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1. Introduction. In [2], H. Cartan generalized the defect relation
for meromorphic functions obtained by R. Nevanlinna to the case of
holomorphic curves in the ^-dimensional complex protective space Pn(C),
where by a holomorphic curve in Pn{C) we mean a holomorphic map of
Cinto Pn(C). Subsequently, Ahlfors and H. and J. Weyl gave the defect
relations for the derived curves ([1] and [11]). Recently, some new
proofs of them and certain generalizations of them to the case of several
complex variables have been given ([3], [7], [8], [9] etc.). They mainly
follow either Cartan's method or Ahlfors-WeyΓs method. The former
is more elementary than the latter and, moreover, Cartan's result is
better in the sense that he defines the defect by counting functions
which count each zero of order ^n only n times. However, he did not
give defect relations for the derived curves.

In this paper, following Cartan's method we shall give a new proof
of the defect relations for the derived curves. Also, we improve the
defect relation of Ahlfors and Weyl for the derived curves as follows.

Let / be a non-degenerate holomorphic curve in Pn(C) and fk the
fc-th derived curve (cf., Definition 2.12) for 0 <; k < n. For a non-zero
decomposable (k + l)-vector A> we denote the intersection multiplicity
of Λ(C) with A at z by vk(A)(z) (cf., Definition 3.1) and set

(1.1) UΛ) = min (vk(A), (k + ί)(n - k)) .

We define the modified counting function of fk for A to be

Nk(A)(r) = Γ( Σ W ) τ + **(0)l°gr
JO 0 < j 2 | ^ ί t

and the modified defect to be

δk(A) = liminf (1 - Nk(A)(r)/Tk(r)) ,

where Tk(r) is the order function of fk (cf., Definition 2.12).

We can prove the following:
THEOREM. Let A0, A1, , Aq be decomposable (k + l)-vectors in
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general position. Then,

The paper is organized as follows. In §2 we shall recall some
definitions and known results for later use. Next, in §3 we shall
formulate precisely the defect relations mentioned above and give an
example which shows that the number {k + l)(n — k) in (1.1) is sharp.
To prove the above theorem, we shall give a basic lemma on the
Wronskian of meromorphic functions in § 4 and an inequality for divisors
in §5. After these preparations, we shall complete the proof of the
above theorem in §6. In [3], Cowen and Griffiths gave a new proof of
the defect relations by using the method of negative curvature. In the
last section, we shall give another proof of the above theorem by making
use of their method.

2. Preliminaries. Let v be a divisor on C, by which we mean an
integer-valued function on C such that the support \v\ := {z; v(z)Φb) has
no accumulation points in C

DEFINITION 2.1. The counting function of v is defined as

N(r, v) : - [ ( Σ »(*))— + »(0) log r (r > 0) .
JO \0<\z\£t / t

For a non-zero meromorphic function φ on C, we define the divisors

(0 if z is not a pole of ψ ,

(m if z is a pole of φ of order m ,

(2.2) (Jensen's formula, cf., [6, p. 4]). If φ is a non-zero meromor-
phic function on C, then

— Γ log I φ(reiθ) I dθ = N(r, v{φ)) + lim log | z~^)Wφ{z) \ (r > 0) .
2/K Jo z->o

Let / be a holomorphic curve in Pn(C). For an arbitrarily fixed
homogeneous coordinates (w0: wx\ •: wn), f has a representation

f(z) = (fo(z):f1(z): •• :/n(3)) (zeC)

with entire functions fQ, f, , fn such that

= fn(z) = 0} = 0 .
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Such a representation of / is referred to as a reduced representation in
the following.

Taking a reduced representation / = (/0: : /J , we set

u(z) :=

DEFINITION 2.3. The order function (in the sense of H. Cartan [2])
of / is defined to be

As is easily seen by (2.2), T(r, /) is uniquely determined independently
of a choice of reduced representations of /, and we have only to add a
bounded term to T(r,f) if homogeneous coordinates on Pn(C) are changed.

We now consider a hyperplane H: a°w0 + aιwλ + + anwn = 0 in
Pn(C) with f(C) (t H. Taking a reduced representation / = (/0: jfc : /n),
we set

• • + anfn .

The divisor Z ĴF7) is uniquely determined independently of choices of
homogeneous coordinates as well as reduced representations of /.

DEFINITION 2.4. We set v(H) = v(F) and define the counting func-
tion of / for H to be JV(r, i ϊ) =

We can easily show by (2.2)

(2.5) N{r, H) ^ T{r, f) + 0(1) .

Let φ be a meromorphic function on C.

DEFINITION 2.6. The proximity function of 95 is defined to be

m(r, φ) : - -A- Γ log+ 19>(rβiβ) | d^ (r > 0) ,
2ττ Jo

where log+ \x\ — max (log | x | , 0).

(2.7) (cf., [2, p. 9]). Regarding φ as a holomorphic map of C into
the Riemann sphere P\C), we have

Γ(r, φ) = iV(r, v°°(̂ )) + m(r, φ) + 0(1) .

