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ESTIMATES FOR THE ASYMPTOTIC ORDER
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Abstract. Asymptotic approximations in terms of n are obtained
for the constant log ln — limα-+o (mod Rβ,n(a) + log a) associated with the
Grotzsch extremal ring RG,n in euclidean w-space, n ^ 3.

1. Definitions and notation. By a ring R is meant a domain in
finite euclidean w-space whose complement consists of two components
Co and Cu where Co is bounded. The conformal capacity of R (cf. [11]) is

capi? = inf ( \Fφ\ndω ,
ψ JR

where F denotes the gradient, and where the infimum is taken over all
real-valued C1 functions φ in R with boundary values 0 on dC0 and 1 on
dCλ. Then the modulus of the ring R is defined by

mod R = (σn

where for each positive integer p we let σp denote the p-dimensional
measure of the unit sphere

Then

(cf. [9], [12]), where Γ denotes the classical Gamma function. For later
reference we recall that

S π/2

cospudu = σp+1/2σp

0

for each positive integer p (cf. [2]).
For n *> 2 and 0 < a < 1 we let RG>n = RG,n(a) denote the ^-dimen-

sional Grotzsch ring, that is, the ring whose complementary components
are

Co = {(xl9 , &»): 0 ^ xx ^ α, xό = 0, 2 ^ j ^ n)
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and

C,= {(xl9 •• , a ? n ) : Σ » 5 ^

In [5] Gehring proved that mod RGiZ(a) + logα is monotone decreasing
in the interval 0 < a < 1. Using analogous methods in higher dimensions,
Caraman [4] and Ikoma [9] have shown that the limit

log λn = lim (mod RG,n(a) + log α)
α-»0

exists for each n >̂ 3.
Unfortunately, the exact value of Xn is known only when n — 2, in

which case λ2 = 4. For n ^ 3, some estimates have been given ([1], [2],
[3], [4], [6], [9], [10]); in particular, the best known estimates for n — 3
and n = 4 presently are 9.1942 ^ λ3 ^ 9.9002 and 21.685 ^ λ4 ^
26.046 ([1], [3]).

Knowledge of the values of λn would be helpful in proving other
estimates in the theory of quasiconformal mappings (cf. [7]). However,
since it is apparently so difficult to determine these constants exactly,
it becomes interesting to obtain good estimates for them and to approxi-
mate the asymptotic behavior of Xn as n becomes large. In an earlier
paper [2] it was established that

( 3 ) l im X]ln = e .
n-+oo

In the course of the proof of (3), the upper bound

( 4) log Xn ^ n - 1 + log 2 , n ^ 3 ,

was obtained.
The present authors give an improved upper bound for λn, though

of the same order as (4), and provide a lower estimate for the asymp-
totic order of λn as a function of n as n becomes large. In particular,
we prove the following result.

THEOREM. For each integer n ^ 3,

( 5 ) log Xn ^ n + 1/n - 3/2 + log 2

and

( 6 ) lim inf (log Xn - n + (1/2) log n) ^ - 1 + (1/2) log (8/τr) .
n—>oo

2. An upper bound for λn. In our proof of (5) we begin with the
estimate (22) in [3]:
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( 7 ) log (λn/4) ^ (2σn_Jσπ_1) {"* cos"- 2

%

Jo

x Γ [(1 + cos2 u csch2 »)«-«/«-«) - l]dvdu .
JO

Next, we put

( 8 ) In=[° (coϊb^-w-vv - l)dv
Jo

[(l + csch2 t,)<»-«/<»»-«

Now if we apply the Mean value theorem to the function f(x) =
(1 + x csch2

 vγ«-v^-v on the interval [cos2u, 1], we find that

( 9 )

= ((n - 2)/(2n - 2)) sin2 u csch2 v(l + c csch2

 v)
n/{2-2n) ,

for some ce(cos2u, 1). Combining (9) with the integrals in (7) and (8)
and using the fact that the right side of (9) is monotonic decreasing as
a function of c, we achieve the estimate

(10) In - log (λn/4)

x Γ [ c o t h ^ - 2 ^ 7 1 - 1 ^ - (1 + cos2 u csch2 v)(n-2)n2n-2)]dvdu
Jo

^ {{n - 2)/(2n - 2))(2σnjσn_1)

S π/2 foo

cos71"2 u sin2 wdw I csch2 v tanh^^'^vdv .
o Jo

Next, the substitution t = coth v gives

(11) Γ csch2 v tanhn/(n"1) vdv = Γ tnni~n)dt = n - 1 ,
Jo Ji

while (2) together with the reduction formula

S
π/2 Cπ/2

cos71 xdx = (1 — 1/n) \ cosn~2xdx
o Jo

lead to the evaluation

S 7Γ/2

cos71"2 u sin2 Mdw = σn_J(2nσn_2) .
0

Thus (10), (11), and (13) yield the inequality
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Finally, since In <; n — 1 — log 2 (cf. [2]), we are led to the upper bound
(5) above.

