T6hoku Math. Journ.
34 (1982), 65-86.

ON GENERALIZED SIEGEL DOMAINS WITH EXPONENT
(cly 621 ) Ca)) II

Axk10 KopAMA*

(Received April 13, 1981)

Introduction. This is a continuation of our previous paper [3], and
we retain the terminology and notations there.

As a natural generalization of the notion of generalized Siegel domains
in C* x C™ with exponent ¢ due to Kaup, Matsushima and Ochiai [2], we
introduced in [3] the notion of generalized Siegel domains in C* x C™ X
C™ x --- X C™ with exponent (¢, ¢, -+, ¢,). For a domain D in C¥, we
shall denote by Aut(D) the group of all holomorphic transformations of
D onto itself. Then we say that D is a sweepable domain if there exist
a subgroup I of Aut(D) and a compact subset K of D such that I'-K =
D. 1In [5], Vey investigated the structure of generalized Siegel domains
in C* x C™ with exponent ¢ and gave an interesting characterization of
Siegel domains of the first or the second kind in the sense of Pjateckii-
Sapiro [4] among generalized Siegel domains. His results may be stated
as follows:

THEOREM (Vey [5]). (A) Let & be a sweepable gemeralized Siegel
domain in C* X C™ with exponent ¢. Then we have the following:

(A-1) If ¢ # 0, then = is a Siegel domain of the first or the second
kind according as m = 0 or m > 0.

(A-2) If ¢ = 0, then = s the direct product 2, X 2, where =, is
a Siegel domain of the first kind in C* and &, is a homogeneous bounded
circular domain in C™ containing the origin. ‘

(B) Let =7 be a generalized Siegel domain in C* X C™ with exponent
c. Suppose that 7 admits a discrete subgroup I' of Aut (=) such that
Il is compact. Then ' is symmetric.

As a generalization of (A-1) of Vey’s theorem, we proved the fol-
lowing theorem in [3]:

THEOREM I (Kodama [3]). A sweepable generalized Siegel domain in
C" X C™m X Cm™ X --- X C™ with exponent (¢, ¢, ---,¢,) with ¢; =0 for
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1 <1< s 48 a Siegel domain of the first or the second kind according
asm, +m,+ - +m, =0 or >0.

The purpose of this paper is to extend the above results (A-2) and
(B) by Vey to our generalized Siegel domains in C* X C™ X C™ X -+ X
C™: with exponent (¢, ¢, -+, ¢,). Given a permutation ¢ of the set
{1,2, ---, s}, we shall define a linear transformation &, of Crtmifmet+m
onto itself by

%(z’ Wy, Wy * ws) = (Z, Woi)y Waiz)y °° °y wa(a)) .

Under this notation we have the following:

THEOREM II. Let & be a sweepable generalized Siegel domain in
C"xC™m x C™ X --- X C™ with exponent (¢, ¢, +--,¢,). Suppose that
some of the exponents, say, ¢, Cy, -+, ¢, (L =k <8) are equal to zero
and the others are mot. Then, putting Wi, = m, + m, + -+ + m,, and
m, = (m, + my + - -+ + m,) — M,, we have that & s the direct product
D, X Z; up to a suitable linear tramsformation &, where 2, is a Siegel
domain of the first or the second kind im C™ X c™ according as m, =0
or M, >0 (t.e.,, k=38 or 1<k <3s) and &, is a homogeneous bounded
cireular domain in C™ containing the origin.

THEOREM III. Let & be a generalized Siegel domain inm C* X C™ X
Cm™: X -+ X C™ with exponent (¢, ¢, -+, ¢,). Suppose that 2 admits a
discrete subgroup I' of Aut(=2) with compact quotient Z|/I'. Then =2
18 symmetric.

The idea of the proofs is due to Kaup, Matsushima and Ochiai [2]
and also Vey [5].

This paper is organized as follows. In Section 1 we investigate the
structure of the Lie algebra g(<7) in the case where & is a generalized
Siegel domain in C* x C™ x C™ with exponent (1/2,0). And we give
the proofs of our Theorems II and III in this special case.

In Section 2, as a preparation for the next section, we study holo-
morphic vector fields belonging to g(=2) which are independent of 2z, z,,

‘e, R

In the final Section 3 we first prove that our problem can be reduced
to the special case where <7 is a generalized Siegel domain in C* X
C™ X C™ with exponent (1/2, 0). After that, the proofs of Theorems
II and III will be obtained as an immediate consequence of Section 1.

1. The structure of generalized Siegel domains in C* X C™ x C™
with exponent (1/2,0). The purpose of this section is to prove the
following theorems:
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THEOREM 1.1. Let &7 be a sweepable generalized Siegel domain in
C" X C™ X C™ with exponent (1/2,0). Then < is the direct product
D, X Z,, where 2, 1s a Stegel domain of the second kind im C" x C™
and Z, is a homogeneous bounded circular domain in C™ containing
the origin.

THEOREM 1.2. Let & be a generalized Siegel domain in C* x C™ X
C™ with exponent (1/2,0). Suppose that = admits a discrete subgroup
I' of Aut(=2) with compact quotient Z/I'. Then & is symmelric.

After long series of lemmas, we first clarify the structure of the
Lie algebra g(=2) in Theorem 1.22. And, using this result, we give the
proofs of the above theorems at the end of this section.

The proof of the following proposition is similar to that of Vey [5,
Proposition 1.1] and hence is left to the reader:

PROPOSITION 1.3. Let &2 be a holomorphically convexr generalized
Siegel domain in C* X C™ X C™ with exponent (e, ¢,). We put
Z, = N(C" x {0} x {0}).

Then we have the following:
(1) = is a Siegel domain of the first kind in C", and hence it is
expressed as

2, ={2€C"|Imzec L},

where Q 18 an open convex cone in R"™ containing no straight line.

(2) Let (2, w,w,)e=2. Then (2 \w, pw, € =Z for any N peC
with || £ 1 and |p] £ 1.