We consider two hyperplanes

H: a°w0 + aιwx + + anwn = 0 , jff': b°w0 + δ1^! + + 6n^n = 0

such that f(C) <£ H' for a holomorphic curve / in Pn{C).
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(2.8) (cf., [2, p. 10]) Taking a reduced representation f =
(Ufi •••:/»), we see

T(r, Σ a*fJ± Vfλ ^ T(r, f) + 0(1) .
\ ί=o / ΐ=0 /

Let φlf φ2, - , φq be meromorphic functions on C and R(uu , uq)
a rational function such that the composite R(φl9 " f<Pq) is well-defined.
Then,

(2.9) Γ(r, R(φί9 ., φq)) ^ θ(± Γ(r, φu)) + 0(1) .

For the proof, see [6, p. 15].
For real-valued functions t(r), s(r) on [0, +oo), by the notation

s(r) ^ ί(r) ||

we mean that s(r) ^ ί(r) on [0, +°°) except on a set J?c[0, +oo) with

dt/t < + oo.

PROPOSITION 2.10 ([6, pp. 62-63 and p. 115]). Let φ be a non-zero
meromorphic function on C and I a non-negative integer. Then,

( i ) m(r, {φ'lφ){l)) = O(log r) + O(log Γ(r, φ)) \\ .
If φ is rational, then m(r, {φrjφ){l)) = 0(1).

(ii) T(r, φ<l)) = O(T(r, φ)) || .

Now, we consider a holomorphic curve in Pn(C) which is non-
degenerate, namely, whose image is not contained in any hyper plane in
Pn(C). Setting

for a reduced representation / = (/0: /^ : /J , we define the holomorphic
map

k+l

(2.11) ^fc = F Λ F ' Λ Λ F( fc): C-> Λ Cn+1 - C^+1 ,

where 0 <; & < n and JV = ( ϊ 7" i ) — l Take a holomorphic function g

on C such that

v{g) - min {v(TF(/io, -, fije)); 0 ^ ΐ0 < .. < ik ^ }̂ ,

where TΓ(/<0, , fik) denotes the Wronskian of the functions /<0, , /<fc.
Then, the map 4? := (l/g)Λk is holomorphic and its image is contained
in C*+1 - {0}.

DEFINITION 2.12. We define the k-th derived curve of / to be the
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map

where π denotes the canonical projection of CN+1 — {0} onto PN(C). By
Tk(r) we denote the order function of the holomorphic curve fk in PN(C)
in the sense of Definition 2.3. Particularly, /0 means the original curve
/ and Γ0(r) = Γ(r, / ) .

In [3], [11] and [12], the order function of the k-th derived curve
fk is defined to be

2ϊ(r):= \Ί\
JO \J

2l<|0

where dc = (l/ —l/4ττ)(3 — 3) and \\Λk\\ denotes the standard norm of the
vector AkeCN+1.

As is easily seen by the basic integral formula in [3, p. 97], we have
TUr) = Tk(r) + 0(1).

Later, we need the following:

PROPOSITION 2.13. For all k, I (0 ^ k, I < n),

Tk(r) ^ 0(Γ,(r)) + 0(1) || .

For the proof, see [11, p. 160], [12, p. 132] or [3, p. 121].

3. Defect relations for the derived curves. Let / be a non-
degenerate holomorphic curve in Pn(C) and 0 <; k < n. Take arbitrarily
a non-zero vector A in /\k+icn+1 which is decomposable, namely, written
as A = Ao A A1 A- Ά Ak with k + 1-vectors Ao, Al9 , Ak in Cn+1. We
consider the hyperplane

fc+l _

H:= π({Ze A Cn+1
 \ZΦQ, (Z, A) = 0})

in PN{C), where < , > denotes the canonical hermitian product on

DEFINITION 3.1. We define the intersection multiplicity vk(A)(z) of
with A at z to be the integer v(H)(z) given in Definition 2.4 for

the &-th derived curve fk in PN(C). We also define the counting function
of fk for A to be Nk(A)(r): = N(r, vk{A)) and the defect of fk for A to
be

δk(A):= 1

As is stated in §1, setting
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vk{A) : = min {vk{A\ (k + l)(n - k)) ,

we define the modified counting function to be Nk(A)(r): = JV(r,
and the modified defect to be

δk(A) : = 1 - limsup JVfc(A)(r)/Γfc(r) .

By (2.5) we see easily

(3.2) 0 ^ δ4(A) ^ 3»(A) ^ 1 .

The main result is stated as follows.

THEOREM 3.3. Let f be a non-degenerate holomorphic curve in Pn(C)
and A0, A1, , Aq be decomposable vectors in /\k+1Cn+1 located in general
position. Then

As an immediate consequence of this and (3.2), we have the follow-
ing defect relation of Ahlfors and Weyl.

COROLLARY 3.4. Under the same assumption as in Theorem 3.3,

To prove Theorem 3.3, we need the following:

THEOREM 3.5. Under the same assumption as in Theorem 3.3,

(3.6) (q - N)Tk(r) ^ ± Nk(A>)(r) + S(r) ,

where

S(r) = O(log Tk{r)) + O(logr) || .

