---, k)/
0, ---, k;0, ---, k) has the desired representation.

It remains to prove Lemma 4.2 for the case (4, ---, T4y, %) =
W@, ---,k— 1,k + w). As is easily seen by induction on w, we can
write

wo, -, k0, --- &) _ WO, -, k—1,kk+ w0, ---, k—1k)

wo, ---, k;0, -+, k) we, ---, k—1,%0,--- k—1k)

3 C, Wiy -+, % 0, - -+, k) ,
wdZw W, ---, k;0, ---, k)

where C, are constants depending only on I. The left hand side and,
as was shown above, the last term of the right hand side have the
desired representation. Accordingly, we obtain the same conclusion for
wo, ---,k—1,k+ w;0, ---, )/ WO, ---, k;0, - -+, k). This completes the
proof of Lemma 4.2.

COROLLARY 4.4. In the same situation as in Lemma 4.2, we have
v(W(I; 1)) =z v(W(ly; 1)) — w(I) for every I = (i, - -+, %) and I, = (0, - -, k)
n .

PROOF. The function given by (4.3) has no pole of order larger than
. As a result of Lemma 4.2, W(I; I,)/W(I,; I, has no pole of order
larger than w(I). This proves Corollary 4.4. q.e.d.
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5. An inequality for divisors. Let f be a non-degenerate holomor-
phic curve in P"(C) and take a reduced representation f = (f: fi: -+ -: fo)-
Let 0 <k < m. We attach lavels to all elements in the set & given by

3.8) as I,:=(0, ---, k), L, I, ---, Iy, where N=(”+1) 1. By W

E+1)
we denote the square matrix (W(l,;1,);0 < r,s £ N), where W({l,; I,) =
det(fi;0 <1, m < k) as in the previous section if I, = (%, - -+, %), I, =
(jO, REY jk)‘

As a result of the classical theorem of Sylvester and Franke (e.g.,
[5, p. 94]), we have
(5.1) det (W) = W(O, 1, -+, 2;0,1, ---, ;)& (0).
DEFINITION 5.2. We define
v, := min W(W(Iy; L)), v(W(Ly; 1)), - - -, v(W(Iy; L))

It is easy to show that v, does not depend on a particular choice of
a reduced representation of f.
The purpose of this section is to prove the following:

PROPOSITION 5.3. Let A° A', ---, A? (¢ = N) be decomposable (k + 1)-
vectors in gemeral position. Then,

1 a
et (W) 2 (3 1) oo S 040 = o+ Dl = )"

where x* = max (x, 0).

To prove Proposition 5.3, we recall the following fact.

LeMMA 5.4 ([6, p. 41]). Let f be a non-degenerate holomorphic curve
in P™(C) and z, be an arbitrary point of C. If we choose suitably
homogeneous coordinates on P™(C), a reduced representation of f and a
local coordinate t in a meighborhood of z, with t(z,) = 0, then f can be
written as f = (fo: fii -+ - fo) With holomorphic functions f;, (0 £1 =< n)
which are expanded as

fi=t14+ 3 ¢t (c;,€0)

53,
in a meighborhood of z,, where 6, =0<d, < -+ < d,.
For the function f; =t% + ---, we have
() = 0,0; — 1) -+ (05 — i + Dt 4 -,
where “...” indicates the sum of terms of higher degrees. Set
$(0;) = 0;(0; — 1) --- (9, —i+1).
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Then, for all I = (4, ---, %) and J = (g,, - -+, Ji), We have easily
W(I, J) = det (¢iz(8im); 0 l, m< k)t3j0+-..+5_1'k—(1:0+-.-+ik) + ...
LEMMA 5.5. v(2) =0, —0)+ (@6, — 1)+ --- + (6, — k).

ProOF. We see easily v(W(I,; I,))(z,) = (0, — 0) + --- + (0, — k) and
V(W(ly; I))(2) > (6o — 0) + +++ + (0, — k) if I+ I,, As an immediate con-
sequence of Definition 5.2, we have Lemma 5.5. q.e.d.

LEMMA 5.6. For all I, JeJ, we have
v(W(I; J)) = (v, — wl) + w(J))* .