Throughout the rest of this section we denote by = a sweepable
generalized Siegel domain in C" X C™ x C™ with exponent (1/2,0). We
also use the following notations:

18#1111»2 = {Z[lulvz} ’

B0, = (Wi, for =12,
where Z,,,, and W/,,, are polynomial vector fields defined in [3, Section
1]. We put 3,,, = {0} and W, ,, = {0} if z, v, or v, are negative.
In the case where &7 is a generalized Siegel domain with exponent
(1/2, 0) we have from [3, (1.1)] that

[a, levlvz] =(¢—1+ V1/2)Z,uu1yz ’
(1.1) [0, Wil = (2 + /2 — 12)W,,,, ;
v [ai Wzvlvz] = (l" + 1)1/2> qum .
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Now, let X be an arbitrary holomorphic vector field on =2 belonging
to g(=2). By [3, Theorem B] X can be written in the form

X = lg(‘] {Z}lOO + Zylo + ZI’Ol + W;}go + W[lll_[ + W;&og + W,lqo + W;m + W;&oo
+ Wzm + leu + vv;%oz + W;Ztlo + W/%m + eroo} .
Using the bracket relation (1.1), we then have
ad aX :/;:4) {(# - 1)(Z;too + Z#m) + ()a - 1/2)(Z/110 + W;Iroz + W;]zox + W;&oo)
+ ﬂ( Wlill + WFI'IO + W§02 + Wﬁﬂl _l_ Wzoo)
+ (¢ + 1Y2)(Wiae + Wiy + Wing) + (¢t + 1) Wi}
Thus, putting
(1-2) X/f = Z(,'t+1)00 + Z(;l+1)01 + W;tu + W;luo + Wfloz + W;%m + WZoo + W%ful)zo ’
(1‘3) X!‘+1/2 = Z(P—}-I)IO + W(1#+1)02 + W(1#+1)01 + W(1,11+1)00 + W;ZO + W/2111 + Wzl()
for p=-1,0,1,2, ..., we have
X=> X

led
and
$(ad0)-X = 5,600 X,

for every polynomial ¢(x) € R[x], where
A={NeR|2veZ N = —1}.

Therefore we obtain the following theorem as in the case where & is
a generalized Siegel domain with exponent 1/2 due to Kaup, Matsushima
and Ochiai [2, Theorem 2]:

THEOREM 1.4. Let <7 be a generalized Stegel domain with exponent
(1/2,0). For each » = —1, let g; be the subspace of §(=) comsisting of
all vector fields im §(=2) of the form (1.2) or (1.8) according as N is an
integer or a half-integer. Then we have

(1) g; is the eigen space of add for the eigen-value \;

(2) 9(F) = Duea8s

(3) [8s 8.1 C Giro-

LEMMA 1.5, For = —1,0,1,2, ---, we have g, = g, D g, where

g:l = 9(9) N ('8(1—'+1)01 @ %Lu @ %?102 @ %?«m) 5
8 = 98(2Z) N (Birnm D W, D W) -
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Proor. Consider an arbitrary vector field X in g.. By (1.2) X is
then expressed as

X = Z(#+1)00 =+ Z(I!+1)01 + W/in + W/ho + W,Lzloz + Wﬁm + W;zroo + W5t1—1)20 .
By routine calculations we obtain
ado'- X = 21 —1Wiiiw;
(ad 81)2'X = —4W(2#—1)20 ;
(ad aZ)Z'X = '_'{Z(ﬂ+1)01 + W/iu + Wﬁoz + fooo + W(zﬂ—l)zo} M
The first two equalities mean that WZ_,, = 0, since g(2) NV —1g(=) =
{0} by H. Cartan’s principle. Therefore we have X = X, + X,, where
X, = Zpyno + W;Iuo + Wﬁm €g(2) ;
X2 = Z(#+1)o1 + Wziu + Wﬁoz + W,Eoo € 9(9) ’
which implies our assertion. q.e.d.
LEMMA 1.6. We have the following:
( 1 ) g—l = {Zl?:l a’ka/azk | (a’ly aZ, Tty an) € R"} ’
(2) g2 =8(2) N (Bow D BWio) ;
(38) 6 =g BDg, where
{g(') = Q(g) N (B, @ DIt @ QBgoo) ’
gé' = 9(9) N (8100 @ Whyo @ Byo) ;
(4) 8. =9(Z2)N (Buo D Wi D Wi, D T, ;
(5) 8, =9D g, where
{QI = g(2) N (B, D B, D Wiyo) »
91’ = g(@) N (8200 @ 'S\’Bim 69 %?m) .
ProOF. It is clear that 9/0%z, belongs tog_, fork =1,2, ---, n. Now,
let X = Z,, + Z,, be an arbitrary vector field belonging to g_,. Then
{ad 62X = VTIZOM ’
(ad 82)2'X = '—Zoo1 )
and hence Z,, = 0. It remains to show that the coefficients of X = Z,
are real. But this follows from the proof of [2, Theorem 3].
Let X = Zyo + Wot, + Woo, + Waw€8_1,. Then
{ad X =2 —1Wg +V —1Wi, ;
(adaz)a-X= —8v _1Wo%12 -V _1W0101 .
From this we have V' —1W4,, V' —1W4, €(22), and hence
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Wi = —(1/2)-ad 8*- (V' —1Wiy) €8(2) ;
Wi = —ad3®- (V' —1We,) €g(2) .
Noting the fact g(=2) N1 —1g(2) = {0}, we have
Woe =Wer =0,
which implies our assertion (2).
Let X = Z,,, + W&, + W&, + Wi, be an arbitrary vector field in g;.

By virtue of Lemma 1.5 it is enough to show that Z, = 0. By (1) we
have

[0/0zs, Zin] = [0/024, X] € -1 N Bow = {0}

for every k=1, 2, ---, n, which means Z,, = 0, as desired.
To prove (4), we take an arbitrary vector field X in g,,. By (1.3)
X can be written in the form

X = Zyo + Wioy + Wi+ Wi + Wapo + We + Wayo -
Simple computations give the following equalities

ad* X = 2V —1Wh, + V —1Wh, —V —1W ;

(@d3®)*- X = —81/ —1Wh, — V —1Wh, + V' —1W},,
from which we have
(1.4) V =AWy, V —=1WE, —V —1Wi e g(2) .

