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Introduction. This is a continuation of our previous paper [3], and
we retain the terminology and notations there.

As a natural generalization of the notion of generalized Siegel domains
in Cn x Cm with exponent c due to Kaup, Matsushima and Ochiai [2], we
introduced in [3] the notion of generalized Siegel domains in Cn x Cmi x
Cm2 x x Cms with exponent (clf c2, , c8). For a domain D in Cκ, we
shall denote by Aut(D) the group of all holomorphic transformations of
D onto itself. Then we say that D is a sweepable domain if there exist
a subgroup Γ of Aut(D) and a compact subset K of D such that ΓK =
D. In [5], Vey investigated the structure of generalized Siegel domains
in Cn x Cm with exponent c and gave an interesting characterization of
Siegel domains of the first or the second kind in the sense of Pjateckii-
Sapiro [4] among generalized Siegel domains. His results may be stated
as follows:

THEOREM (Vey [5]). (A) Let 3f be α sweepable generalized Siegel
domain in Cn x Cm with exponent c. Then we have the following:

(A-l) // c Φ 0, then 2$ is a Siegel domain of the first or the second
kind according as m = 0 or m > 0.

(A-2) // c = 0, then 2? is the direct product j^j. x ^ , where 3?x is
a Siegel domain of the first kind in Cn and £^2 is a homogeneous bounded
circular domain in Cm containing the origin.

(B) Let 2f be a generalized Siegel domain in Cn x Cm with exponent
c. Suppose that 2$ admits a discrete subgroup Γ of Aut(£^0 such that

is compact. Then & is symmetric.

As a generalization of (A-l) of Vey's theorem, we proved the fol-
lowing theorem in [3]:

THEOREM I (Kodama [3]). A sweepable generalized Siegel domain in
Cn x Cmί x CW2 x x Cm° with exponent (clf c2, , c8) with ct Φ 0 for
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I 5g i <̂  s is a Siegel domain of the first or the second kind according
as mx + m2 + + m8 = 0 or >0.

The purpose of this paper is to extend the above results (A-2) and
(B) by Vey to our generalized Siegel domains in Cn x Cm i x CTO2 x x
Cm° with exponent (cl9 c2, •• ,c 8). Given a permutation σ of the set
{1,2, - ,s}, we shall define a linear transformation £?σ of C n + W l + W 2 + - + W *
onto itself by

£f£z9 wl9 w2, , w8) = (z, wσ{1), wσ(2), , wσ(8)) .

Under this notation we have the following:

THEOREM II. Let £& be a sweepable generalized Siegel domain in
Qn χ fjmι χ Qm2 χ . . . χ Qm& ^ ^ eχp0nent ( ^ ^ . . .̂  ̂  SuppOSβ that

some of the exponents, say, ch, civ , ci]c (1 ̂  k ^ s) are equal to zero
and the others are not. Then, putting m2 = mh + mi% + + mik and
mx — (m1 + m2 + + m8) — m2, we have that 3? is the direct product
&Ί x &2 up to a suitable linear transformation Jίfσ, where ̂  is a Siegel
domain of the first or the second kind in Cn x Cmi according as mγ = 0
or mj > 0 (i.e., k = s or 1 ̂  k < s) and &2 is a homogeneous bounded
circular domain in Cmz containing the origin.

THEOREM III. Let & be a generalized Siegel domain in Cn x CTOl x
CW2 x x Cm* with exponent (clf c2f , c8). Suppose that & admits a
discrete subgroup Γ of Aut(^) with compact quotient 3f\Γ. Then &
is symmetric.

The idea of the proofs is due to Kaup, Matsushima and Ochiai [2]
and also Vey [5].

This paper is organized as follows. In Section 1 we investigate the
structure of the Lie algebra 9 ( ^ ) in the case where 3f is a generalized
Siegel domain in Cn x Cmi x Cm2 with exponent (1/2, 0). And we give
the proofs of our Theorems II and III in this special case.

In Section 2, as a preparation for the next section, we study holo-
morphic vector fields belonging to g(^) which are independent of zu z2f

•-, Zu-
lu the final Section 3 we first prove that our problem can be reduced

to the special case where 3f is a generalized Siegel domain in Cn x
C i x Cm2 with exponent (1/2, 0). After that, the proofs of Theorems
II and III will be obtained as an immediate consequence of Section 1.

1. The structure of generalized Siegel domains in Cn x Cm i x C™2

with exponent (1/2, 0). The purpose of this section is to prove the
following theorems:
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THEOREM 1.1. Let 3ί be a sweepable generalized Siegel domain in
Cn x CWl x C™2 with exponent (1/2, 0). Then & is the direct product
£&ι x £^2, where 3fγ is a Siegel domain of the second kind in Cn X Cm i

and ϋ ^ is a homogeneous bounded circular domain in C™2 containing
the origin.

THEOREM 1.2. Let & be a generalized Siegel domain in Cn x Cm i x
C™2 with exponent (1/2, 0). Suppose that & admits a discrete subgroup
Γ of A u t ( ^ ) with compact quotient @ί\Γ. Then & is symmetric.

After long series of lemmas, we first clarify the structure of the
Lie algebra $(£&) in Theorem 1.22. And, using this result, we give the
proofs of the above theorems at the end of this section.

The proof of the following proposition is similar to that of Vey [5,
Proposition 1.1] and hence is left to the reader:

PROPOSITION 1.3. Let & be a holomorphically convex generalized
Siegel domain in Cn x Cmi x C™2 with exponent (clf c2). We put

^ = & n (Cn x {0} x {0}).

Then we have the following:
(1) ϋ% is a Siegel domain of the first kind in Cn, and hence it is

expressed as

^r0 == {z G Cn I Im z e Ω] ,

where Ω is an open convex cone in Rn containing no straight line.
( 2) Let (z, wlf w2) e2$. Then (z, \wu μw2) 6 3f for any \ μeC

with |λ | <; 1 and \μ\<Ll.

Throughout the rest of this section we denote by &f a sweepable
generalized Siegel domain in Cn x CWl x C™2 with exponent (1/2, 0). We
also use the following notations:

where ZμnH and Wμvil>2 are polynomial vector fields defined in [3, Section
1]. We put 3 ^ = {0} and WμnU2 = {0} if μ, v, or v2 are negative.