ProOOF. For each point 2z, C, we take 6,=0, 6, ---, 0, as in Lemma
5'4’ For I = (1:0’ ) ik) a'nd J = (jO’ ) jk) in S!

VWI; J)) =2 (05, — 1) + (0;, — %) + - -+ + (0, — )
k k k
=250 =D = 3 (6 =D+ 3,05 — ) = wlzo) — wd) + w(J),
because 0;, — 0, =4, —1! for 1 =0,1,---, k. Since we have always
v(W(I;J)) =2 0, Lemma 5.6 holds. g.e.d.

LEMMA 5.7. Let f,, (0 £ r, s < N) be non-zero holomorphic functions
on C. Assume that, for a mon-negative integer m and w, (0 < r < N),

’)(frs) g (m - w, + ws)+
at a point z,€C and det (f,,) 0. Then,
v(det (f.))(z) = m(N + 1) .

ProOF. By definition, we have det (f,,) = >, 8gn (0)fu,fui, = * Sfwiys

where ¢ = (3 li\f runs through all permulations of the letters 0, ---, N.
0 N.

For each function F\..., := fu fu, -+ fey, We have
N
MF i) = S 0(F) Z N + 1) .
This implies Lemma 5.7. q.e.d.

COROLLARY 5.8. u(det (W)) = (Z i %)v,,.

This is a direct result of Lemmas 5.6 and 5.7.

PrOOF OF PROPOSITION 5.3. Take a point z,€C arbitrarily. For
brevity, we set m, = v,(4*) (0 £ v < q). Changing indices if necessary,
we may assume that
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MmyzZzmZ---2m=k+Ln—k>m,=---2m,.
If t+1=0, namely, (k¥ + 1)(n — k) > m, for all v, Proposition 5.3 is
true because of Corollary 5.8. We may assume ¢t = 0. Set
Fu=</1k;gy> (IJ:O,I,"',(]),

where 4, are the maps given by (2.11). Since 4°, A!, ..., A" are linearly
independent over C by assumption, W(l,; I,), - - -, W(I,; Iy) can be written
as linear combinations of F°, ..., F¥. If t = N, then

V(Wiy,) = min (V(F), v(F"), - -+, u(FY)) = v, + my > v,

for r =0,1, ---, N. This contradicts Definition 5.2. So, t < N.

Now, we choose N — t vectors B'*!, ... BY in A C™" guch that
B°:= A" .--,Bt:= A!, B**', ..., B¥ are linearly independent, where
A’ ..., A’ in C"** are regarded as column vectors. We define the square
matrix B = (B, B*, ---, B¥) and

U=U;08r,s<N)=(U, U, ---,U"):= WB.
Then, v(det W) = v(det U) because det B == 0. Set
WI,. = (WI,on WI,Ily Tty WI,.IN) ’ Wie = t(WIOIs: this; Tty WINIs) .

We can write U =<(W,,B*) (0 <r,s<N) and
(5.9) U= 3 bW (0sssN),

where B® = ‘(b;, ---, by). By assumption,
F*i= {4y, &) (= Wy, A)
has a zero of order m, + v,(z,) at z,. We claim here that U; = (W,, A
(8=0,1, ---,%t) has a zero of order =y, + m, — w(Z,). To see this, for
each v we choose a system of orthonormal basis ¢, ¢, - - -, ¢, of C*** such
that A =ce, Ae, A\ --- Ae, (ceC). If we take the reduced representa-
tion of f with respect to this, we can write
Wy, A = Wiy, -+, 450, -+, k)

for each I, = (4, -, %) €JF. Then, we can apply Corollary 4.4 to these
functions and obtain the desired conclusion.

On the other hand, since 7, —l<n—k (1 =0,1, ---, k) for all I =
(T, =+, 1) €I, We always have
(5.10) wl,) £k + D(n—k).

Therefore, every component of U* has a zero of order =m, —
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(k+ 1 —k)+ v, at 2z, for s=0,1, ---,¢t. Set
U= (z — z)*vb-mlUe (s=0,1,---,1)
and U:= (0°, --., U*, U*™, ..., UY). Then,

~ z ((k+1) (n—k)—my)
det U= (z — z)™° det U
and the order of the »-th component U; of U* (0 <s <t) at 2, is not
less than v, + m, — w(l,) + ((k + )(n — k) — m,) (=y, + (b + 1)(n — k) —
w(l,)). By virtue of (5.9), we can rewrite
(5.11) det U= S det (TU°, ---, U, Whtn ... W)

Ci eeq
05iy Se<iysy TN

with suitable constants ¢ For each (%,,, - -, iy) We set

Tgt1iNe
G:= det(ﬁo, ey fﬂ’ Wi oo Whin) .