Then, since the vector field Wi, = —(1/2)-ad 3*- (V' —1W},) also belongs
to g(=), we see that Wi, = 0. Moreover, putting

(1.5) X, = —ad 32'(1/:_1 Wi — V' —1 W) = Wi+ We
we have from (2) that
[a/azk, W1101] = [a/azk; Xl] €31 n%ém = {0}

for every k=1,2, ---,n. This means W}, = 0. Hence, from (1.4) and
(1.5) we obtain

V —1W, Waweg(2),

which shows W§, =0. We have thus shown that g,, is contained in
8(2) N (Buo D Wiy P T D Wy). The reverse inclusion is trivial, com-
pleting the proof of (4).

Finally let X = Z,, + W3, + W2,+ Wi, be an arbitrary vector field
belonging to g;. Then, since

[a/azln Xleg,, [a/azk, Zi] € Bio » [a/azk, Wi e By, ,
[a/azk, Wfoz] € W, ’ [a/azk, Wfao] € Wy,
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and the B,,-component of any vector field belonging to g, does not appear
by (3), we conclude that
[0/02,, Z:s] = 0 for k=1,2 ---,mn,

which implies Z,, = 0. Our assertion (5) is now an immediate consequence
of Lemma 1.5. q.e.d.

REMARK 1. We see later in Lemma 1.11 that

g, = {0} for M= 3/2.
LEMMA 1.7. For £ =0,1,2, .-, we have

(1) Q,’u =¢(2) N (Wi, D Wioe D %ﬁzoo) ’
(2) Gurie = 8(2) N (Buurno D BWlpsrroo D Bhoo D W) -

PrOOF. We prove these by induction on g. It is already proved in
Lemma 1.6 that (1) holds for ¢ =0 or 1. Supposing that (1) is true for
¢ =8—1 (s=2), we now consider an arbitrary vector field X belonging
to gi.. By Lemma 1.5 X may be expressed as

X =2Zyn + Wi + Wiy + Wao .

It is sufficient to show that Z,,,,, = 0. Now, noting that [0/0z,, X] € g._,
and that the 3,,-component of any vector field belonging to g,_, is zero
by induction assumption, a reasoning similar to the one in the proof of
Lemma 1.6, (5) yields also the equality

[a/azk; Z(x+1)01] = 0 for k = 1! 27 ) n ’

which implies Z,.,,, = 0, as desired.
By induction on g, we can easily verify the second assertion in the
same way as in the proof of (4) of Lemma 1.6. g.e.d.

LEMMA 1.8. Let t be the radical of ¢(=Z). Then we have
rz%rl, L=1tNg;.
Moreover, t, = g; for » = 3/2.

PrOOF. This can be proved in exactly the same way as Kaup,
Matsushima and Ochiai [2, Lemma 4.1]. q.e.d.

Now, let A = >'2_, a,0/02, (a,€ R) be an element of g_,. According
to Kaup, Matsushima and Ochiai [2], we define the linear mappings
U, 8,.—8... and @,:g, —g_, as follows:

U, (X)=ado'-adA4A-X for Xeg,;

(1.6)
O(X) = (1/2)-(ad A¥-X  for Xeg,.
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Then, by a straightforward computation we can show that

XV =1a,0,0) = —¥ (X)) —1a, 0, 0) for Xeg,;

XV =1a,0,0) = —0,(X)(v' —1a,0,0) for Xeg',

where a = (a, a,, ---, a,). Using these equalities, we can prove the

following lemma with the same arguments as those in the proof of Kaup,
Matsushima and Ochiai [2, Lemma 4.2], and hence the proof is omitted:

1.7

LEMMA 1.9. tNg, = {0} and tNg’ = {0}
LemMmaA 1.10. For £=1,2, ---, we have
8use = {0} and gy, = {0}.

PrOOF. We notice by a simple calculation that [g_, gv]Cg,-, for
every p. From this fact, using Lemmas 1.5,1.7, 1.8 and 1.9, our proof
can be carried out with exactly the same arguments as [2, Lemma 4.3].

q.e.d.

For a given generalized Siegel domain & in C* x C™ X C™ we put
Z, =2 N(C" x {0} x{0});
9, = N([C" x C™ x {0})
and also
D(z) = {(z, w,, w,) e D} {2z} Xx C™ x C™ for zez;;
D (z, w,) = {(z, w,, wy) € Z} {2} x {w,} x C™ for (2, w)e =z .
LEMMA 1.11. g, = {0} for p=2,3, ---.
In particular, by Lemmas 1.5 and 1.10 we have
g; = {0} for N=3/2.

Proor. We first observe that g, = {0}. For this we consider an
arbitrary vector field X belonging to g;. By Lemma 1.7 X may be
expresed as

(18) X = Wzlu + szcz + W2200 .

Take a point ¢ = (a,, a,, -+, @,) € R" in such a way that (' —1a, 0, 0)¢
<. Then, putting

A = kzj‘, 0,0/02,€8_, ;
X'=(1/2)-(ad A)*-Xeg,,

we can show by a routine calculation that

X’(zy wl, wz) = X(a’y wl; wz) = '_'X(L _la', wl, wz) ’
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since X is homogeneous of degree two in z, (1 <k < n) by (1.8). Thus
the vector field X + X’ vanishes on the fiber 27(1”—1a). Noting that
the C"-component of X + X’ is zero, the same reasoning as that in the
proof of Vey [5, Lemma 7.4] yields that X + X’ = 0, and hence

X=0 and X'=0,

which implies that g; = {0}. The verification of the lemma is now
straightforward by induction on p. q.e.d.

LEMMA 1.12. Let Y be the subalgebra of §(=Z) generated by 0* and
g,. Then we have

b = Qé@b N (%510@%301) .