In the case where <3ϊ is a generalized Siegel domain with exponent
(1/2, 0) we have from [3, (1.1)] that

[d, Z^J = (μ - 1 +
(1.1) • [9, W'] = (β + v J 2
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Now, let X be an arbitrary holomorphic vector field on 3ί belonging
to 8 ( ^ ) By [3, Theorem B] X can be written in the form

m + Zm

Using the bracket relation (1.1), we then have

ad d X = Σ {(β - D(Zm + Zmί) + (Jt- l/2)(Zn

Thus, putting

(1.2) X.μ = Z(μ + 1)0Q + Z(μ+1)01 + Wμll + KK//10 + Wμ02 + M̂jwOl + Wj«OO + rr (

( 1 . 3 ) Λ.μ+1/2 — Z(μ + 1)10 + W (μ+l)02 + M (̂/ι+l)01 + W(j«+l)OO + rr j«20 "1" Î /<11 +

for // = — 1, 0, 1, 2, , we have

X = ΣX*
λeΛ

and

for every polynomial (̂a?) e Λ[x], where

(̂ = {λel? |2λeZ, λ ^ -1} .

Therefore we obtain the following theorem as in the case where 3f is
a generalized Siegel domain with exponent 1/2 due to Kaup, Matsushima
and Ochiai [2, Theorem 2]:

THEOREM 1.4. Let 3? he a generalized Siegel domain with exponent
(1/2, 0). For each λ ^ — 1, let gλ be the subspace of &(££?) consisting of
all vector fields in Q(<&) of the form (1.2) or (1.3) according as λ is an
integer or a half-integer. Then we have

(1) Qx is the eigen space of ad 3 for the eigenvalue λ;

(2) β ( ^ ) = Σi.^&;

( 3 ) [Qx, Qσ] C Qλ+σ.

LEMMA 1.5. For μ = - 1 , 0, 1, 2, , we have Qμ = Q'μ φ g " , where

β;, = β(^0 n C3(/.+i,«ι Θ 8δ}« Θ 2B2

TO e asu)
β" = 9 ( ϋ θ n (3(,+1,oo θ SB1™ θ 2B2™)
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PROOF. Consider an arbitrary vector field X in Qμ. By (1.2) X is
then expressed as

-"• = •"(μ+UOO "Γ ^ ( f + l ) 0 1 "Γ " /in + Wμiί, T~ Wμgz + Wμ<n + Wμoo T ΓT ( ί—1)20

By routine calculations we obtain

(addιf-X=

(ad dj x = ~{z{μ+mi + win + vrm + w*m + wyιw).

The first two equalities mean that Wfμ_im = 0, since g(^0 Π V~^
{0} by H. Cartan's principle. Therefore we have X — Xx + X2, where

X, = Z{μ+mo + Wι

m + W>
{μ+mo

X2 = Ziμ+1)ΰl + Wμn

which implies our assertion. q.e.d.

LEMMA 1.6. We have the following:

( 1 ) β-i = IΣ*=! akd/dzk I (αlf α2, , α.) 6 R")

( 2 ) g_1/2 = g ( ^ ) n CS iβ Θ 2BJoo)

( 3 ) βα = ά Φ flά', wftere

ίgί = g ( ^ ) Π (SBJu Θ 2β?o2 Θ aδcoo) ,

k = fl(^) n (&00 θ SGBίi. θ S5SM)

( 4 ) βw = 9 ( ^ 0
(5 ) & = gί φ β

jgl = g ( ^ ) n (assiu θ 2Bio2 θ

PROOF. It is clear that d/dzk belongs to g_j for k = 1, 2, ••-,%. Now,
let X = Zooo + Zm be an arbitrary vector field belonging to g_j. Then

and hence ^ 0 0 1 = 0. It remains to show that the coefficients of X
are real. But this follows from the proof of [2, Theorem 3].

Let X = Zow + Wo, + Win. + WL e g_i/2. Then

From this we have i/^TWii, I/^ΪWODS e g ( ^ ) , and hence
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Noting the fact Q(&) Π V^IQ^) = {0}, we have

002 " " O O l V ,

which implies our assertion (2).
Let X = Z101 + Win + WΪ02 + Wwo be an arbitrary vector field in gί.

By virtue of Lemma 1.5 it is enough to show that Z101 = 0. By (1) we
have

[d/dzk, Zm] = [d/dzk, X] e g . , n 3ooi = {0}

for every k = 1, 2, , w, which means Z101 = 0, as desired.
To prove (4), we take an arbitrary vector field X in g1/2. By (1.3)

X can be written in the form

X = Z110 + Wi* + W7oi+ WU + Wάo + WL + ΐ̂ o2io

Simple computations give the following equalities

I(ad32)3.χ - -81/^1^02 - V^ΪWh, + V^Λ

from which we have

(1.4) i / = ϊ W^, i / ^ ϊ W^ - V^Λ W*m e

Then, since the vector field Wi2 = - (1/2) ad 32. (V^Λ. Wt,2) also belongs
to g ( ^ ) , we see that Wm = 0. Moreover, putting

(1.5) X, = - a d δ ί v ^ Ί T Γ i ! - i /^W? 1 0 ) = W^+ W2

m ,

we have from (2) that

u, Wl01] = [d/dzk, XΛ e g_1/2 n ̂ W = {0}

for every k = 1, 2, , ̂ . This means TΓάi = 0. Hence, from (1.4) and
(1.5) we obtain

which shows W0

2i0 = 0. We have thus shown that g1/2 is contained in
βC^OΠ (3noθ2BίooΘ2δί2oθ2Boπ). The reverse inclusion is trivial, com-
pleting the proof of (4).

Finally let X = Z201+Wln+W?Q2+Wtoo be an arbitrary vector field
belonging to Q[. Then, since

[d/dzk, X] 6 g 0 , [d/dzk, Z2Qί] e ^ , [d/dzk, Win] e SDBSu ,

[d/dzk, W!n] 6 2B2o2 , [3/3 f̂e, T̂ άo] 6 2B0

2

00
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and the ,3101-component of any vector field belonging to g0 does not appear
by (3), we conclude that

[d/dzkf Z201] = 0 for fc = 1,2, ••-,*,

which implies Z201 = 0. Our assertion (5) is now an immediate consequence
of Lemma 1.5. q.e.d.