We determine the indices 4,4, -+, %, 0=, < --- <1, < N) so that

{To, =+, Ty Tppq, ==+, 2y} = {0, 1, ---, N}. For convenience’ sake, we set

Wio:=0° ... Wi:= U, Wittt = When oo Wiv := W'hin |
0--t t+1---N o 5
G=sgn<, b ,)det(W",W‘,---,W”).
T % U Uy

For each s =0,1, ---, N, the r-th component W; of W* has a zero of
order =y, — w(l,) + w(l,) at z,. In fact, if se{i,y, ---, iy}, this is a
result of Lemma 5.6. On the other hand, if s =1, for some s’ with
0<s <t, we see that

V(W(20) = v(U8) @) = v — w(l,) + (k + D(n — k) = v, — wl,) + w(l,)

by virtue of (5.10).
We now apply Lemma 5.7 to the matrix (W°, .-, W¥). We can
conclude that each term on the right hand side of (5.11) has a zero of

order =(N + 1)y, = (2 i %)v,, at z. So, v(det U) > <";é i i)vk. Con-

sequently,

w(det U)(z,) = v(det T)(z) + g (m, — (k + 1)(n — k)

n+1 ¢
e i R T (R )

. <'n +1
S \k+1
This completes the proof of Proposition 5.3. q.e.d.

>p,, + g‘, (m, — (k + 1)(n — k))* .
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6. Proof of the defect relation. In this section, we shall complete
the proof of Theorem 3.5. Let A° A', --., A? be decomposable (k + 1)-
vectors in general position. We write them as A* = A} A A2 A\ --- A AL,
where A} = (ah, aby, -+, a,)eC™™ (1=0,---,k). For a given non-
degenerate holomorphic curve f in P*(C), we take a reduced representa-
tion f=(fi:---:f,) and define F* = (4,, A), W(I;J) = det (f{i*) for
I=(%, -+, W)y J=o, -+, Ju) €3y W=(W(L,; L,)), vi=min {»(W(I; I)); I e J}
and so on as in the previous sections. Choose a non-zero entire function
g such that v(g) = v,.

(6.1) Amny chosen N + 1 functions among G°:= F°/g, -+, G := F/g
have mo common zero.

In fact, for any chosen a, - ---,ay O=Za < - <ay=yq),
W(l,; L)]g, ---, W(l,; Iy)/g can be written as linear combinations of
G*, - .-, G*¥ because A, - .., A®¥ are linearly independent. If G%, ... G~
have a common zero, then W(I; I,)/g, - --, W(l,; Iy)/g have also a common
zero, which is impossible. Thus, we have the above conclusion.

DEFINITION 6.2. We define

v(z) 1= max log |G#r+1(z) - - - GPa(2)] .

OéﬁN+1<"-<ﬁq§lI

LEMMA 6.3. (¢ — N)T,(r) < 51;8 v(rends + O(1).
0

ProoF. Take a point z,€6C. We determine the indices «,, ---, ay,
Bui1y * 5 Bq 0 that {a, -+, @y, Bysy, -, B} =1{0, -+, ¢} and
Gn] s - < |G| S G < oo < |GH]
at z,. Since A%, ... A°~r are linearly independent, we can write
(6.4) W(I,; I,) = ¢, '™ + ¢, F'*r + « -+ + ey ¥ (0<s=N)

with suitable constants ¢,, depending only on A*. Therefore, we can
find a positive constant L not depending on z, such that

|W(L; I)(2))| < LI Fv(2,)]
If we set w:=max;.,log |W(l,; I)/g|, then we have
w(z,) < log L + log |G*7(2,)] r=N+1,---,9q.
Summing them up, we obtain
(@ — Nu(z,) = (¢ — N)log L + log |G*r+1(z,) - - - GPo(z,)|
=(¢— N)log L + v(z,) .