When f is rational, we have S(r) = 0(1).

The proof of Theorem 3.5 will be given in the following sections.
We prove here Theorem 3.3 under the assumption that Theorem 3.5 is
true. We may rewrite (3.6) as

Σ (1 - Nk(Aχ)(r)/Tk(r)) ^N+l + S(r)/Tk(r) .

If / is not rational, then liia^^ log r/Tk(r) — 0 and so

lim inf S(r)/Γ»(r) = lim inf (O(log Tk(r))/Tk(r) + O((log r)/Tk(r))) = 0 .
r-»oo r-»oo

When / is rational, we also have
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lim S(r)/Tk(r) = lim O(l/Tt(r)) = 0 .
r—»oo r—>oo

In either case, we can conclude Theorem 3.3. q.e.d.

Take a positive number M smaller than (k + ΐ)(n — fc). If we define
the modified counting functions and defects by using the divisor
min (vk(A), M) instead of vk{A), then Theorem 3.3 does not hold. We
shall give an example which illustrates this fact. We consider the holo-
morphic curve

(3.7) f(z) = (1: e*: -. : e™): C -> Pn(C) .

Obviously, / is non-degenerate. Let 0 ^ k < n and set

(3.8) 3f = {(i0, . ., ik); 0 £ i0 < • < ik £ n) .

For each I = (i0, , ik) e $, we define the decomposable (fc + l)-vector
A1 = eίQ A eh A Λ e<ifc, where (β0, βx, , en) is the canonical basis of
Cn+1. Take another (fc + l)-vector A ^ Λ Λ ^ Λ Λ Ak defined by
the vectors

It is easily shown that N + 2 (fc + l)-vectors A0 and A7 (I e $) are in
general position. For each I = (i0, , ifc) eQf, we have

< ^ , A1} = det (if; 0 ^ ί, m ^ k)e{i°+ ~+i*)z ,

where 4̂fc is the map defined by (2.11). This shows that v^A1) = 0 and
so dkiA1) = δ^A1) = 1. On the other hand, if we set

»-* in — l\
9ι(z) = Σ β- = (1 + β ) - 1 ,

»=o \ m I

then we have

<A, A°> - det (φίw); 0 ^ i, m ^ k) .

By an elementary calculation, we obtain

(Λk, Ά°) = (-1)* (*+ 1 ) / 21! •••&!(! + e )(*+i)(»-*)e*(*+« /« .

If we denote the number of zeros of ez + 1 in {z; \z\ ^ t) by w(t), then

W(t) = t/π + 0(1). Therefore, for an integer M with 0 < M^ (k + l)(w - fc),
we have

Σ min (v4(A°), Jlf)(«) = tM/π + 0(1)

and have N(r9 min (vA(A°), Λf)) = rM/π + O(logr).
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We shall next evaluate the order function Tk(r). To this end, we
recall the following fact.

(3.9) (cf., [11, Chap. II, §5]). Let λ0, * ,λ n be mutually distinct
complex numbers and consider the holomorphic curve

f(z) - (ex°z: eλ»: : eλ«z): C-*Pn(C) .

If we denote by Lk the length of the circumference of the convex polygon
spanned around the points

K + K+ ••• +K (« ••-,i*)6S)

in C, then Tk(r) - (LJ2π)r + 0(1).

Apply this to the case λ0 = 0, Xλ = 1, , Xn = n. Then Lk =
2(k + ΐ)(n — 1). For the holomorphic curve (3.7), we obtain

Tk(r) = ((fc + l)(n - k)/π)r + 0(1) .

Consequently,

1 - lim sup N(r, min (vk(A°), M))jTk(r) = 1 - M/(k + l)(n - fc) .
r—>oo

Theorem 3.3 is valid only when M = (k + ϊ)(n — fc).

4, A basic lemma. Let /0, / l f ••-,/* (k > 0) be meromorphic func-
tions on a subdomain of C which are linearly independent over C. Take
I = (V * , %) with 0 S % < ' < % < °° and J = (jOf , j r) with
0 ^ jo < < ir ^ n> where 0 ^ r <̂  fc. We set

TΓ(I; J ) - Wo, ••-,*,; iof , 3r) : = det (/£ } ; 0 ^ Z, m ^ r) .

Particularly, T7(0, , r; j 0 , , i r ) means the Wronskian of the functions

fdof ' "f fa'r'

DEFINITION 4.1. For each / = (i0, , ik) with 0 ^ i 0 < < i f c < + o o ,
we define the weight of / to be

w(I) = (ίo - 0) + (ix - 1) + + (ik - k) .

Now, we give the following lemma which is basic for the proof of
Theorem 3.5.