REMARK 1. We see later in Lemma 1.11 that

QX = {0} for λ ^ 3/2 .

LEMMA 1.7. For μ = 0, 1, 2, , we have

( 1 ) β ; = β ( ^ ) n (SSδJtt! θ 2BJ*. θ SBJoo)

( 2) 8,+1/2 - β ( ^ ) Π (3(W)io θ 2B(,+Doo θ SBJβo θ 2BW -

PROOF. We prove these by induction on μ. It is already proved in
Lemma 1.6 that (1) holds for μ = 0 or 1. Supposing that (1) is true for
μ = s — 1 (s ^ 2), we now consider an arbitrary vector field X belonging
to g,. By Lemma 1.5 X may be expressed as

X = Z{8+1)01 + Win + WΪ02 + Wϊoo

It is sufficient to show that Z{8+im = 0. Now, noting that [d/dzk, X] e g8_i
and that the ^-component of any vector field belonging to Q8_1 is zero
by induction assumption, a reasoning similar to the one in the proof of
Lemma 1.6, (5) yields also the equality

[d/dzk9Zι.+1)Oί] = O f o r A; = 1 , 2 f •••, n ,

which implies Z{8+ί)01 = 0, as desired.
By induction on μ, we can easily verify the second assertion in the

same way as in the proof of (4) of Lemma 1.6. q.e.d.

LEMMA 1.8. Let x be the radical of Q(&). Then we have

x = Σ ΐλf x* = ϊ Π β* •
λeΛ

Moreovery τλ = Qλ for λ ^ 3/2.

PROOF. This can be proved in exactly the same way as Kaup,
Matsushima and Ochiai [2, Lemma 4.1]. q.e.d.

Now, let A = Σί=i a<kdldzk (ak e R) be an element of g^. According
to Kaup, Matsushima and Ochiai [2], we define the linear mappings
ΦA- 9I/2 -> 9-1/2 and ΦA: & -> g_x as follows:

A(X) = ad3 x ad AX for Xeg 1 / 2

{ΦA(X) = (1/2)-(adA)2-X for l e g , .
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Then, by a straightforward computation we can show that

JX(l/^ϊα, 0, 0) = -ΓΛXXi/^α, 0, 0) for Xe g1/2

( ' } \x(V=la, 0, 0) = -ΦA(X)(}/~=Λa9 0, 0) for Xetf ,

where a = (al9 a2, , α j . Using these equalities, we can prove the
following lemma with the same arguments as those in the proof of Kaup,
Matsushima and Ochiai [2, Lemma 4.2], and hence the proof is omitted:

LEMMA 1.9. x Π Q1/2 = {0} and x n flί' = {0}.

LEMMA 1.10. For μ = 1, 2, , we have

Qμ+m = {0} and g"+i = {0} .

PROOF. We notice by a simple calculation that [g_x, Qμ] ag"_! for
every μ. From this fact, using Lemmas 1.5, 1.7, 1.8 and 1.9, our proof
can be carried out with exactly the same arguments as [2, Lemma 4.3].

q.e.d.

For a given generalized Siegel domain Sf in Cn x CWl x C™2 we put

o = 3f Π (Cn x {0} x {0})
fx = & ΓΊ (Cn x Cmi x {0})

and also

c{z} x Cmi x Cm2 for z e ^ 0 ;

e ^ } c {2;} x {wj x CW2 for (», wx) e ^ .

LEMMA 1.11. tfμ = {0} /or /ι = 2, 3, .

In particular, by Lemmas 1.5 and 1.10 we have

βx = {0} for X ^ 3/2 .

PROOF. We first observe that gj = {0}. For this we consider an
arbitrary vector field X belonging to g£. By Lemma 1.7 X may be
expresed as

(1.8) X = WAi + TF2

2c2 + WL .

Take a point a = (αx, α2, , αn) e/ί71 in such a way that ( i/^ϊα, 0, 0) 6
^ . Then, putting

= Σiakd/dzkeQ_1

we can show by a routine calculation that

X\z, wl9 w2) = X(a, wl9 w2) = -



GENERALIZED SIEGEL DOMAINS 73

since X is homogeneous of degree two in zk (1 ^ k <: n) by (1.8). Thus
the vector field X + X' vanishes on the fiber ^ ( l / ^ ϊ α ) . Noting that
the Cn-component of X + X' is zero, the same reasoning as that in the
proof of Vey [5, Lemma 7.4] yields that X + X' = 0, and hence

X = 0 and X' = 0 ,

which implies that 92 = {0}. The verification of the lemma is now
straightforward by induction on μ. q.e.d.

LEMMA 1.12. Let ί) be the subalgebra of Q(£&) generated by d2 and
g$. Then we have

PROOF. Clearly ί) is a subalgebra of g0 and any vector field X belong-
ing to ί) is independent of z. Thus, by Lemma 1.6 X can be expressed
as

X = Wo\o + Wol, + Win + Wo\2 + TFo2oo

with Win + Wo\2 + Wioo e gί c $, and hence Wo\o + ô2oi 6 ξ (Ί (2δί10 θ SD%i)-
q.e.d.

LEMMA 1.13 (Vey [5, Lemma 8.2]). Lei C:ή->C W 2 be the linear
mapping defined by C(X) — X(0, 0, 0) for Xeί). Then we have

(1) C is injective on gί;
( 2) Ker C = % Π (2BSio 0 SB?oO, ^feere Ker C denotes the kernel of the

linear mapping C;
( 3 ) $(0, 0, 0) is a C-subspace of Cm\ that is, ί)c(0, 0, 0) = $(0, 0, 0).