Proor. Clearly 9 is a subalgebra of g, and any vector field X belong-
ing to § is independent of z. Thus, by Lemma 1.6 X can be expressed
as

X = Wolw + Wo201 + Wolu + Wozoz + W0200

with Wy, + W, + Wi, € g0 C b, and hence W¢, + W, € b N (W, @ DIt
g.e.d.

LeEMMA 1.13 (Vey [5, Lemma 8.2]). Let C:§—C™ be the linear
mapping defined by C(X) = X(0,0,0) for Xe¥h. Then we have

(1) C is imgective on g

(2) KerC =Hhn (W D W,), where Ker C denotes the kernel of the
linear mapping C;

(3) 90,0,0) is a C-subspace of C™, that is, §°(0, 0, 0) = %(0, 0, 0).

PrOOF. To prove (1), we consider an arbitrary vector field X =
Wi + We, + W&, belonging to g. Suppose that C(X)=0. By the
definition of C, this means that W3, = 0. Then we have X =Wy, +
W¢,, and hence the vector field v —1(W}, + W3,) = ad 8*- X also belongs
to g(=7). Recalling the fact g(=2) N1V —1g(=2) = {0}, we conclude that
X = Wolu + W0202 = 0.

The verification of (2) is straightforward. Next, to prove the asser-
tion (8), take an arbitrary vector field X = Wy, + W, + W, belonging
to g;. Then we have

ado* X =V —1Wy, +V —1We, — VvV —1W4,,
and hence
V" =1X(0, 0, 0) = —(ad 6*- X)(0, 0, 0) € (0, 0, 0)

which is our last assertion. q.e.d.
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LEMMA 1.14. dimgg, = 2k for some h, 0 < h < m,. Moreover, there
exists an R-basis {Y,, -+, Y., Y., - -+, Y.} for g such that

(1) ?i=[az’Yi]forj=1’2’"';h;

(2) {C(Y, ---, C(Y,)} forms a C-basis for %°(0, 0, 0) = }(0, 0, 0).

PrOOF. This is an immediate consequence of Lemma 1.13. q.e.d.

The proofs of the following two lemmas are similar to those of
Lemmas 1.13 and 1.14, and hence are left to the reader (cf. Vey [5,
Lemme 4.1]):

LEMMA 1.15. Let C:g_,,— C™ be the linear mapping defined by
C(X) = X(0,0,0) for Xeg_,,. Then we have

(1) C 1is injective;

(2) @§...00,0,0) s a C-subspace of C™, that 1is, g°,.(0, 0, 0) =
8-.(0, 0, 0).

LEMMA 1.16. dimgg_,. = 2k for some k,0 < k < m,. Moreover, there
exists an R-basis {X,, ---, X, X, -+, X\} for g_.. such that

(1) X,=00,X;] for j=1,2, -+, k;

(2) {C(X), ---, C(X)} forms a C-basis for g°,.(0, 0, 0) = g_,,,(0, 0, 0).

LEMMA 1.17. Let X; A< j<k) and Y; 1 <5< h) be the vector
fields as im Lemmas 1.16 and 1.14. Then

{(a/azl)(pa)y Tty (a/azn)(pa)’ Xl(pa)’ ) ch(pa); Yl<pu)9 Tty Yh(pa)}
is a C-basis for g(2) (p.), where p, = (V' —1a,0,0)c & and acR".

PROOF. Since ¢(2) =9_,Dg.,. P Da,.Pg by Theorem 1.4 and
Lemma 1.11, it is sufficient to show that, for any vector field X belonging
to each g, (—1 =N 1), X(p,) can be expressed as a linear combination
of the » + k + h vectors as given in the lemma. If X belongs to g_,,
g_.» Or g, this is obvious. So, consider an arbitrary vector field X =
Zw + Wi + We, in g'. Then X(p,) = Z,(p,) € C", and hence is a linear
combination of (0/02,)(p.), - - -, (0/0%,)(D,)-

Next, taking a vector field X belonging to g,, (resp. g'), we have

X(®) = =¥ A X)(Do) €8-1(Da) (resp. X(p,) = —P(X)(p,) € g.(Da)

by (1.7), and hence X(p,) is a linear combination of X,(p,), ---, X.(p.)
(resp. (0/0z)(p,), - -+, (0/02,)(p,)). Finally we consider a vector field

(1.9) X = Wi + Wi + Wi

belonging to g;. Noting that X = 3\2_, 2,[0/02,, X] by (1.9) and [9/dz,, X] e
g, for every k =1,2, ---, m, we have
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X(p,) = 3 (V' =1a)0/62, X1(p.) € a(.) ,

k=1
and hence X(p,) is a linear combination of Y (p,), - -, Y.(D,). q.e.d.
LEmMMA 1.18 (Vey [5, Proposition 4.1 and Lemme 8.5]).
dimgg_,, = 2m, and dimgg = 2m, . A

PrROOF. We have to show that ¥ = m, and h = m, in Lemma 1.17.
Now, since &7 is sweepable by assumption, Vey [5, Proposition 2.3] says
that

dim; (2)°(p) = constant ,

where the constant is independent of the point » of &. Hence, by
Lemma 1.17 we have
dim¢ g(=2)°(p) =n+k+h

for any point p of =, and therefore, putting », = (V' —1a, 0, 0) e &,
a € R* as before, we can take an open neighborhood V of the point p,
such that

{6/0z)(p), - - -, (0/02,)(D), Xi(D), - - -, Xu(D), Yi(D), - -+, Yi(D)}
forms a C-basis for g(=2)‘(p) whenever p is contained in V. Then, con-
sidering the vector field

0 = 353002, + (1/2) 3, widfow, e 67
=1 a=1

and the points in V of the form (z, w, 0), we can choose the complex
numbers A, #7, which may be dependent on (2, w,), in such a way that

2+ w2 = SN Xz, w,, 0) + 3, 49(5/32;)(2, w,, 0)
j=1 i=1

(note that Y;(z, w,, 0) e C™ for every j, 1 < j < h, by (3) of Lemma 1.6),
which implies that

(1.10) w,/2 = 2 MO(X;)

for any (2, w,, 0) ¢ V, where C:g_,, —»C™ is the linear mapping defined
in Lemma 1.15. Recalling that C(X)), C(X,), ---, C(X,) are linearly inde-
pendent in C™ by (2) of Lemma 1.16, we have the first assertion &k = m,
by (1.10).