LEMMA 4.2. For every I = (i0> , ik) with 0 <; i0 < ix < < ik < + oo,
ί/ie meromorphic function

W(i0, - - . , ^ 0 , . . . , f c ) / T Γ ( O , - . . f f c ; 0 , • - . , & )

cα^ δe written as a polynomial of some of functions

(4.3) (W(0, 1, , r; j 0 , • , j r ) '/ TΓ(O, 1, , r; i,, , jrψ-»
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where 0 ^ r £ k, I ^ 1, 0 ^ jQ < j \ < < j r ^ k.
If we associate weight I with the function given by (4.3), such a

polynomial can be chosen so as to be isobaric of weight w{I).

PROOF. We shall give the proof of Lemma 4.2 by double induction
on k and w(I). We first consider the case k = 0. If w(I) = 0, we have
nothing to prove. Assume that Lemma 4.2 is true for the case k = 0
and w(I) ^ w, and so there exists a polynomial Pw(ul9 --,uw) such that

/Wo - P.(/ί// , (/ί//o)', , UVfiY1-")
and P w is isobaric of weight w if we associate weight ϊ with each
variable uif namely, Pt(u,u2, •• ,u w ) is homogeneous of degree w as a
polynomial in u. Then

Therefore, if we set

= Σ
P w is isobaric of weight w + 1 and we have

foW+1)/fo - P.+i(/ί//o, (/ί//o)', •

This shows that Lemma 4.2 holds in the case k — 0 and w(I) = w + 1.
Lemma 4.2 is proved for the case k = 0.

We shall next prove Lemma 4.2 under the assumption that it is
true for the case <k. If w{I) = 0, the proof is trivial because we have
necessarily I = (0, 1, , &). We assume that Lemma 4.2 is true for the
case w{I) < w and consider the case w(I) — w.

We first study the case / : = (i0, , ik-i, i*) Φ (0, , fc — 1, & + w).
Set

/o , /i , •••, Λ , 0 , •-., 0

•Pik-

(i0)

/
'(k—1) Λ

k 9 0
. f«0>

0

By the Laplace expansion theorem, we get

F = Σ ( - 1 ) * + I m θ , • , ft - 1, i,; 0, • • , fc - 1, ft)
i0

X
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where ΐ, means that the index ix is deleted. On the other hand, by
subtracting the Z-th column from the (fc + I + l)-th column for each
Z = 1, , fc, we obtain

F = (-l)*W(ϊ0, , V, 0, , k)W(0, , fc-1; 0, , fc - 1) .

Therefore,

W(i0, ---, y , 0 , - - - , f c )
TITYΠ . . . i π . . . I Λ

= y / 1yWr(Q> ,fc--i, ii O,'-, fc-i,fc)Wo,- -,'^, , ^ Q, - - , f t - i )
έ ί T7(0, -- , f t - l , fc O, «.,fc-l, ft)TF(O, •• , fc- l ;0 , -•-, fc-1)

Since w(0, , ft - 1, i , ) < w (0 ^ Z ̂  ft), T7(0, , ft - 1, i,; 0, , ft - 1, ft)/
TF(O, , ft; 0, ••-,&) can be written as a polynomical of some of functions
given by (4.3) which is isobaric of weight w(0, , fc — 1, i,) = ix — ft
according to the induction hypothesis on w(I). On the other hand, we
can apply the induction hypothesis on fc to each function W(i0, - 9%u »i*;
0, -. ,fc - l)/W(0, -- ,fc - l O, « ,fc - 1). It can be written as an
isobaric polynomial of some of functions given by (4.3) whose weight is

w(iOf - , ΐu , ih) = % + + ΐι + + iu ~ (0 + 1 + + (fc - 1)) =
w(I) — ix + fc. From these facts, we conclude that W(i0, , ik; 0, , ft)/
(0, , fc; 0, , fc) has the desired representation.

It remains to prove Lemma 4.2 for the case (i0, , ik_λ1 ik) =
m θ , , fc — 1, fc + w). As is easily seen by induction on w, we can
write

m o , ---, fc Q, ••-, fc)(w)

 = m o , , fc - i , fc + w; o, - - , fc - l , fc)
m o , , fc; 0, - -., fc) m o , , fc - 1, fc; 0, - , fc - 1, fc)

-j- \ (j ? ? ?—I ?

where Cf are constants depending only on /. The left hand side and,
as was shown above, the last term of the right hand side have the
desired representation. Accordingly, we obtain the same conclusion for
W(0, , fc - 1, fc + w; 0, , k)/W(0, , fc; 0, , fc). This completes the
proof of Lemma 4.2.

COROLLARY 4.4. In the same situation as in Lemma 4.2, we have
v(W(I; Io)) ̂  K Wo5 Io)) - w(I) for every I = (i0, ., ik) and f0 = (0, - -, fc)
in 3f.