PROOF. TO prove (1), we consider an arbitrary vector field X =
Win + Win + W&o belonging to gί Suppose that C(X) = 0. By the
definition of C, this means that W?oo = 0. Then we have X = Won +
TFo2o2, and hence the vector field V~^l{Wlll + W!Q2) = add2 X also belongs
to 8(.^). Recalling the fact Q(&) Π l / ^ ϊ β ί ^ ) = ί°}» w e conclude that
X = Win + Wo\2 = 0.

The verification of (2) is straightforward. Next, to prove the asser-
tion (3), take an arbitrary vector field X = Win + Wt02 + W£o belonging
to gj. Then we have

and hence

i/=la:(0, 0, 0) = -(ada 2 X)(0, O, 0) e^(0, 0, 0)

which is our last assertion. q.e.d.
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LEMMA 1.14. dimΛgί = 2h for some h, 0 ^ h <: m2. Moreover, there
exists an R-basis {Yl9 , Y\, ΫΊ, , ΓΛ} for gί sucΛ ίfeαt

( 1 ) ? , = [ 3 S r , ] / o r i = l f 2 f . . . , Λ ;
( 2 ) {(7(3^), , C(Γ»)} /orms α C-6αsis for ψ(0, 0, 0) = ή(0, 0, 0).

PROOF. This is an immediate consequence of Lemma 1.13. q.e.d.

The proofs of the following two lemmas are similar to those of
Lemmas 1.13 and 1.14, and hence are left to the reader (cf. Vey [5,
Lemme 4.1]):

LEMMA 1.15. Let C: g_1/2 -> Cm i be the linear mapping defined by
C(X) = X(0, 0, 0) for Xeg_1/2. Then we have

( 1 ) C is injective;
( 2 ) g_1/2(0,0,0) is a C-subspace of Cm\ that is, gc_1/2(0, 0, 0) =

g_1/2(0, 0, 0).

LEMMA 1.16. dimΛ g_1/2 = 2k for some k, 0 <; k <̂  mx. Moreover, there
exists an R-basis {Xly , Xk, Xu , Xk} for g_1/2 such that

( 1 ) XS = [P9XS*\ for j = l,2, ...,fc;
( 2) {CUΰ, , C(Xk)} forms a C-basis for gc_, 2(0, 0, 0) = g_1/2(0, 0, 0).

LEMMA 1.17. Let X5 (1 <̂  j ^ fc) α-̂ d Γ, (1 ^ j ^ Λ) 6e ίΛ,e vector
fields as in Lemmas 1.16 ami 1.14.

is a C-basis for Q(&)c(Pa), where pa = ( i/^ϊa, 0, 0) 6 ^ a^d aeRn.

PROOF. Since g ( ^ ) = g_x φ g_1/2 0 g0 0 g1/2 φ gx by Theorem 1.4 and
Lemma 1.11, it is sufficient to show that, for any vector field X belonging
to each g; ( — 1 ^ λ <? 1), X(pa) can be expressed as a linear combination
of the n + k + h vectors as given in the lemma. If X belongs to g_1?

Q-i/2 or gj, this is obvious. So, consider an arbitrary vector field X —
Z100 + Wo\o + Wooi in gί'. Then X(pα) = Z10Q(pa) e Cn, and hence is a linear
combination of (9/3^)(pα), , (d/dzn)(pa).

Next, taking a vector field X belonging to g1/2 (resp. gί'), we have

X(Pa) = -¥Λ(X)(pa)eQ_m(Pa) (resp. X(pβ) = - ^ ( D W e U p J )

by (1.7), and hence X(pa) is a linear combination of X^Pa), •• ,-Zfc(pβ)
(resp. (3/32i)(pβ), •••, (d/dzn)(pa)). Finally we consider a vector field

(1.9) X = Win + Wέ, + Wάo

belonging to Q[. Noting that X = Σ ϊ - i ^.[3/9^,, X] by (1.9) and [3/3^, X] e
gί for every A; == 1, 2, ••-,%, we have
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and hence X(pa) is a linear combination of Yι(pa)f •••, ϊ\(Pα) q.e.d.

LEMMA 1.18 (Vey [5, Proposition 4.1 and Lemme 8.5]).

dim* g_1/2 = 2mx and dimΛ gj = 2m2 .

PROOF. We have to show that k = m1 and h = m2 in Lemma 1.17.
Now, since ϋ^ is sweepable by assumption, Vey [5, Proposition 2.3] says
that

dimc Q(&)C(V) = constant ,

where the constant is independent of the point p of ^ . Hence, by
Lemma 1.17 we have

dimc Q(^)c(p) = n + k + h

for any point p of 3f, and therefore, putting pa = (V^Λa, 0, 0) e ^ ,
aeRn as before, we can take an open neighborhood V of the point pa

such that

forms a C-basis for g(ϋ^)c(p) whenever p is contained in V. Then, con-
sidering the vector field

3 = Σ ^/dzk + (1/2) Σ wid/dwi 6 tf
k=l a=l

and the points in V of the form (z, wu 0), we can choose the complex
numbers Xj, μ\ which may be dependent on (z, wj, in such a way that

z + wJ2 = Σ MXfc, Wu 0) + Σ μj(d/dzj)(z, wlf 0)

(note that Γ/s, ^ , 0) eC™2 for every i, 1 <; i ^ fc, by (3) of Lemma 1.6),
which implies that

(1.10) wJ2 =

for any (z, wίf 0) e V, where C: g_1/2 -»Cmi is the linear mapping defined
in Lemma 1.15. Recalling that C(XX), C(X2), , C(Xfc) are linearly inde-
pendent in Cmi by (2) of Lemma 1.16, we have the first assertion k = m1

by (1.10).
To prove the second assertion, we take a vector field X in gί. By

Lemma 1.6 X can be written in the form
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X = Win + WQ

2

Q2 + T7o

2oo

and hence

X{z, 0, w2) - WU*, 0, w2) + Woloiz, 0, w2)

for any (z, w2) eCn x C™2. Therefore, applying the arguments in the
proof of Vey [5, Lemme 8.5] to our case, we can prove that

(1.11) Yfa 0, w2) e $(0, 0, 0) , i = 1, 2, , Λ

for any (z, w2) eCn x C™2, where Jj is the subalgebra of Q(&) defined in
Lemma 1.12. Now, considering the vector field

and the points in V of the form (z, 0, w2), we can choose the complex
numbers μj in such a way that

V^ϊw2 = Σ,μiYj(z90fw2)

for any (z, 0, w2) e F. Note that (d/dzt)(z, 0, w2), Xs(z, 0, w2) e C71 φ CWl for
every i and j , 1 <; i ^ n, 1 ̂  i ^ fc = mlβ By (1.11) we then have

l / ^ ϊ ^ 2 6 ?(0,0,0) = 5(0,0,0)

for any (z, 0, w2) e V. Obviously this shows that

h = dimc g5(0, 0, 0) = dimc ϊj(0, 0, 0) = ra2 . q.e.d.