To prove the second assertion, we take a vector field X in g;. By
Lemma 1.6 X can be written in the form
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X =Wi +Way + Wea
and hence
X(z, 0, w,) = Wen(z, 0, w,) + Wan(2, 0, w)
for any (2, w,) € C" x C™. Therefore, applying the arguments in the
proof of Vey [5, Lemme 8.5] to our case, we can prove that
(1.11) Yz, 0, w,)e90,0,0), =12 ---,h

for any (2, w,) € C* X C™, where } is the subalgebra of g(=7) defined in
Lemma 1.12. Now, considering the vector field

=1V =1 wiafowt e gy

and the points in V of the form (z, 0, w,), we can choose the complex
numbers 2/ in such a way that

Vi —1lw, = Zh‘, 1Y (z, 0, wy)

for any (2,0, w,) e V. Note that (6/0z,)(z, 0, w,), X,(z, 0, w,) € C" @ C™ for
every tand 5,1 <i<n,1<j<k=m,. By (1.11) we then have

V' —1w, € §°(0, 0, 0) = H(0, 0, 0)
for any (z, 0, w,) € V. Obviously this shows that
h = dim¢ g,(0, 0, 0) = dim. (0, 0, 0) = m, . g.e.d.

LEMMA 1.19. The domain 2, = 2 N(C" x C™ x {0}) is a Siegel
domain of the second kind im C™ x C™. More precisely, 2, can be
expressed as

9, ={(z, w)eC" x C™|Imz — F(w, w,) € 2}

where 2 1is the open convexr cone in R™ appearing in Proposition 1.3
and F:C™ x C™ — C" is a suitable Q-Hermitian form.

PROOF. Our proof is almost identical to that of Vey [5, Proposition
5.1]. First of all, since dimgg_,, = 2m, by Lemma 1.18, it follows from
the proof of Vey [5, Lemme 5.1] that

n

m1 my
81 = {S( 3 i )oloa, + 3\ calowtle, e, oy cn)e €

k=1\a,

where fi; are complex constants depending only on g_,,. For k=12,
-++,m, we put

Fu, v) = (120" =) 3% fhou)
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for all w = (u,), v = (v,) € C™ and define the mapping F: C™ x C™ — C" by
F(u, v) = (F u, v), - -+, F"(u, v)) for u,veC™ .

Then we have

(1.12) FQw, pv) = MeF(u, v) for w,veC™ and \, peC;

(1.13) Every vector field X belonging to g_,, can be written in the form

”

X = 2/ 713, Fiw, 0)3jos, + S c.0/0wk
=1 a=1

for some ¢ = (¢, €, ***, Cp1) €Cp,.
Moreover, we assert that
Fv, w) = Fu, v)~ for u,veC™,

where the right hand side is the complex conjugate of F(u, v). To this
end, it is sufficient to show that the matrix A, defined by

Ak = (ffﬂ)léa,ﬂéml

is skew-Hermitian, that is, ‘A, = —A, for each k, 1 <k <n. Now, to
simplify the notation, we put
X, = 5 3 i ojos, + 3 cofow,
= 21/ =1 3\ Fi(w, 0oz, + icaa/aw;
for all ¢ = (¢, ¢, -+, ¢,,) €C™. Then, by a routine calculation we have
(1.14) X, [, XJl =2/ =15 (% Fhe5 )loz,

Noting that the vector field [X,, [0", X.]] belongs to g_, and the coefficients
of any vector field in g_, are real by Lemma 1.6, we see from (1.14)

that k., fke.c, is pure imaginary for each k, 1 <k < n. Therefore
3 (fh o+ Fhdesy = 0
for all ¢ = (¢, ¢, -+, €n,) €C™. Obviously, this implies that
fl+fl=0 for 1<k=<mn, l1Sa,B=m,
and so
tA, = —A, for k=1,2,---,m,

as desired.
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Next, by a simple computation we have
(1.15) exp X,-(z, w,, w,) = (z + 2V —1F(w,, ¢) + V' —1F(c, ¢), w, + ¢, w,)
for all (z, w, w,) €C" X C™ x C™ and all ceC™. In particular,
exp X_,, (2, w, 0) = (z — V' —1F(w,, w,), 0, 0) ;
exp X, -(z — V' =1F(w,, w,), 0, 0) = (2, w,, 0)
for all (2, w,) € 2. Recalling Proposition 1.3, we conclude from this that
(1.16) 2, = {(z,w,)eC" x C™|Imz — F(w,, w,) € 2} .
Finally we claim that
1.17) F(u,u)e 2 for any ueC™ and F(u,u)=0 only if u =0,

where 2 denotes the topological closure of 2. Indeed, let w e C™ and
(2,0,0)e 2. We have from (1.15) that

exptX,-(z,0,0) = (z + V —1tF(u, u), tu, 0) ¢ &
for all te R, and hence z + V' —1t*F(u, u) € &, or equivalently,
Imz + t*F(u, w) e 2

for all te R by Proposition 1.3, which implies that F(u, u) e 2. Next,
suppose that there exists a point u, € C™ such that u, + 0 and F(u,, u,) =
0. Then, taking a point (z, 0, 0) € &7, we see from (1.16) that <, and
hence &7, contains the complex affine line {(z,, Mu,, 0) | € C}. But this is
impossible, since <& is holomorphically equivalent to a bounded domain
in C**™*m, We have thus shown that & is the Siegel domain of the
second kind defined by the convex cone 2 and the 2-Hermitian form
F. q.e.d.