Taking the mean value of each term as a function of 2z, on {z;|z| = 7},
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we get the desired inequality.
DEFINITION 6.5. We define
w(@):= max log|det (W)(2)/F*(z) --- F*5(z)|

0sap<-r<ay=<q
and

H(z):= F°2)F'(2) - - - F(2)/g(2)"" det (W)(z) .
Then, we have
6.6) (¢ — N)T,(r) < _217 S log | H(re)|d6 + 51; S wre?do + 0(1) .
To see this, we choose indices a,, --*, &y, Bys1, ***, B, a8 in the
proof of Lemma 6.3 for an arbitrarily fixed point z,€C. Then,
v(2,) = log |GPr+1(2,) + - - GPo(zy) |
= log | F(2,) - - - F'(2,)/9(2,)" " (det W)(z,)|
+ log | (det W)(z,)/F*(2,) - - - F*¥(z,)|
= log | H(z,)| + w(z,) .
This gives
L (" orenyds = L7 0 g0
B g o(re)dt = - S log | H(re)|df + -— So wre")do
whieh concludes (6.6) by the help of Lemma 6.3.
LEMMA 6.7. %S log | Hire®)|do < 3 N,(A)(7) + O(L).
0 v=0
PROOF. According to (2.2),
2% S log | H(re'%)|d6 < N(r, »(H)) + O(1) .

We have only to prove the inequality v(H) < 37, J,(4%). Since v, (4 =
(@) (0 £ v < q) and we can write H = G°G* - - - G¢""/det W and

WH) = S04 + (N + Dy, — v(det W) .
Accordingly, by virtue of Proposition 5.3, we get
y(H) = Zjﬂ V(A% + (N + L)y,

n+1 T y -
(571 Sy = o+ 10— )

= 3y 04 — (a(4) — (k + D(n — k)*
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= Zs min (v(4"), & + D(n — k) .

This completes the proof of Lemma 6.7. q.e.d.

For a reduced representation f = (f,: - --: f,) of f, setting V = V@ :=
(1y fl/fO’ ) fn/ﬁl) and

VO =0, (LI, -, (L) A=1,2--),

we define
= (P90 A T A oo A P00, 2
for each vy =0,1, ---, g and I = (3, ---, 3,) €I. We also define
W(I,; L) := det (£;,/f)*; 0 < I, m < k)

for all I, = (4, -+, %) and I, = (j,, -++, 5) in I and the matrix W =
(WU;1);0<7,8<N).

(6.8) w) = max log|det W(z)/F(z) - - Fen(z)] .

0sap<---<apy=q
PROOF. As is easily seen, F = f¢*'F% and so
Fofa ... ey — fo”‘“)“”l)ﬁ‘g: N F‘;‘ON .
On the other hand, the Wronskian of the functions 1, f/f;, ---, fu/fe is

equal to the Wronskian of f, fi, ---, f. devided by fy™. According to
(5.1, we have detW = f»(:)det W. Since (k+ )N+ 1) =

k + 1)(7;0’ i %) =(n + 1)(2’), we see

(det W)/Fe ... Fox = (det W)/Fso ... Fgn .
This gives (6.8). q.e.d.
LEMMA 6.9. There exists a positive constant K, such that
we) < K, 3 log* | Fy(2)/F3(2)] + K, .

1Sr<N

PROOF. The identity (6.8) implies that
w@ < > log*|det W(2)/Fixa) - - Fa2)| .

0
0gap< - <ay<q

It suffices to estimate each term log*|det W/F;'g “ee F’;‘g\fl for each
(g, +++,ay) With 0=y < --- £ ay <q. Together with the identity
(6.4), we have also

W(I,; 1) = co, 5o + o F + - + oy Fow

for all »,s=0,1, ..., N. Therefore, we can write
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(det W)/Fgo - .. Fev = det (c,,) x det (F5;0 <7, s < N)/FoF .- Frx
= det (¢,,) X det (F;";/F';"os; 0<7r,s<N).
By the basic formulas
logt (x + y) < logtx + logty + log 2, log* 2y < log*x + logty,
we easily conclude Lemma 6.9. q.e.d.