LEMMA 1.19. The domain Sfx = 3f Π (Cn x CWl x {0}) is a Siegel
domain of the second kind in Cn x Cmi. More precisely, 3fx can he
expressed as

&rx = {(z, w,) e Cn x Cm i I Im z - F(wu w,) e Ω}

where Ω is the open convex cone in Rn appearing in Proposition 1.3
and F: Cmi x Cmι -+Cn is a suitable Ω-Hermitian form.

PROOF. Our proof is almost identical to that of Vey [5, Proposition
5.1]. First of all, since dimΛg_1/2 = 2mx by Lemma 1.18, it follows from
the proof of Vey [5, Lemme 5.1] that

Σ fίβWίCβ^/dz, + Σ cadldw\\(cu c2,-.., cmι) e C™
=l\α,i9=l

where /*, are complex constants depending only on g_1/2. For k = 1, 2,
• , n, we put

F\U, V) = ^ Ϊ
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for all u = (ua), v = (va) e Cmi and define the mapping F: Cmi x Cmi -> Cn by

F(u, v) = (Fx(u, v), , Fn(w, v)) for %,veCm i .

Then we have

(1.12) F(Xu, μv) = XμF(u, v) for u, v e Cmi and λ, μ e C

(1.13) Every vector field X belonging to g_1/2 can be written in the form

x = 2 i / = ϊ Σ F*(WI, /

for some c = (c1? c2, , cwl) e Cmi.

Moreover, we assert that

F(v, u) = F(u, v)~ for u, v e Cmι ,

where the right hand side is the complex conjugate of F(u, v). To this
end, it is sufficient to show that the matrix Ak defined by

A-k = \Jaβ)i£a,β£m1

is skew-Hermitian, that is, *Ak = — Ak for each k, 1 <̂  k ̂  n. Now, to
simplify the notation, we put

Xc = Σ ( Σ fϋβWiTλd/dz, + Σ CαS/Swi
fc=l \α,^S=l / α=l

= 2v/~=ϊitFk{wί, c)d/dzk + Σ cad/dwι

n
k=l α = l

for all c — (cu c2, , cm i)eCm i. Then, by a routine calculation we have

(1.14) [Xc, [3\ XJ] = %\T=\ Σ ( Σ fH^)d/dzh .

Noting that the vector field [Xc, [31, Xc]] belongs to g_x and the coefficients
of any vector field in g_x are real by Lemma 1.6, we see from (1.14)
that Σ™ϊβ=if«βG«cβ is P u r e imaginary for each fc, 1 <̂  k <; n. Therefore

Σ (f!iβ + 7kβa)c^β = o
α,/3=l

for all c = (cx, c2, , cTOl) eC m i . Obviously, this implies that

faβ+ Γβa = 0 for 1 S k ̂  n , 1 ̂  α, 8̂ ̂  mx

and so

'A* = -Afc for fc = 1, 2, , n ,

as desired.
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Next, by a simple computation we have

(1.15) expXc-(z, wlf w2) = (z + 2V/':=ΪF(w1, c) + i / ^ Ί F ( c , C), wλ + c, w2)

for all (z, wlf w2)eCn x Cm i x C™2 and all ceCmι. In particular,

Jexp X _ v ( s , wl9 0) = (2 - i / = Ϊ F ( w l f wj, 0, 0)

(exp Xwι.(z - V~=lF(wu w,\ 0, 0) = (z, wlf 0)

for all (z, wλ) e ^ . Recalling Proposition 1.3, we conclude from this that

(1.16) ^ = {(z, wx) e Cn x CW11 Im z - F ^ , wx) e i2} .

Finally we claim that

(1.17) F(u, u)eΩ for any u e Cm i and F(u, u) = 0 only if % = 0 ,

where Ω denotes the topological closure of Ω. Indeed, let ueCmί and
(z, 0, 0) 6 3ϊ. We have from (1.15) that

exp tXu (z, 0, 0) = (z + λ/^ΛtfFiu, u), tu, 0)e&

for all teR, and hence z + V—lt2F(u, u)e&0, or equivalently,

Im z + t2F(u, u)eΩ

for all teR by Proposition 1.3, which implies that F(u, u) e Ω. Next,
suppose that there exists a point u0 e Cm i such that u0 Φ 0 and J F 7 ^ , U0) =
0. Then, taking a point (z090,0)e£&, we see from (1.16) that 2f19 and
hence ^ , contains the complex affine line {(z0, Xu0, 0) | λ e C}. But this is
impossible, since Ξϊ is holomorphically equivalent to a bounded domain
in Cn+mi+m>2. We have thus shown that @f± is the Siegel domain of the
second kind defined by the convex cone Ω and the β-Hermitian form
F. q.e.d.

REMARK 2. From (1.13) in the proof, we have

9_1/2 = J 2 i / ^ ϊ χ Fk(wl9 c)d/dzk + Σ cj/dwi I e = (clf , cmi) 6 CW

V fc=l α = l

LEMMA 1.20. We have

(1) gό-9(^)n(2B
( 2 ) βί = fl(^^) Π (SDδf

PROOF. TO prove (1), consider an arbitrary vector field X belonging
to QI By Lemma 1.6 X can be expressed as X = Won + WQ02 + Wm We
have only to show that W}n = 0. Now, taking a vector field Y = ZQ10 +
Wooo in g_1/2 arbitrarily, we have

[Zom Win] + [Woo, Wπ] = [Γ, X] eg_1/2 .
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On the other hand, since

[Z0109 Win] 6 Son , [ TFiβ, Win] 6 H&

and the 3on(resp. 2BJ0i)-component of any vector field in g_1/2 is zero by
Lemma 1.6, we conclude that

(1.18) [Zmt Win] = 0 and [WiOOf Win] = 0 .