REMARK 2. From (1.13) in the proof, we have
G = {21/ '—Tkz", FMw, 0)9)oz, + S, cadfowt|c = (¢, -+, tn) ec'"l} .
=1 a=1

LEMMA 1.20. We have

( 1 ) Q:; = g(@) N (%cz)oz @ %goo):

(2) g{ = 9(9) N (%%02 @ %ioo)-

ProOF. To prove (1), consider an arbitrary vector field X belonging
to g;. By Lemma 1.6 X can be expressed as X = W3, + W, + W2,. We

have only to show that Wy, = 0. Now, taking a vector field Y = Z,,, +
Weo in g_,. arbitrarily, we have

[Zom, Wolu] + [Woloo, Wolul = [Y, X] €G-
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On the other hand, since
[Zom, Wolnl € :8011 ) [Woloo, Wolu] € §'Z.ﬁolm

and the 3,,(resp. W;,)-component of any vector field in g_,, is zero by
Lemma 1.6, we conclude that

(1.18) [Zoo, Weu] =0 and [We, Wil =0.

Let Wao = D2, c0/owl, and Wy, = >332, Pfo/ows. 1t follows then from
the second equality of (1.18) that

Z:(ﬁ: caaPopu/awL)a/a’w}, =0,

B=1\a=1

and hence
Ei c. 0P8 /0w, = 0 for g=1,2,---,m, .
a=1

Recalling that dim;{C(X)|Xeg_,,} = m, by Lemma 1.18, this means that
oPS Jow:, =0 for 12a,8=m,.

Clearly this implies that Wi, = 0, as desired.

To verify the assertion (2), we next consider a vector field X belong-
ing to g;. By Lemma 1.6 X can be written in the form X = W}, + W2, +
Wz, From the assertion (1) we have

[0/02,, X] e g = g(Z) N (Tier €D Tio)
for every k, 1 <k <mn. Therefore, the j,-component of [§/0z, X]
satisfies
[0/0z,, Wi,] =0 for £k=1,2, ---,n,
from which we have W}, = 0. This proves the second assertion. q.e.d.
LEMMA 1.21. = 5N B, Pg(2) N (Whor D Wino)-

PROOF. Recall that § is the subalgebra of g(<=) generated by
{0°, a}. Since g = ¢(2) N (W D W) by Lemma 1.20, it is obvious that
any vector field in 9 is independent of (2, w,). Thus, our assertion
follows immediately from Lemma 1.12. q.e.d.

Summarizing our results, we have the following
THEOREM 1.22. Let &7 be a sweepable generalized Siegel domain in
C" X C™ x C™ with exponent (1/2,0). We put 2, = 2 N(C" x C™ x

{0}). Then we have from Lemma 1.19 that
(1) 2, =22, F) is the Siegel domain of the second kind defined
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by the convex cone 2 and the 2-Hermitian form F.
For each N~ = —1, let g; be the subspace of ¢(2) as defined in Theorem
1.4. Then we have the following:

(2) (2)=0..Ds-.. D8 D3:Dg., [8 8]CG,, where
( i ) g, = {Z"’:rl aka/azkl(au Ay * - °, a’n) € Rn};
(ii) Putting F(u, v) = (F*(u, v), - -+, F"(u, v)),

Gp = {21/—_1 kﬁ:‘,IF"(wl, 0)3/02, + z=; cdlowk|c = (¢, ¢ -+, Cn) ecw} :

(iii) g, = g D g, where
{Q(’) =g(Z2)N (Gos @ B300)
9{,), = Q(@) N (:8100 @ %310 @ %gm) ’

(iv) g1/2 = g(@) ﬂ (8110 @ %100 @ %620 @ %311);
(v) g.=0g’, where

{gi = g(g )N (Qit @ i) »
9;' = 9(g> N (8200 @ DI @ B, -

In particular, demoting by w:C" x C™ X C™ — C™ X C™ the canonical
projection w(z, w, w,) = (2, w,), we have:

(3) Ewvery vector field in g(=) is mw-projectable.

Let § be the subalgebra of g(=Z) generated by o° and g,. Then we
have

(4) H=0NT, Ds(Z)N (B, D Win);

(5) 10,0, 0 =Cm.

We are now in a position to prove Theorems 1.1 and 1.2.

PrRoOOF OF THEOREM 1.1. Put &, = 2 N (C" x C™ x {0}). Then, by
Theorem 1.22 &, is a Siegel domain of the second kind in C* x C™.
Let § be the subalgebra of g(=7) defined in Theorem 1.22 and H the
analytic subgroup of Aut(Z) corresponding to %). We put 2(z, w,) =
{(z, w,, w,) € Z}C{z} X {w} x C™ for any (2, w,) € <, as before. Since
we know from (4) and (5) of Theorem 1.22 that H(z, w,, 0) = §(0, 0, 0) =
C™, the following two assertions can be verified as in the proof of Vey
[5, Lemme 8.5]:

(1.19) H acts transitively on &2 (z, w,);
(1.20) Z(z, w,) is a bounded domain in {z} x {w,} x C™.

On the other hand, since [By, P Wiy, H] = {0} by (4) of Theorem 1.22,
every element of H commutes with any parallel translation
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P (2, w, w,) = (2 + a, w, + B, w,)

of C* x C™ x C™ onto itself, where @« € C" and g€ C™. Then, denoting
by 2, = H-(0, 0, 0) < {0} x {0} x C™ the orbit of H passing through the
origin, it follows that Z(z, w,) = P,,,,,(Z;) for any (2, w,) € &,. Clearly
this implies that & is the direct product =, x &,. Moreover, &, is
a homogeneous bounded domain in C™ = {0} x {0} x C™ containing the
origin, since so is any fiber 2 (z, w,). q.e.d.

LeMMA 1.23. Under the same situation as in Theorem 1.1, we have

8(2) =o(2) Pa(Z), [a(=2), a(Z)] = {0} .

PROOF. Since & = 2, x =, (direct product) by Theorem 1.1, this
is a classical result of H. Cartan [1]. q.e.d.