PROOF. The function given by (4.3) has no pole of order larger than
I. As a result of Lemma 4.2, W(I; I0)/W(I0; Io) has no pole of order
larger than w(I). This proves Corollary 4.4. q.e.d.
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5. An inequality for divisors. Let / be a non-degenerate holomor-
phic curve in Pn(C) and take a reduced representation / = (/0: f: : / n ).
Let 0 <̂  k < n. We attach lavels to all elements in the set Qf given by

(3.8) as Io : = (0, • , k), Iu It, , IN, where N = ( \ + J ) - 1. By TF

we denote the square matrix (TΓ(Ir; Iβ); 0 ^ r, s ^ N), where W(Ir; I8) =

det (fjW; 0 <; ϊ, m ^ fc) as in the previous section if J r = (ΐ0, , ifc), Jβ =

( i o , - - - , j k )
As a result of the classical theorem of Sylvester and Franke (e.g.,

[5, p. 94]), we have

(5.1) det(W)=W(0,l, ',n;0,l, ;n)(

DEFINITION 5.2. We define

vk : = min (v(W(I0; Io)), v(W(I0; /,)),

It is easy to show that vk does not depend on a particular choice of
a reduced representation of /.

The purpose of this section is to prove the following:

PROPOSITION 5.3. Let A\ A1, , Aq (q ^ N) be decomposable (k + 1)-
vectors in general position. Then,

in + 1
(det (W)) ^

\ k

where x+ = max (a;, 0).

To prove Proposition 5.3, we recall the following fact.

LEMMA 5.4 ([6, p. 41]). Let f be a non-degenerate holomorphic curve
in Pn{C) and z0 be an arbitrary point of C. If we choose suitably
homogeneous coordinates on Pn(C), a reduced representation of f and a
local coordinate t in a neighborhood of z0 with t(z0) = 0, then f can be
written as f = (/0: f: : fn) with holomorphic functions f (0 ^ i <; n)
which are expanded as

in a neighborhood of zQ, where δ0 = 0 < d1 < < δn.

For the function fs = tδ*: + , we have

/j«(ί) - ^(«y - 1) - . . ( « y - i + l)ί'i-' + ,

where "•-." indicates the sum of terms of higher degrees. Set

ΦiQs) - *i(*i - 1) - (*i - i + 1) .
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Then, for all I = (i0, , ik) and J = (jΌ, , jk), we have easily

W{I; J) = det (Φ^δjJ; 0 ^ i, m ^ fc)t'yo

+-+'ir(<o+-+<*) + .

LEMMA 5.5. ufc(s0) = (<50 - 0) + (δx - 1) + + (δk - k) .

PROOF. We see easily v(W(I0; I0))(z0) = (£0 - 0) + - + (δk - k) and
v(W(I0; I))(z0) >(δ 0 - 0) + + (dk-k) if i > /0 As an immediate con-
sequence of Definition 5.2, we have Lemma 5.5. q.e.d.

LEMMA 5.6. For all I, J e $ , we have

v(W(I; J)) ^ (vfc - w(I) + w(J))+

PROOF. For each point z0 eC, we take δ0 = 0, δlf , δfc as in Lemma
5.4. For I = (ί0, , ik) and J = (j0, , jk) in Qf,

J; J)) ^ (δi0 - i0) + (δh - ix) + . . . + (8i4 - it)

= Σ (*ι - i) - Σ (iι - I) + Σ (δy, - «i) ^ *̂(«o) ~ w(I) + w(J) ,
1=0 1=0 1=0

because <5iz — δt^ jι — I for ϊ = 0, 1, ,.fc. Since we have always
J; J)) ^ 0, Lemma 5.6 holds. q.e.d.

LEMMA 5.7. Let fr8 (0 ^ r, s ^ iSΓ) δe ^O7i-2;βro holomorphic functions
on C. Assume that, for a non-negative integer m and wr (0 ^ r <i ΛΓ),

y ( / J ^ (m - wr + ^ s ) +

αί a point zoeC and det (/r8) Ξ£ 0.

PROOF. By definition, we have det (/rβ) = Σα sgn (σ)foiQflh / y % ,

where σ = ( . " . ) runs through all permulations of the letters 0, , N.
\% ' ' ' IN/

For each function FiQ...iN := fQiofHl - . fWiN, we have

This implies Lemma 5.7. q.e.d.

COROLLARY 5.8. v(det (W)) ^ (& + J W

This is a direct result of Lemmas 5.6 and 5.7.

PROOF OF PROPOSITION 5.3. Take a point zQeC arbitrarily. For
brevity, we set mv = vk(A") (0 <̂  v <̂  q). Changing indices if necessary,
we may assume that
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mQ ^ mx ^ ^ mt ^ (k + 1)(Λ — k) > mt+1 ^ ^ mq .