Let Wooo = ΣΓii cad\dw\ and Win = ΣJΓii PLdldwx

β. It follows then from
the second equality of (1.18) that

and hence

Σ cJP&Jdwi = 0 for β = l,2, > ,m1.
lΣ

α=l
Recalling that dimc {C(X) \ X e g_1/2} = mx by Lemma 1.18, this means that

dPolJdw1* = 0 for 1 ^ at β ^ m1 .

Clearly this implies that Won = 0, as desired.
To verify the assertion (2), we next consider a vector field X belong-

ing to Q[. By Lemma 1.6 X can be written in the form X = Win + W}02 +
TFioo. From the assertion (1) we have

[d/dzk, X] e gj = fl(^) Π (2%

for every Jc, 1 ^ k ^ n. Therefore, the 2BJn-component of [d/dzk, X]
satisfies

[d/dzk, Win] = 0 for i = l ,2, . . , Λ ,

from which we have Win = 0. This proves the second assertion, q.e.d.

LEMMA 1.21. § = $ n 2B§oi Θ β ( ^ ) Γl

PROOF. Recall that ί) is the subalgebra of g ( ^ ) generated by
{32, gί}. Since gί = g ( ^ ) Π (3»oO2 Θ δδooo) by Lemma 1.20, it is obvious that
any vector field in ί) is independent of (z, w^. Thus, our assertion
follows immediately from Lemma 1.12. q.e.d.

Summarizing our results, we have the following

THEOREM 1.22. Let 3f he a sweepable generalized Siegel domain in
Cn x Cmi x Cm2 with exponent (1/2, 0). We put ^ = & n (Cn x CTOl x
{0}). Then we have from Lemma 1.19 that

( 1 ) i^i = ^Ί(42, F ) iβ ί/ie Siegel domain of the second kind defined
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by the convex cone Ω and the ΩΉermitian form F.
For each λ ^ — 1, let Qλ be the subspace o/g(£^r) as defined in Theorem

1.4. Then we have the following:

( 2 ) g ( ^ ) = g_! 0 β-i/ί Θ ft, Θ βi/2 Θ βi f la* So] c fl2+β,
( i ) 9-i = {Σί=i Ukd/dtk I (<*i, a2, , an) 6 iίn};
(ii) Putting F{u, v) = (F\u, v), , Fw(u, v))9

9-1/2 - J2l/^ϊ Σ F\wu c)d/dzk
c = (cl9 c 2 , .--, c m i ) e C

(iii) g0 = gj 0 go',

n (&00 Θ Sδίxo θ

(iv) g1/2 = g ( ^ ) n (3uo θ SΏϊoo © 3ΏJ20 φ SBϊπ)
(v) gx =

Π (32Oo 0 2δϊ10 0 SBϊoi) .

/^ particular, denoting by π: Cn x Cm i x Cm2 —> Cn x CW l ίfeβ canonical
projection π(z, wu w2) = (2, wj, we feave:

( 3 ) Every vector field in g ( ^ ) is π-projectable.
Let ί) be the subalgebra of g ( ^ ) generated by d2 and gj. Then we

have

( 4 ) $ = $ n Ϊ S L 0 g ( ^ ) n (2SL φ aβίoo);
( 5 ) §(0,0,0) = C^.

We are now in a position to prove Theorems 1.1 and 1.2.

PROOF OF THEOREM 1.1. Put ^ = & n (Cn x Cm i x {0}). Then, by
Theorem 1.22 3fγ is a Siegel domain of the second kind in Cn x CW l.
Let ή be the subalgebra of g ( ^ ) defined in Theorem 1.22 and H the
analytic subgroup of Aut(ϋ^) corresponding to §. We put &(z, wx) =
{(z, wu w2) e &} c {z} x {wj x Cm2 for any (z, w,) e ^ as before. Since
we know from (4) and (5) of Theorem 1.22 that J>(s, wίf 0) = ^(0, 0, 0) =
Cm2, the following two assertions can be verified as in the proof of Vey
[5, Lemme 8.5]:

(1.19) H acts transitively on &(z, wj;

(1.20) <5 (̂z, Wi) is a bounded domain in {#} x {wj x Cm 2.

On the other hand, since [£000 0 SBίoo, ή] = {0} by (4) of Theorem 1.22,
every element of H commutes with any parallel translation
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P(a,β) . (z, wl9 w2) -> {% + α, wγ + β, w2)

of Cn x Cmi x Cm2 onto itself, where aeCn and £ e Cmi. Then, denoting
by Sr2 = H (0, 0, 0) c {0} x {0} x Cm2 the orbit of H passing through the
origin, it follows that £&{z9 wt) = P{t,Vl)(£2ί) for any (z, wj e 3rx. Clearly
this implies that Sr is the direct product 3fx x 3$2. Moreover, ϋ% is
a homogeneous bounded domain in C™2 = {0} x {0} x Cm2 containing the
origin, since so is any fiber £&(z, wj. q.e.d.

LEMMA 1.23. Under the same situation as in Theorem 1.1, we have

β(&) = 8(^1) 0 fl(^2) , [9(^1), β(-^i)] - {0}

PROOF. Since ^ = ^ x S 2 (direct product) by Theorem 1.1, this
is a classical result of H. Cartan [1]. q.e.d.

PROOF OF THEOREM 1.2. Suppose that there exists a discrete sub-
group Γ of Aut {£&) such that 3f\Γ is compact. Since 2f is a sweepable
domain, it follows immediately from Theorem 1.1 that Sir is the direct
product Srx x £^2, where ^ is a Siegel domain of the second kind in
Cn x Cmi and ^ is a homogeneous bounded circular domain in C™2 con-
taining the origin. Moreover, by Lemma 1.23 we have g(^) = flC^l) Θ
fl(^) (direct sum of ideals). On the other hand, we know from Vey [5,
Proposition 6.1] that g ( ^ ) is unimodular, hence so is g(^Ί). It then
follows from another result of Vey [5] that STX is symmetric. Since ϋ%
is homogeneous and circular, it is obvious that ^ 2 is symmetric. Finally,
being the direct product of two symmetric domains, ST is also sym-
metric, q.e.d.