PROOF OF THEOREM 1.2. Suppose that there exists a discrete sub-
group I of Aut (<) such that &/I" is compact. Since & is a sweepable
domain, it follows immediately from Theorem 1.1 that & is the direct
product 2, x &, where &, is a Siegel domain of the second kind in
C" x C™ and 2, is a homogeneous bounded circular domain in C™ con-
taining the origin. Moreover, by Lemma 1.23 we have g(=2) = g¢(=2,) @
8(=;) (direct sum of ideals). On the other hand, we know from Vey [5,
Proposition 6.1] that g(<) is unimodular, hence so is g(=;). It then
follows from another result of Vey [5] that &, is symmetric. Since &
is homogeneous and circular, it is obvious that &, is symmetric. Finally,
being the direct product of two symmetric domains, & is also sym-
metric. q.e.d.

2. Vector fields which are independent of z,z, ---,2,. In this
section we study holomorphic vector fields in g(=) which are independent
of 2,2, ---, 2, where & is a sweepable generalized Siegel domain in
C"x C™m x C™x --- x C™ with exponent (¢, ¢, -, ¢,_y, 0).

With the same notations as in [3], we shall first prove the following:

LEMMA 2.1. Let <& be a sweepable gemeralized Siegel domain in
C"x C™m x C™ X -+ X C™ with exponent (¢, C, -+, €1, 0). Let X be
a holomorphic vector field in §(Z) which is independent of z,, 2, - -+, Z,.
Assume that
(x) e #1/2

(*+) the exponents ¢, (1 < a < s — 1) are all mutually distinet and ¢, +
0lgsass—1).

Then X can be writlen in the form
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X = Z+ZZ;+W“+ SWi+ S Wi+ > W, + Wi

1<i<s 1<a<p<s a<s

i#l,a, B
+ ZW1+ZW‘

1<a,2

ProOF. As in [3, Section 2], X can be written as
X=2+32+3 (ZW; +§:§W45) + S Wa+ LW
Moreover, from [3, (2.5), (2.7)] we have
0=ado-(ad(@" + --- + 8"))2-X — Zc (ad@" + --- + 07))*-(ado*)*- X
=50 - 2007, — 25 e Wi — 62c Wie =2 3 (a+ 0) Wi

a<ﬁ

—ZanWaﬁ—ZZcﬂW
=3 A—-2e)2Z;,+ Z,— 23, e, Wi, — 6>, ¢, WH—2Z(0 + ) Wis

+<8 +<s ita
a+s a<ﬂ<s

_2ZCW23—2ZCWOI}9——2ZC# aﬁp

a<s
Ata,s

and hence we conclude by our assumptions (x) and (+*) that
Z,Z, W, l=sxss—-1), W, ZW#a,1=a<s—-1),
Wi, Z#=a,s, 1sass—1), W, (1l=a<BL5S)
and Wj; 1sa<pgss—1)
are all equal to zero. Then the vector field X is of the form
X =12+ 3 Z + Wi, + Wi, +Z§ﬂW§,ﬁ + W, + %W.ﬁ + ;Wé .
«<p<s

For each v < s, we have, by direct computations, the equalities

@d@ +- -+ 30 (ad &) X =Z,+ Wi+ 3, Wept SWat Wt Wi ;
a ﬁ#:u 1;6: Z:ﬁv
ado-ad@' +---+0)-@de)-X=2,—Wz,— > Wi+ S Wi+ S Wi+ Wy,
P o isy s
and hence
W, + zﬂ; Wi eg(2) ;
(2.1) o
lZ + ZWL + Wi, +Wieg(2) .
l$y ‘Z‘i:‘

In the particular case where v =1 in (2.1), we can show in the same
way as in the proof of [3, (2.14)] that the two vector fields

Xl = W21,3 + Z /;ﬂ

1<a<p<s
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and
;X; :=1;E:2PPQL + vVg

are equal to zero. Thus X may be expressed as
@2) X=Z+ 3 Zi+ Wi, + SWi,+ 3 Wi+ S Wi+ PN

1<1<s 1<a<f<s
A#1,a,8

+ Wi

1<2

From this, by a straightforward computation we have
add-(ad o) X = X (e, — c) Wi — 3 (6, — c) Wi 5
ado*-ado"- X =W, + Wy for a«a=2,3,---,s.

Then, with the same arguments as in the proof of [3, Lemma 2.1] we
can prove that

(2.3) W:=0 and Wf=0 for a=2,3, ---,s.
As a result, from (2.2) and (2.3) we conclude that the vector field X
has the desired form as in Lemma. q.e.d.

LEMMA 2.2. Under the same situation as in Lemma 2.1, we have
the following:

(1) The veceor field o' belongs to the center § of ¢(2);

(2) Let V be the set of common zeros of wector fields belonging to
3. Then

ToOTAEC X0} XxC™ X +++ X C™)DVD D N(C" % {0}x---x{0]) .

ProoF. By Lemma 2.1, the assertion (1) can be proved in the same
way as Vey [5, Lemme 3.2].

Our proof of (2) is similar to that of Vey [5, Lemme 3.3]. Consider
the vector field o' = 1 —1 3™, wid/ow:. By the first assertion (1) &
belongs to 3, and moreover it is obvious that

=0 on N x{0} xC™Xx -+ xXC™)
and hence
NC" X {0} x Cmx-.-xXC™)DV.