If £ + 1 = 0, namely, (fe + l)(w — fc) > mv for all v, Proposition 5.3 is
true because of Corollary 5.8. We may assume t ^ 0. Set

F* = < A , ^ > (» = 0,1, •••,«),

where 4fc are the maps given by (2.11). Since A\ A1, •• , AN are linearly
independent over C by assumption, W(IQ; Io), , W(Iϋ; IN) can be written
as linear combinations of F\ , FN. If t ;> JV, then

r) ^ min (K^°), K^ 1 ), , »{FN)) = vk + mN > vk

for r = 0, 1, '"9N. This contradicts Definition 5.2. So, ί < JV.
Now, we choose N-t vectors Bt+1, --,BN in Λ fc+1Cn+1 such that

B°: = A\ , Bι: = A\ Bt+1, - , BN are linearly independent, where
A0, - - , A* in CN+1 are regarded as column vectors. We define the square
matrix B = {B\ B1, , ̂ ) and

ί^= (ϋr' O ^ r , s^N) = (U°, U\ .••, ^ ^

Then, y(det TF) = v(det ί/) because det B Φ 0. Set

TFIr : = (TFJr7o, T7IrJ l, • , WIrlN) , W- : = '(T7/σΓf, ^

We can write U? = (WIr, Bs) (0 ̂  r, s ^ JV) and

(5.9) U'^ΣKW1' (O^s^JV),

where 5 s = *(6;, , b8

N). By assumption,

has a zero of order mv + ^̂ (̂ o) at z0. We claim here that f/r

s = <ϊfi r, A
β>

(s = 0,1, •••,*) has a zero of order ^vk + m8 — w(I r). To see this, for
each v we choose a system of orthonormal basis e0, elf - -, en of Cn+1 such
that Av = ce0 Λ ex Λ Λ ek (c e C). If we take the reduced representa-
tion of / with respect to this, we can write

<WIr9 A"} = cW(%, •••,*,;<>, .--ffc)

for each 7r = (i0, , ifc) eQf. Then, we can apply Corollary 4.4 to these
functions and obtain the desired conclusion.

On the other hand, since ix — l ^ n — k (I = 0, 1, •••,&) for all / =

(V , ίfc) e 3f, we always have

(5.10) w(Jr) ̂  (fc + l)(n - fc) .

Therefore, every component of Ϊ7β has a zero of order ^ m s —
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(A; + ϊ)(n - k) + vk a t z0 f o r s = 0, 1, ••-,*. S e t

O : = (z - jB^+ix-M—.IΛ (s = 0, 1, , ί)

a n d U:=(U°, ••-, U\ Ut+\ ••-, E F ) . T h e n ,

t
~ Σ ((Jfe + l)(n-Jfe)-»β)

det U=(z- zo)
s=° de t tf

and t h e order of t h e r - t h component £/r

s of U8 (0 <; s <̂  t) a t 20 is not
less t h a n vfc + m 8 — w(J r) + ((fc + l)(w — fc) — m.) ( = 1^ + (fc + ΐ)(n — fc) —
w(Ir)). By v i r t u e of (5.9), we can r e w r i t e

(5.11) det U= Σ c i ( + 1 . . . % d e t ( t 7 ° , •••, C '̂, W'<™, ••-, Wτ<»)
0<i + <-.<i^N lΎL i V

w i t h suitable cons tants cit+ί...iN. For each (it+1, •••,%) we set

G : = det (C/°, . , C/% TΓ 7 '^ 1, , T^ 7 ^) .

We determine t h e indices i0, ilf , it (0 ^ i 0 < < it <; N) so t h a t

{̂ o, mm ,itf %+if '' '9 IN) = {0, 1, * , N}. For convenience' sake, we set

/0 ••• t t + 1 ••• iV\
. . . d e t ( W ° , TΓ1, •••, 1 7 ^ ) .

For each s — 0, 1, , N, the r-th component W? of Ws has a zero of
order ^vk — w(Ir) + w(I8) at «0. In fact, if se{it+1, •••,%}, this is a
result of Lemma 5.6. On the other hand, if s = v fo r some s' with
0 <: s' ^ ί, we see that

v(W;)(z0) = v(E7;')(«o) ^ ^ - w(i,) + (fc + l)(w - k) ^ vk - w{Ir) + w(I.)

by virtue of (5.10).
We now apply Lemma 5.7 to the matrix (W°, •••, WN). We can

conclude that each term on the right hand side of (5.11) has a zero of

order ^(N + l)vk = ( J J J)v* at z0. So, v(det U) ^ ( J + J ) ^ . Con-

sequently,

v(det U)(ί

This completes the

IIV

_ /

- I
proof

(det U)(z0) + Σ (w, —

n + 1\ »

A; + 1 / * v=o

of Proposition 5.3.

(fc + i:

k + 1)(

>(% - k))

n - k))

n - k)y

q.e.d.
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6. Proof of the defect relation. In this section, we shall complete
the proof of Theorem 3.5. Let A\ A\ , Aq be decomposable (fc + 1)-
vectors in general position. We write them as Av = Al Λ A\ Λ Λ Av

k,
where A\ = (α?0, a

v

lly , a\n) e Cn+1 (1 = 0, ••-,&). For a given non-
degenerate holomorphic curve / in Pn(C), we take a reduced representa-
tion / = (/0: - : fn) and define F* = <A, A*>, W(I; J) = det (/#>) for

and so on as in the previous sections. Choose a non-zero entire function
g such that v(g) = vk.

(6.1) Any chosen N + 1 functions among G° : = j P / g , ••*,<?*: = jPff/fl̂
no common zero.