To complete the proof of Theorem 3.5, it suffices to prove the
following lemma because of (6.6) and Lemma 6.7.

LEMMA 6.10. ~21; S wre®ds = S(r) ,

where
S(r) = O(log T.(7)) + O(log 7)
and, if f is rational, then S(r) = OQQ).

FroOoF. We first estimate log* |F; /F'7 | for each fixed » (0 < v < ¢)
and I, = (4, -+, 9,) €Y. Since A* is a decomposable vector, we can

choose an orthonormal basis {e, e, -+, ¢,} of C"™ such that A" = ce, A
e\ -+ Ne, (ceC). Using this basis, we represent fas f = (g, - -: dn),
where g, -+, g, are linear combinations of f/f,, ---, f./f,- Then,

Fy =V Ao ATV, A =cdet (¢80, m=Fk).
Fy =CVAN--- ANVW A =cdet (g0, m<k).

By Lemma 4.2, the function F%; /F'; can be represented as a polynomial
of some of the functions

(W(gjo, <o, g:ir)'/W(giw N gjr))(l—l) ,
where W(g;, ---, g,,) denotes the Wronskian of g;, ---, 9, and 0 < r =k,
lz1, 04, <---<j,=k. FBEach W(g;, - -, 9;) is a polynomial of

(AP, o, (Hlf)P @=0,1, ---), which we denote by @, (1 =0, 1, -+, ).
By Lemma 6.9 and (6.11), there exists a constant K, such that

(6.11)

we) SK( 3 log"(@ip)' @) + K,

i=1,2,+++,3)

and so
=\ wirends < k.3 mir, @igp)e ) + K,
21 Jo 1,3

It then follows from Proposition 2.10 that
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~217 SZ” w(re)dd < O(log r) + O(log T(r, @,)) I

where the right hand side is replaced by O(1) if f is rational. On the
other hand, by (2.8), (2.9) and Proposition 2.13,

T(r, @) = O(Ty(r)) = O(Ty(7)) Il -
From these facts, we easily conclude Lemma 6.10. q.e.d.

7. Appendix. In [3], Cowen and Griffiths gave a new proof of the
defect relations for the derived curves of a holomorphic curve in P*(C)
by using the method of negative curvature. We can give another proof
of Theorem 3.3 in this way. In this section, we shall state its outline.
We shall use freely notations and results in [3] and the previous sections
of this paper except in §6.

Cowen and Griffiths gave the following result.

THEOREM 7.1 ([3, p. 152]). Let f be a mon-degemerate holomorphic
curve im P"(C) and {A*)_, be decomposable (k + 1)-vectors im gemeral
position. Then, for every ¢ > 0,

n

n+1

5N = 3 b1

S pG, NG + (q+1—< )—s)Tm I,

where

. keofm—g\[(7+1 .
h) := =>h, k=h).
pi(J, h) l§h<l+1><k_l> Gzh kzh)

As in [3, pp. 117-118], we denote by a,(z) the order of ramification
of f, at z. Then, we see

(7.2) A = Yy, + Dk+1 - zvk .

We have also

k n—1+h—k . n n+1

LEMMA 7.3. h§___‘,o ,gi 0:(4, R)a; = <k>v" — (k N 1)»,, .

The proof is given by the same calculation as in the proof of [3,
Proposition, p. 147]. In the calculation, we have only to replace the
terms Ric2; and 2, by a; and v;, respectively, word for word except
that we have to attend to the fact 2, =0 but v, # 0.

According to (5.1), we see <Z’)un = y(det W). Using Proposition 5.3,

we obtain
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3. 9(4) = 3 min (v,(4"), (k + 1)(n — k))
= 2 (A — 3 ((A) — (b + D(n — k)

n n+1
= 2 ) = ((k)”"’ <k+ 1)”")

=S - 575 pl, W

h=0

By the monotonicity of integral, we have

For

We
§3.

(1]
(2]
(81
[4]

[5]
[6]

[7]
(8]
(9]

[10]
[11]

[12]

R4 2 5N - 373 8, DN -

every ¢ > 0 we conclude by Theorem 7.1

s, MA@ = (q +1- (’Z “+” i) _ s> () I

can easily prove Theorem 3.8 by the method similar to its proof in
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