Next, taking an arbitrary vector field X belonging to 3, we have
[0/0z,, X] = 0 for every k=1,2, ---, n. This implies that X is indepen-
dent of 2, z, ---, 2,. Thus we may assume that X has the explicit form
as in Lemma 2.1. Then, by a straightforward computation we have

0=, X]=—2 +2ado- | 2, + Wi, + SWi, + 3 Wi

1<i<s 1<a<p<s
A#1,a,B
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+SWe, + Wi+ zWI} — S Wi

a<s 1<a,’ 1<1<s8
and also

0 =[¢", X] = ad &*- {Z + S 2+ Wi+ S W+ S, W

1<A<s 1<m<g<s
+ S\We, + Wf + ZXWZ,} —V =1W.
a<s i<Ka,

From these equalities, it is now easy to see that
Z,=0 and W/=0(1<NZ5s),
and hence X can be expressed as

X = ZZZ+W;8+Z‘.W§S > Wip+2W:s+W1+2Wj,

1<2<s 1<2<s 1<a<p<s a<s
A#1,a,8

which says that X =0 on 2 N({C" x {0} X --- X {0}). Since X is an
arbitrary vector field belonging to the center 3 of (<), we conclude
that Vo 2 n(C" x {0} x --- x {0}), proving our assertion (2). q.e.d.

The proofs of the following lemmas are almost identical to those
of Lemmas 2.1 and 2.2 above. Therefore we omit the proofs.

LEMMA 2.83. Let & be a sweepable generalized Siegel domain in
C" X C™mxCm™x - xCm™ (s =38) with exponent (¢, ¢y, +++, €,_1, 0). Let
X be a holomorphic vector field in () which is independent of 2z, 2,

-+, %, Assume that

(%) ¢ =1/2

(xx) the exponents ¢, 1 < a <s — 1) are all mutually distinct and
G#FF0(lZass—1).

Then X can be written in the form

X=2,+Z +W;, + EWH+ZWL >, Was + LW

2<a<p<ls 2<a<s
A+a
2<2
2 2 2
+ Z ap + Wz ZW ZWO .
2<a<p<s a,2#2 A#2

A#a,p
2<2

LEMMA 2.4. Under the same situation as in Lemma 2.3, we have
the following:
(1) The vector field 0* belongs to the center 3 of §(=2);
(2) Let V be the set of common zeros of wector fields belonging to
3. Then
DGO0NC* X C™ X {0} x C™ X -+ X C™)
Vo2 nC" x {0} x --- x{0}).
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REMARK 3. In Lemma 2.3, the case when s = 2 has been already
considered in Section 1.

3. Proofs of theorems. To begin with, we shall prove the following
lemma, from which our problem will be reduced to the special case
where &7 is a generalized Siegel domain in C* x C™ x C™ with exponent
(1/2, 0).

LEMMA 3.1. Let & be a sweepable generalized Siegel domain in
C"xC™m x C™x --- X C™ (s = 2) with exponent (c,, ¢, -+, ¢,_,, 0). Sup-
pose that ¢, #0 for L=< a <s—1. Then we have c, = 1/2 for all a =
1,2 ---,8s — 1.

ProOF. We first claim that all ¢,’s are identical. Indeed, using
Lemma 2.4, this can be verified with exactly the same arguments as in
the proof of [3, Theorem].

Secondly we shall show that ¢, =1/2. Since ¢, =¢, = --- =¢,_, as
above, our domain &7 is now a sweepable generalized Siegel domain in
C" X C™ x C™ with exponent (¢, 0), where M, =m, + m, + -+ + m,_,

and 7, = m,. Let V be the set of common zeros of vector fields belong-
ing to the center 3 of g(=2). Now, suppose that ¢, = 1/2. Then, by (2)
of Lemma 2.2 we have

3.1) V+0o

and

dim 3(p) = 0 for peV;

dimg@) #0 for pe P — D N(C" x {0} x C™) .

On the other hand, since &7 is sweepable and the center 3 is obviously
stable under the adjoint action of any subgroup of Aut (&), it follows
from a result of Vey [5] that dim 3°(p) = constant, where the constant

is independent of the point » of <. This is a contradiction. Therefore
we have shown that ¢, =¢, = --- = ¢,_, = 1/2. q.e.d.

3.2)

ProOOF OF THEOREM II. Case 1. #i, = 0: In this case D is a gen-
eralized Siegel domain in C* x C™ with exponent ¢ = 0. Hence, this fact
follows from (A-2) of Vey’s theorem in the Introduction.

Case 2. 7, > 0: First we note that 7, > 0. By considering a
suitable linear transformation .&: Crtmit -tms , Crimit-4ms g9 defined in

the Introduction if necessary, we may assume without loss of generality
that

88 ec,#0(1=a=<s—k and ¢;,=0(6—-k+1=<B=5s).
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Thus &7 may be regarded as a sweepable generalized Siegel domain in
C" X C™ X -++ X C™—-k X C™s-++1 with exponent (e €y **+, Co_iy 0) such
thate, # 0 (1 < a« < s — k), where #,_,,, = my_4y + -+ + m,. By Lemma
3.1 we then have ¢, =¢, = --- =¢,_, = 1/2. Hence & is a sweepable
generalized Siegel domain in C" x C™ x C™ with exponent (1/2, 0), where
Wy =m, + - + m,_, and M, = My_pyy = My_pyy + -+ + m,. Our theorem
is now an immediate consequence of Theorem 1.1 in Section 1. q.e.d.

Proor oF THEOREM III. Suppose that there exists a discrete subgroup
I' of Aut (=) such that &/I" is compact. We now have the following
three cases to consider.

Case 1. ¢, =0 for all «a=1,2,---,s: In this case & is a gen-
eralized Siegel domain in C* x C™*™™+ms with exponent ¢ = 0. Hence
this theorem follows from (B) of Vey’s theorem in the Introduction.

Case 2. ¢, #0 for all « =1,2,---,s: In this case & is a Siegel
domain of the second kind in C" x C™*tm*™*ms by Theorem I in the
Introduction. Therefore, Theorem III again follows from (B) of Vey’s
theorem (see [3, Corollary]).

Case 3. ¢, +0 and ¢; =0 for two exponents ¢, and c;: Since ¥
is a sweepable domain, it follows immediately from Theorem II that, in
this case, & may be regarded as the direct product &, x =, where
<, is a Siegel domain of the second kind in C* x C™ and <, is a homo-
geneous bounded circular domain in C™ containing the origin. Thus,
Theorem III follows now from Theorem 1.2 in Section 1. q.e.d.
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