In fact, for any chosen α0, , aN (0 ^ α0 < < aN <; q),
W(IQ; I0)/g, , WT/o; /^)/^ can be written as linear combinations of
Ga\ - , Gα^ because Aα°, , Aa* are linearly independent. If Ga\ , Gα^
have a common zero, then W(I0; I0)/g, , W(I0; i^)/ί/ have also a common
zero, which is impossible. Thus, we have the above conclusion.

DEFINITION 6.2. We define

v(z): = max log | Gβ^+ι(z) Gβ*(z) \ .
O^β < < β £

LEMMA 6.3. (q - N)Tk(r) ^ -λSv(re*')dθ + 0(1).
27Γ Jo

PROOF. Take a point zoeC. We determine the indices a0, •• ,αΛ-,

/3iv+i, , A so that {α0, , aN, βN+1, , /9j = {0, , q} and

|Gαo| ^ ••• ̂  \G**\ ^ |G^+M ^ ••• ̂  | G ^ |

at z0. Since Aα°, , A"* are linearly independent, we can write

(6.4) W o ; I) = cθ8F
αo + cuF^ + • + c ^ F ^ (0 ^ s ^ iV)

with suitable constants crs depending only on A\ Therefore, we can
find a positive constant L not depending on zQ such that

\W(I0;Ir)(z0)\£L\F**(z0)\ .

If we set % : = maxj e 3 log I W(I0;I)/βr I, then we have

ttW ^ log L + log I G>'(Zo) I (r = 2^ + 1, , g) .

Summing them up, we obtain

(q - iV>(z0) £(q-N) log L + log | &™(zQ) G^(«o) I

= ( g - iS/r)logL + φ 0 ) -

Taking the mean value of each term as a function of z0 on {z; \z\ = r},
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we get the desired inequality.

DEFINITION 6.5. We define

w(z): = max log | det (W)(z)JFa°(z) F"*(z) \

and

H(z): - F\z)F\z) - Fq(z)/g(z)9'2r det (W)(z) .

Then, we have

(6.6) (q - N)Tk(r) ^ -±- P log |H(reiθ) \dθ + - L Γ w(re")<ϊ0 + 0(1) .
2ττ Jo 2ττ Jo

To see this, we choose indices α0, , aN, βN+1, , βq as in the
proof of Lemma 6.3 for an arbitrarily fixed point zoeC. Then,

v(zQ) =

= log \F\z0)

+ log I (det W)(zo)/FaK*o)

This gives

— \
2π Jo

which concludes (6.6) by the help of Lemma 6.3.

— ΓΊog \H(reίθ)\dθ + — Γ*
2π Jo 2τr Jo

LEMMA 6.7. — Γ log | H{reίθ) \ dθ ^ Σ Nk{A%r) + 0(1).
2π Jo v=o

PROOF. According to (2.2),

\H(reiθ)\dθ ^ N(r, v{H)) + 0(1) .
2ττ Jo

We have only to prove the inequality v(H) ^ Σil=oVk(A"). Since y
v(G") (0 ^ y ^ g) and we can write H = G'G1 • G<gN+1/det W and

ΣΣ ") + (N+ l)vk - v(det IF) .

Accordingly, by virtue of Proposition 5.3, we get

»(H) £ Σ ^ W + (^ + IK

11 V*
k + 1 /

= Σ v»(A») - (v»(A") - (fc
v=0
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This completes the proof of Lemma 6.7. q.e.d.

For a reduced representation / = (/„: : / J of /, setting V = F ( 0 ) : =

(1././Λ •••,/•//.) and

ΐ * " : = (0, (/,//.)"», , (Λ//o)α)) (1 = 1,2, •--) ,

we define

&*:= <F(i°> Λ F(i'> Λ Λ VH*\ A")

for each v = 0, 1, •••,<? and / = ( v , **) e $ . We a l s o define

<P(Ir; J . ) : = det ((/,J/.)«"; 0 <Ξ ϊ, m ̂  fc)

for all I r = (i0, , i t) and I, = O*0, , j 4 ) in ^ and the matrix W =
( # ( J r ; J.); 0 ̂  r, s ^ N).

(6.8) w(«) = max log |det W(z)/F^(z) Pf*(z) \ .

PROOF. AS is easily seen, F"1 = fo+1F"* and so

On the other hand, the Wronskian of the functions 1, fjfθf , fn/fQ is

equal to the Wronskian of fOf flf •••,/„ devided by /o

w+1. According to

(5.1), we have det W = /0

(n+1)(") det W. Since (k + l)(iV + 1) =

( (

(det W)IF^ JF7** = (det o

This gives (6.8). q.e.d.

LEMMA 6.9. There exists a positive constant Ko such that

w(z) £ Ko Σ log+ \Fir(z)lPψ)\ + Ko .

PROOF. The identity (6.8) implies that

w(z) £ Σ log+ I det W(z)/Fί°(z) Ff?(z) \ .