REMARK. If specific manageable upper bounds are needed for each
n rather than estimates for the asymptotic order, some improvements
are possible, aside from the difficult task of evaluating the integral on
the right side of (7) numerically as was done in [3] for n — 3 and 4.
For example, one may evaluate Ini the integral in (8), numerically. Or
by using the Taylor series with remainder instead of the Mean value
theorem in the above proof of (5) one can obtain the slightly better
estimate

(5') log λn ^ n + 1/n - 3/2 + log 2 - (8/4)/(w - 2)/((n + 2)(2n - 1))

- (5/2)(n - 2)(Zn - 2)/((2n - ΐ)(4n - S)(n + 2)(n + 4)) .

3. A lower estimate for the asymptotic order of λn. For our proof
of (6) we require the following two technical lemmas.

LEMMA 1. For each positive integer n,

(14) (π/(2n + 2))1/2 < ί^cos" xdx < (π/2n)m .
Jo

S π/2
cosn xdx. Clearly Cn is a

0

strictly decreasing sequence, so that
(15) C2n+1 < C2n < C2n_λ .

Using the exact evaluation of Cn in terms of Gamma functions (cf. (1)
and (2) above) we may translate (15) into the statement

(16) Π [2k/(2k + 1)] < (τr/2) Π [{2k - l)/2fc] < ff[2fc/(2fc + 1)] .
* = 1 * = 1 fc=l

If we multiply throughout (16) by the middle term we have

(17) π/(4n + 2 ) < (π/2)2 Π [(2k - l)/2fc]2 < π/An .
fc=l

Taking square roots throughout (17) then gives (14) for even integers.
The proof for odd integers is similar.

We remark that the proof of Lemma 1 is a modification of the
standard proof of Wallis' product for π. We also wish to mention that
the estimate in Lemma 1 may be used to show that the Ln[0, τr/2]-norm
of cos# has the asymptotic limit

lim (n/\og ri)(l — ||cosα&||n) = 1 ,
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a fact which can also be derived from considerations in [8].

LEMMA 2. For each t ^ 1,

Γ J*/2 cos" uduϊ j * / 2 (1 + r 2 tan2 u^duY ^ max (1/t, ((2/π)/(n + 1))1/2) .

PROOF. Making the change of variable tan v = ί"1 tan u in the de-
nominator integral gives

Γ / 2(l + r 2tan 2^)-n / 2cίu = t Γ/2cosn-2v/(l + t2tan*v)dv S t Γ'cos71 vdv ,
Jo Jo Jo

and the first lower bound follows.
Next, Lemma 1 and the obvious estimate

Γτr/2

(1 + r 2 tan2 u)-n/2du ^ π/2

together give the second lower bound. The lemma is proved.

To complete the proof of (6) we begin with the lower bound (27) of
[1], which, after the change of variable t = coth v (cf. [2]), may be
written as

(18) log (λn/4) ^ j " [((2crn_2/σrι_1) ^ (ί* + tan2 uf-^du)1"1-* - l ]

x (t2 - l)-ιdt .

For convenience we now adopt the following notation:

an = ((2/π)/(n + DΓ2-2' ,
( 1 9 ) ΦJfi) - ((2σn_ 2K_ 1) j β " Λ (ί2 + tan 2 uT»»

Finally, let M > 1. Then by the first bound in Lemma 2,

(20) Γ (Φm(t) - l)(ί2 - l ) " 1 ^ S Γ (*<-»/<»-" - l)(f - l)-idί .

By the Monotone convergence theorem, we have

(21) lim Γ (ί«-«/t»-" - l)(ί2 - l)-»dί = (*(« + l ) " 1 ^ = log ((Af + l)/2) .
n-»~ Ji Jl

Next, the second bound in Lemma 2 gives the estimate

(22) Γ (Φn(t) - l)(ί2 - lΓdt
JM

^ (n - l)anM
ι/a~n) + an

+ (1/2) log ((Aί + l)/(Λf - 1)) ,
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where we have used the fact that (t2 - I)" 1 = r 2 + t~\t2 - I)"1. Again
by the Monotone convergence theorem, the last integral above tends to

(23) ( t~ψ - l)~ιdt - log (M(M2 - 1)"1/2)
JM

as n tends to oo, while an tends to 1.
Next, by the Mean value theorem

(24) (n - l)anM
mi~n) = (n - 1) exp [(1/(2 - 2m)) log ((π/2)(n + 1)M2)]

= n - (1/2) log n - 1 - (1/2) log (ττ/2)

- log M + o(l)

as w tends to oo.
Finally, combining all of the formulas (18) through (24), we have

lim inf (log (λn/4) - n + (1/2) log n) ^ - 1 - (1/2) log (2π) .
W-κx>

Simplification then yields (6).

REMARK. The lower bound for log λn which leads to (6) in the pre-
ceding argument is rather intractable and therefore not reported sepa-
rately above. A simpler (though crude) lower bound for λn in terms of
n may be obtained from (18) by using the first bound in Lemma 2 in
the following way.

log (λn/4) ^ j (Φn(t) - l)(ί2 - lΓd

(t(»-8)/(»-l) _ iχf _

Vv"31^-11 - i)dt

(n - 3)/2 + {{n - S)/(n - 1)) j t~\t

by exact evaluation of the first integral in the preceding line and by
application of the Mean value theorem to the function t<n-8>/tn-» — 1 in
the next integral. But the final integral above may be evaluated exactly
as log 2 — 1/2. Thus we are led to the estimate

log λn ^ (n - 3)(n - 2)/(2n - 2) + ((3Λ - 5)/(n - 1)) log 2 .
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