2. Vector fields which are independent of zl9 z2f , zn. In this
section we study holomorphic vector fields in g(^) which are independent
of zl9 z2, "'fzn9 where Sr is a sweepable generalized Siegel domain in
Cn x CWl x Cm2 x x C™8 with exponent (cl9 c2, , cs_u 0).

With the same notations as in [3], we shall first prove the following:

LEMMA 2.1. Let & be a sweepable generalized Siegel domain in
Cn x Cmi X C™2 x x Cms with exponent (cl9 c2, , cs_u 0). Let X be
a holomorphic vector field in Q(&) which is independent of zl9 z2, , zn.
Assume that

(*) d* l/2;

(**) the exponents ca (1 ^ a ^ s — 1) are all mutually distinct and caφ
0 (1 ^ a < s - 1).

Then X can be written in the form
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x = z0 + Σ zι + wι. + Σ wi. + Σ Wi, + Σ w;. + Wi
Kλ<8 Kλ<s l<a<β<s a<8

λΦl,a,β

PROOF. AS in [3, Section 2], X can be written as

x = z0 + Σ z x + Σ
Moreover, from [3, (2.5), (2.7)] we have

0 = ada-(ad(3L + + d ))2 X - Σ c^ad^1 + + d'))2 • (&dd"Y • X

= Σ (1 - 2cx)Zλ - 2 Σ CiWL - 6 Σ cαm
J,« - 2 Σ (cα +

a<β

a<β a<β

= Σ (1 - 2eλ)Zλ + ̂ - 2 Σ oλWlλ - 6 Σ caW}ta - 2 Σ ( c « +
λ<s x<s λΦa XΦa,β

aφs cc<β<s

A s i ^ α yy as A / * ̂ a yy <*β & * *

and hence we conclude by our assumptions (*) and (**) that

Zlf Z8, Wlχ (1 ̂  λ ^ s - 1) , WI* (X Φ a,l £ a £ 8 - ϊ) ,

- WL (λ ̂  a, β, 1 ̂  α ̂  s - 1) , W^ (1 ̂  α < β ̂  s)

and T7^ (1 ̂  α < /3 ̂  s - 1)

are all equal to zero. Then the vector field X is of the form

Kλ<s ' X<s ' λΦa,β ' a<s a,X λ

a<β<s

For each v < s, we have, by direct computations, the equalities

- 7 4_ ΠΓv _L V Wv 4- V W^ 4- V Wλ 4- Wv

— ^ - Ί ; " ' ' 2 S 1^ / i Vf (x β I x^ j r f Q;^ I x^ j TV y(% I ' ' 0 >
a<β<8 a<v v<oc
a,βΦv λΦv λΦux=z»- wi.- Σ Wί,+ Σ Wi,+ Σ Wi+ Tfo",

a<β<s a<v »<a
a,βΦί, λφι> λΦu

and hence
ec<β<s

(2 1) J " ' " " '

<

In the particular case where v = 1 in (2.1), we can show in the same
way as in the proof of [3, (2.14)] that the two vector fields

xι = w2\a+ Σ Wiβ
Ka<β<s
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and
X* = Σ Wla + Wi

l«x,λ

are equal to zero. Thus X may be expressed as

(2.2) X = ZQ + ΣiZx+WL+Σ* Wλ

2,8 + Σ Wiβ + Σ ^ 8 + ΣWl
Kλ<8 Kλ<8 l<a<β<8 a<s a,λ

λΦl,a,β

+ Σ Wi.
Kλ

From this, by a straightforward computation we have
(ad3-(ada1)2-X= Σ (d - ea)Wi - Σ (d - cβ)W?
J l<α Kα

lad3β ad31 X = Wβ

1 + W? for α = 2, 3, -- ,β .

Then, with the same arguments as in the proof of [3, Lemma 2.1] we
can prove that

(2.3) WI = 0 and W? = 0 for α = 2, 3, - , s .

As a result, from (2.2) and (2.3) we conclude that the vector field X
has the desired form as in Lemma. q.e.d.

LEMMA 2.2. Under the same situation as in Lemma 2.1, we have
the following:

(1) The veceor field 31 belongs to the center 5 of Q(£&);

(2) Let V be the set of common zeros of vector fields belonging to
i. Then

& 3 3f Π (Cn x {0} x Cm2 x x Cm°) => VZD & n {Cn x {0} x . x {0}) .

PROOF. By Lemma 2.1, the assertion (1) can be proved in the same
way as Vey [5, Lemme 3.2].

Our proof of (2) is similar to that of Vey [5, Lemme 3.3]. Consider
the vector field S ^ / ^ Ϊ Σ ^ i ^ W . By the first assertion (1) 31

belongs to 3, and moreover it is obvious that

31 = 0 on ^ n ( C n x ( 0 ) x C m 2 x x Cmή

and hence

2f Π (Cn x {0} x Cm2 x . x Cmή 3 V .

Next, taking an arbitrary vector field X belonging to j , we have
[djdzk, X] — 0 for every k = 1, 2, ••-,%. This implies that X is indepen-
dent of zlf z2, , zn. Thus we may assume that Xhas the explicit form
as in Lemma 2.1. Then, by a straightforward computation we have

0 = [3, X] = -Zo + ad3 ί Σ Zλ+Ws

2>8 + Σ Wi. + Σ WiβKl<λ<s Kλ<s Ka<β<s
λφlβ
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+ Σ.WS. + Wl + Σ,W*\ - Σ
a<s l<a,λ ) Kλ<s

and also

0 = [3s, X] = ad 3s- \z0 + Σ ̂  + Wl,. + Σ Wl. + Σ W*β
\ l<λ<s Kλ<8 l<a<β<8

λΦl,a,β

+ Σ,W%3 + Wl + Σ W*\ - V^lWl
a<s l<a,λ )

From these equalities, it is now easy to see that

Zo = 0 and 1^ = 0 (1< λ ̂  s) ,

and hence X can be expressed as

x=Σ*Zχ+ W2% + Σ>Wl + Σ Wiβ + Σ ^ + Wl + Σ W2,
KKί Kλ<β l<a<β<8 a<s l<oc,λ

λφl,a,β

which says that X = 0 on ^ Π (Cn x {0} x x {0}). Since X is an
arbitrary vector field belonging to the center g of g(^) , we conclude
that VZD Sf Π (Cn x {0} x x {0}), proving our assertion (2). q.e.d.