It suffices to estimate each term log+ | det W/Ff* Ff* | for each
(α0, , aN) with 0 <; α0 ̂  ^ α^ ^ g. Together with the identity
(6.4), we have also

W(Ir; I.) = cO8F?or + CltFf} + • + ^ s %

for all r, β = 0, 1, , JV. Therefore, we can write
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(det W)/Ffo Ff» = det (crf) x det (Ff:; 0 £ r, s £ N)/F^ • Ff*

= det ( O x det (Ff;/F#; 0 £ r, β ̂  2V) .

By the basic formulas

log+ (a? + y) <: log+ a? + log+ # + log 2 , log+ αj/ ^ log+ a; + log+ y ,

we easily conclude Lemma 6.9. q.e.d.

To complete the proof of Theorem 3.5, it suffices to prove the
following lemma because of (6.6) and Lemma 6.7.

LEMMA 6.10. — [** w(reiθ)dθ = S(r) ,
2π Jo2π Jo

where

S(r) = O(log Tk(r)) + Oflog r)

and, if f is rational, then S(r) — 0(1).

FROOF. We first estimate log+ \FϊJFϊo\ for each fixed v (0 ^ v ^ q)
and Ir = (iQf - , ik) e $ . Since Av is a decomposable vector, we can
choose an orthonormal basis {e0, el9 , βn} of C n + 1 such that A" = ce0 Λ
βi Λ Λ βn (c 6 C). Using this basis, we represent / as / = (g0: : flrn),
where ^0, ", 9n are linear combinations of /x//0> , /n//0. Then,

Fl - ( 7 ( i β ) Λ Λ F i f c ) , A>) = c det (^^ 0 ^ I, m ^ k) .

^ 0 = < F Λ Λ F( fc), A^ = c det (g%; 0 ^ Z, m ^ fc) .

By Lemma 4.2, the function FϊJFϊ0 can be represented as a polynomial
of some of the functions

where W(gjo, , # i r) denotes the Wronskian of gjo, , # i r and 0 <̂  r ^ k,
I ^ 1, 0 <; ̂ *o < < Or ̂  fc Each W(gjo, , flrir) is a polynomial of
(/V/o)^, , (fJfT (I = 0,1, .), which we denote by Ψi (i = 0,1, . , ί0).
By Lemma 6.9 and (6.11), there exists a constant Kx such that

Σ log+Kφ'MY1-1^)]) + K, ,
ϊ = l , 2 , . ,ΐ0

and so

dβ ^ I ζ Σ m(r, (9>ίM)(I-1})

It then follows from Proposition 2.10 that
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- L Γ w(reiΘ)dθ ^ O(log r) + O(log T(r, ?>,)) || ,
2π Jo

where the right hand side is replaced by 0(1) if / is rational. On the
other hand, by (2.8), (2.9) and Proposition 2.13,

Γ(r, φ<) £ O(Γ0(r)) ^ 0(Tk(r)) || .

From these facts, we easily conclude Lemma 6.10. q.e.d.

7. Appendix. In [3], Co wen and Griffiths gave a new proof of the
defect relations for the derived curves of a holomorphic curve in Pn(C)
by using the method of negative curvature. We can give another proof
of Theorem 3.3 in this way. In this section, we shall state its outline.
We shall use freely notations and results in [3] and the previous sections
of this paper except in §6.

Co wen and Griffiths gave the following result.

THEOREM 7.1 ([3, p. 152]). Let f be a non-degenerate holomorphic
curve in Pn(C) and {Av}l=0 be decomposable (k + l)-vectors in general
position. Then, for every ε > 0,

q k n-i + h-k j (n + 1

Σ i V * ( A " ) ( r ) ^ Σ Σ P * ( i , W ) + + !
v=o Λ=O j=h

where

k / n — j

ι=k-h \i + i

As in [3, pp. 117-118], we denote by ak(z) the order of ramification
of fk at z. Then, we see

(7.2) ak = vk_γ + vk+1 - 2vk .

We have also

k n-i+h-k ίn\ /n + 1\
L E M M A 7 . 3 . Σ Σ Pk(j, h)aβ = L k - . . U .

h=o j=h \Jc J \ k + 1 /

The proof is given by the same calculation as in the proof of [3,
Proposition, p. 147]. In the calculation, we have only to replace the
terms R i c ^ and Ωs by aά and vs, respectively, word for word except
that we have to attend to the fact Ωn = 0 but vn φ 0.

According to (5.1), we see (/! V« = ^(det W). Using Proposition 5.3,

we obtain
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= Σ min (vk(A')t (Jc + l)(w - fc))
V

= Σ y»(A*) - Σ (y»(A») - (* + i

= Σ vk{A") - Σ Σ j»»(i, λ)o,.

By the monotonicity of integral, we have

Σ Nk(A»)(r) ^ Σ Nk(A>)(r) - Σ " Σ"* Vti, h)N3{r) .

For every ε > 0 we conclude by Theorem 7.1

Σ ft>(A»)(r) ̂  (q + 1 - [^ ̂  J j - ejr4(r)
We can easily prove Theorem 3.3 by the method similar to its proof in
§3.
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