The proofs of the following lemmas are almost identical to those
of Lemmas 2.1 and 2.2 above. Therefore we omit the proofs.

LEMMA 2.3. Let £& be a sweepable generalized Siegel domain in
Cn x Cmi x C™2 x x Cms (s ̂  3) with exponent (cίy c2f - , c8_l9 0). Lei
X be a holomorphic vector field in §{2?) which is independent of zl9 z2,
• , zn. Assume that

(*) ' ^ = 1/2;
(**) ίfee exponents ca (1 ̂  α ^ s — 1) α? β αίϊ mutually distinct and

caΦ0 (1 ^ α ̂  8 - 1).

X cα î δe written in the form

Σ , Σ Σ
2<a<β<s a,λ^2 λΦ2

Xφa,β
2<λ

LEMMA 2.4. Under the same situation as in Lemma 2.3, we have
the following:

(1) The vector field 32 belongs to the center 5 of Q(&);
(2) Let V be the set of common zeros of vector fields belonging to

3. Then
& Z) & Π (Cn x Cmi x {0} x CW3 x x Cmή

D F D 5 n ( C n χ ( 0 ) χ x {0}).
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REMARK 3. In Lemma 2.3, the case when s = 2 has been already
considered in Section 1.

3. Proofs of theorems. To begin with, we shall prove the following
lemma, from which our problem will be reduced to the special case
where 3f is a generalized Siegel domain in Cn x CWl x CW2 with exponent
(1/2, 0).

LEMMA 3.1. Let ^ be a sweepable generalized Siegel domain in
Cn x Cmi x Cm2 x . . x Cms (s ̂  2) with exponent (clf c2, -, cs_u 0). Sup-
pose that ca Φ 0 for 1 ̂  a ^ s — 1. Tfoew we Λαvβ ca = 1/2 /or αZZ a =
1,2, . . . , 8 - 1 .

PROOF. We first claim that all cα's are identical. Indeed, using
Lemma 2.4, this can be verified with exactly the same arguments as in
the proof of [3, Theorem].

Secondly we shall show that cλ = 1/2. Since cγ = c2 = = c8_.γ as
above, our domain 3f is now a sweepable generalized Siegel domain in
Cn x Cmι x Cm2 with exponent (clf 0), where Mi = m! + m2 + + m,_!
and m2 — ms. Let F be the set of common zeros of vector fields belong-
ing to the center j of Q(3f). NOW, suppose that cx Φ 1/2. Then, by (2)
of Lemma 2.2 we have

(3.1) VΦ0

and

(dimλc(p) = 0 for pe V

(3.2) L * „
I VΛXL-Li, A \ iL// —/— \J i v l i iL/ >3 c=~£s **-£/ I 1 V^' />> IV/f / \ V>* )

On the other hand, since 3f is sweepable and the center g is obviously
stable under the adjoint action of any subgroup of Aut (3f), it follows
from a result of Vey [5] that dim jc(p) = constant, where the constant
is independent of the point p of 3f. This is a contradiction. Therefore
we have shown that c± = c2 = = cs_1 = 1/2. q.e.d.

PROOF OF THEOREM II. Case 1. mx = 0 : In this case D is a gen-
eralized Siegel domain in Cn x C™2 with exponent c = 0. Hence, this fact
follows from (A-2) of Vey's theorem in the Introduction.

Case 2. mx > 0 : First we note that m2 > 0. By considering a
suitable linear transformation £fσ: cn+mi+~-+m° -* Cn+mί+~'+ms as defined in
the Introduction if necessary, we may assume without loss of generality
that

(3.3) ca Φ 0 (1 <: a <: 8 - fc) and ^ = 0 ( 8 - / 5 + 1 ^ ^ 3 ^ 8).
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Thus 3f may be regarded as a sweepable generalized Siegel domain in

Cn x Cm i x x Cm*~k x C™s-fc+i with exponent (clf c2, , c8_fc, 0) such

that ca Φ 0 (1 <; α <; s — k), where m8_fc+1 = ms_fc+1 + + m8. By Lemma

3.1 we then have c = c2 = = c8_fc = 1/2. Hence £& is a sweepable

generalized Siegel domain in C71 x C™1 x C™2 with exponent (1/2, 0), where

Mi = m1 + + ms_fc and ra2 = raβ_fc+1 = m8_k+1 + + m8. Our theorem

is now an immediate consequence of Theorem 1.1 in Section 1. q.e.d.

PROOF OF THEOREM III. Suppose that there exists a discrete subgroup

Γ of Aut (£^) such that 3f\Γ is compact. We now have the following

three cases to consider.

Case 1. ca — 0 for all a = 1, 2, , s : In this case ^ is a gen-

eralized Siegel domain in Cn x C W l + W 2 + ' " + m s with exponent c = 0. Hence

this theorem follows from (B) of Vey's theorem in the Introduction.

Case 2. ca Φ 0 /or αίi α = 1, 2, , s : In this case S is a Siegel

domain of the second kind in Cn x cmι+m2+'"+ms by Theorem I in the

Introduction. Therefore, Theorem III again follows from (B) of Vey's

theorem (see [3, Corollary]).

Case 3. ca Φ 0 and cβ = 0 /or £wo exponents ca and cβ: Since ^

is a sweepable domain, it follows immediately from Theorem II that, in

this case, Si may be regarded as the direct product 3f± x 3ί%, where

3f± is a Siegel domain of the second kind in Cn x Cmi and ϋ% is a homo-

geneous bounded circular domain in C™2 containing the origin. Thus,

Theorem III follows now from Theorem 1.2 in Section 1. q.e.d.
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